
Threads Redux

Changing thread semantics

1Dennis Kafura – CS5204 – Operating Systems

Threads Redux

Dennis Kafura – CS5204 – Operating Systems

Grace: Overview

 Goal
 Eliminate classes of concurrency errors
 For applications using fork-join parallelism
 Not appropriate for

 Reactive systems (servers)
 Systems with condition-based synchronization

 Approach
 Fully isolated threads (turning threads into processes)

 Leveraging virtual memory protections
 No need for locks (turn locks into no-ops)

 Sequential commit protocol
 Threads commit in program order
 Guarantees execution equivalent to serial execution

 Speculative thread execution

2

Threads Redux

Grace: Overview

 Features
 Overhead amortized over lifetime of thread
 Supports threads with irrevocable operations (e.g.,

I/O operations)
 Less memory overhead than comparable

transactional memory techniques

Dennis Kafura – CS5204 – Operating Systems 3

Concurrency error Cause Grace Prevention
Deadlock Cyclic lock acquisition No locking

Race condition Unguarded updates Updates committed
deterministically

Atomicity violation Interleaved updates Threads run atomically

Order violation Threads scheduled in
unexpected order

Threads execute in
program order

Threads Redux

Fork-Join Parallelism

 Serial elision used in Grace
 In Grace, fork-join parallelism is behaviorally equivalent to its sequential

counterpart

Dennis Kafura – CS5204 – Operating Systems 4

A

C

B

D

E

Threads Redux

Thread Execution

 Each thread has private copies of changed pages (guarantees thread isolation)
 Page protection mechanisms used to detect reads/writes
 Access tracking and conflict detection at page granularity
 Page version numbers allow detection of conflicts
 In case of conflict, thread aborts/restarts

Dennis Kafura – CS5204 – Operating Systems 5

Threads Redux

Commit order

 Rules
 Parent waits for

 youngest (most recently created) child
 Child waits for

 youngest (most recently created) elder sibling, if it
exists, or

 the parent’s youngest (most recently created) elder
sibling

 Equivalent to post-order traversal of execution
tree

 Guarantees equivalence to sequential execution

Dennis Kafura – CS5204 – Operating Systems 6

Threads Redux

Serial elision and commit order

A{

spawn B{

spawn C {…};

spawn D {…};

synch; //join for C and D

}

spawn E {…};

synch; //join for B and E

}

Dennis Kafura – CS5204 – Operating Systems 7

A

C

B

D

E

Threads Redux

Serial elision and commit order

A{

spawn B{

spawn C {…};

spawn D {…};

synch;

}

spawn E {…};

synch;

}

Dennis Kafura – CS5204 – Operating Systems 8

spawn E

spawn D

spawn C

spawn B

A

A

B

C D

E

youngerelder

C D B E A

waits for

postorder traveral

Threads Redux

Handling irrevocable I/O operations

 Each thread
 buffers I/O operations
 commits I/O operations with memory updates

 Thread attempting irrevocable I/O operation
 Waits for its immediate predecessor to commit
 Checks for consistency with committed state

 If consistent, perform irrevocable I/O operation
 Else, restart and perform irrevocable I/O operation as

part of new execution

Dennis Kafura – CS5204 – Operating Systems 9

Threads Redux

Performance

 On 8 core system
 Minimal (1-16 lines) changes for Grace version
 Speedup for Grace comparable to pthreads but with

guarantees of absence of concurrency errors

Dennis Kafura – CS5204 – Operating Systems 10

Threads Redux

Sammati

 Goals
 Eliminates deadlock in threaded codes
 Transparent to application (no code changes)
 Allows arbitrary use of locks for concurrency control
 Achieves composability of lock based codes
 Works for weakly typed languages (e.g., C/C++)

 Approach
 Containment

 Identify memory accesses associated with a lock
 Keep updates private while lock is held
 Make updates visible when lock is released

 Deadlock handling
 Automatic detection on lock acquisition
 Resolves deadlock by restarting one thread

Dennis Kafura – CS5204 – Operating Systems 11

Threads Redux

Sammati

 Key mechanisms
 Transparent mechanism for privatizing memory

updates within a critical section

 Visibility rules that
 preserve lock semantics
 allow containment

 Deadlock detection and recovery

Dennis Kafura – CS5204 – Operating Systems 12

Threads Redux

Privatizing memory

Dennis Kafura – CS5204 – Operating Systems 13

Threads Redux

Visibility rules

 Locks not nested

Dennis Kafura – CS5204 – Operating Systems 14

x=y=0;

acquire (L1);
x++;

release (L1);

Allow changes to x to
become (globally) visible
when lock is released.

Begin privatizing
changes to x when lock
is acquired.

Threads Redux

Visibility rules

 Nested locks

Dennis Kafura – CS5204 – Operating Systems 15

x=y=0;

acquire (L1);
acquire(L2);
x++;

release(L2);
acquire(L3);
x++;
y++;

release(L3);
release (L1);

Cannot allow changes to x to
become (globally) visible when
L2 is released because of
possible rollback to L1.

Cannot allow changes to x or y to
become (globally) visible when
L3 is released because of
possible rollback to L1.

Rule: make changes visible when all locks released.

Threads Redux

Visibility rules

 Overlapping (unstructured) locks

Dennis Kafura – CS5204 – Operating Systems 16

x=y=0;

acquire (L1);
x++;
acquire(L2);
y++;

release(L1);
release (L2);

Cannot determine transparently
with which lock(s) the data
should be associated.

Rule: make changes visible when all locks released.

Threads Redux

Deadlock detection

 A thread may only wait for (be blocked trying to acquire) one
lock at a time

 Because thread state is privatized, deadlock can be resolved by
rolling back and restarting one thread.

Dennis Kafura – CS5204 – Operating Systems 17

T2

T3

L1
L2

L3

L4

L5

T1

Threads Redux

Performance

 SPLASH benchmark
 Summati performance generally comparable to pthreads (one

notable exception)

Dennis Kafura – CS5204 – Operating Systems 18

Threads Redux

Performance

Dennis Kafura – CS5204 – Operating Systems 19

 Phoenix benchmark
 Summati performance generally comparable to pthreads

	Threads Redux
	Grace: Overview
	Grace: Overview
	Fork-Join Parallelism
	Thread Execution
	Commit order
	Serial elision and commit order
	Serial elision and commit order
	Handling irrevocable I/O operations
	Performance
	Sammati
	Sammati
	Privatizing memory
	Visibility rules
	Visibility rules
	Visibility rules
	Deadlock detection
	Performance
	Performance

