
Threads Redux

Changing thread semantics

1Dennis Kafura – CS5204 – Operating Systems

Threads Redux

Dennis Kafura – CS5204 – Operating Systems

Grace: Overview

 Goal
 Eliminate classes of concurrency errors
 For applications using fork-join parallelism
 Not appropriate for

 Reactive systems (servers)
 Systems with condition-based synchronization

 Approach
 Fully isolated threads (turning threads into processes)

 Leveraging virtual memory protections
 No need for locks (turn locks into no-ops)

 Sequential commit protocol
 Threads commit in program order
 Guarantees execution equivalent to serial execution

 Speculative thread execution

2

Threads Redux

Grace: Overview

 Features
 Overhead amortized over lifetime of thread
 Supports threads with irrevocable operations (e.g.,

I/O operations)
 Less memory overhead than comparable

transactional memory techniques

Dennis Kafura – CS5204 – Operating Systems 3

Concurrency error Cause Grace Prevention
Deadlock Cyclic lock acquisition No locking

Race condition Unguarded updates Updates committed
deterministically

Atomicity violation Interleaved updates Threads run atomically

Order violation Threads scheduled in
unexpected order

Threads execute in
program order

Threads Redux

Fork-Join Parallelism

 Serial elision used in Grace
 In Grace, fork-join parallelism is behaviorally equivalent to its sequential

counterpart

Dennis Kafura – CS5204 – Operating Systems 4

A

C

B

D

E

Threads Redux

Thread Execution

 Each thread has private copies of changed pages (guarantees thread isolation)
 Page protection mechanisms used to detect reads/writes
 Access tracking and conflict detection at page granularity
 Page version numbers allow detection of conflicts
 In case of conflict, thread aborts/restarts

Dennis Kafura – CS5204 – Operating Systems 5

Threads Redux

Commit order

 Rules
 Parent waits for

 youngest (most recently created) child
 Child waits for

 youngest (most recently created) elder sibling, if it
exists, or

 the parent’s youngest (most recently created) elder
sibling

 Equivalent to post-order traversal of execution
tree

 Guarantees equivalence to sequential execution

Dennis Kafura – CS5204 – Operating Systems 6

Threads Redux

Serial elision and commit order

A{

spawn B{

spawn C {…};

spawn D {…};

synch; //join for C and D

}

spawn E {…};

synch; //join for B and E

}

Dennis Kafura – CS5204 – Operating Systems 7

A

C

B

D

E

Threads Redux

Serial elision and commit order

A{

spawn B{

spawn C {…};

spawn D {…};

synch;

}

spawn E {…};

synch;

}

Dennis Kafura – CS5204 – Operating Systems 8

spawn E

spawn D

spawn C

spawn B

A

A

B

C D

E

youngerelder

C D B E A

waits for

postorder traveral

Threads Redux

Handling irrevocable I/O operations

 Each thread
 buffers I/O operations
 commits I/O operations with memory updates

 Thread attempting irrevocable I/O operation
 Waits for its immediate predecessor to commit
 Checks for consistency with committed state

 If consistent, perform irrevocable I/O operation
 Else, restart and perform irrevocable I/O operation as

part of new execution

Dennis Kafura – CS5204 – Operating Systems 9

Threads Redux

Performance

 On 8 core system
 Minimal (1-16 lines) changes for Grace version
 Speedup for Grace comparable to pthreads but with

guarantees of absence of concurrency errors

Dennis Kafura – CS5204 – Operating Systems 10

Threads Redux

Sammati

 Goals
 Eliminates deadlock in threaded codes
 Transparent to application (no code changes)
 Allows arbitrary use of locks for concurrency control
 Achieves composability of lock based codes
 Works for weakly typed languages (e.g., C/C++)

 Approach
 Containment

 Identify memory accesses associated with a lock
 Keep updates private while lock is held
 Make updates visible when lock is released

 Deadlock handling
 Automatic detection on lock acquisition
 Resolves deadlock by restarting one thread

Dennis Kafura – CS5204 – Operating Systems 11

Threads Redux

Sammati

 Key mechanisms
 Transparent mechanism for privatizing memory

updates within a critical section

 Visibility rules that
 preserve lock semantics
 allow containment

 Deadlock detection and recovery

Dennis Kafura – CS5204 – Operating Systems 12

Threads Redux

Privatizing memory

Dennis Kafura – CS5204 – Operating Systems 13

Threads Redux

Visibility rules

 Locks not nested

Dennis Kafura – CS5204 – Operating Systems 14

x=y=0;

acquire (L1);
x++;

release (L1);

Allow changes to x to
become (globally) visible
when lock is released.

Begin privatizing
changes to x when lock
is acquired.

Threads Redux

Visibility rules

 Nested locks

Dennis Kafura – CS5204 – Operating Systems 15

x=y=0;

acquire (L1);
acquire(L2);
x++;

release(L2);
acquire(L3);
x++;
y++;

release(L3);
release (L1);

Cannot allow changes to x to
become (globally) visible when
L2 is released because of
possible rollback to L1.

Cannot allow changes to x or y to
become (globally) visible when
L3 is released because of
possible rollback to L1.

Rule: make changes visible when all locks released.

Threads Redux

Visibility rules

 Overlapping (unstructured) locks

Dennis Kafura – CS5204 – Operating Systems 16

x=y=0;

acquire (L1);
x++;
acquire(L2);
y++;

release(L1);
release (L2);

Cannot determine transparently
with which lock(s) the data
should be associated.

Rule: make changes visible when all locks released.

Threads Redux

Deadlock detection

 A thread may only wait for (be blocked trying to acquire) one
lock at a time

 Because thread state is privatized, deadlock can be resolved by
rolling back and restarting one thread.

Dennis Kafura – CS5204 – Operating Systems 17

T2

T3

L1
L2

L3

L4

L5

T1

Threads Redux

Performance

 SPLASH benchmark
 Summati performance generally comparable to pthreads (one

notable exception)

Dennis Kafura – CS5204 – Operating Systems 18

Threads Redux

Performance

Dennis Kafura – CS5204 – Operating Systems 19

 Phoenix benchmark
 Summati performance generally comparable to pthreads

	Threads Redux
	Grace: Overview
	Grace: Overview
	Fork-Join Parallelism
	Thread Execution
	Commit order
	Serial elision and commit order
	Serial elision and commit order
	Handling irrevocable I/O operations
	Performance
	Sammati
	Sammati
	Privatizing memory
	Visibility rules
	Visibility rules
	Visibility rules
	Deadlock detection
	Performance
	Performance

