
π-Calculus

Reasoning about concurrency and
communication (Part 1).

CS5204 – Operating Systems 1

π Calculus

CS 5204 – Operating Systems 2

Theoretical Foundations of Concurrency

A formal study of concurrency enables:
•understanding the essential nature of concurrency
•reasoning about the behavior of concurrent systems
•developing tools to aid in producing correct systems

The π-calculus of Robin Milner:
•an algebra (operators, expressions, reaction rules)
•an interpretation for concurrent/communicating/mobile processes

π Calculus

CS 5204 – Operating Systems 3

A Quick Overview

Operation Notation Meaning

prefix π.P sequencing

action x(y)
xy

communication

a.P + b.Q
summation

Σ πi.Pi
choice

recursion P = {…}.P

replication !P
repetition

composition P | Q concurrency

restriction (ν x)P encapsulation

π Calculus

CS 5204 – Operating Systems 4

The Structure of a Process

A process is an autonomous entity possessing named ports through which it may
communicate with other processes. The name of the process and its ports are introduced as:

ProcessName(port-list) = behavior of the process

In the description of the process’ behavior, port names with overbars are interpreted as
“output” ports while names without overbars are often interpreted as “input’” ports.

The process below models a simple client that has one output port, “request” and one input
port, “reply”.

The special behavior “0” (zero) represents a terminated process (e.g., a process that
takes no action).

reply

request

graphical

Client(request, reply) = ….request…reply...

algebraic

π Calculus

CS 5204 – Operating Systems 5

A Sequential Process

The behavior of a process is expressed by algebraic equations. Suppose that we want to
describe a process that behaves like a “client.” This behavior can be expressed as:

The dot (“.”) is a prefix operation expressing sequential behavior.

The above equation is read as follows: the Client process issues an “opens” message
followed by two request-reply exchanges. It then “closes” the session and terminates.

Client(open, close, request, reply) = open.request1.reply1. request2.reply2.close.0

π Calculus

CS 5204 – Operating Systems 6

A Repetitive Sequential Process

A Client that engages in repeated sessions can be expressed using a recursive definition as:

Client(open, close, request, reply) =

open.request.reply. request.reply.close.Client(open, close, request, reply)

The above equation is read as follows: the Client process issues an “open” message
followed by two request-reply exchanges. It then “closes” the session and acts like the
Client process again.

π Calculus

CS 5204 – Operating Systems 7

A Process with Alternative Behavior

A typical sequential server must be able to enforce a protocol of interaction with its clients.
The behavior of a typical sequential server process can be modeled as follows.

IdleServer(open, request, reply, close) = open.BusyServer(open, request, reply,close)

BusyServer(open, request, reply, close)
= request.reply.BusyServer(open, request, reply, close)
+ close.IdleServer(open, request, reply, close)

Notes:
•the “+” operator represents choice or alternative action
•the server will only engage in an “open” action interaction at the start
•the server can handle any number of request-reply sequences
•once the server engages in a “close” action, it returns to its original condition
•the server can iteratively handle

π Calculus

CS 5204 – Operating Systems 8

Communicating Processes

Processes can be composed, allowing them to communicate through ports with complementary
names (i.e., one agent has an output port and the other has an input port with the same name).
Concurrent communicating agents can synchronize their behaviors through their willingness or
unwillingness to communicate. This reflects a rendezvous style of interaction.

x x
y z

xy.0 | x(z).0

π Calculus

CS 5204 – Operating Systems 9

Binding Names on Input

x(u). …u….u…..u

z

z z z

When an input command is a prefix to a process description, the
actual name received on an input port replaces in the body of
the process description the formal name used in the input
command.

xy.0 | x(u).uv.0

0 | yv.0

π Calculus

CS 5204 – Operating Systems 10

Semantics of Concurrent Communication

xy.0 | x(u).uv.0 | xz.0

0 | yv.0 | xz.0 xy.0 | zv.0 | 0

A system can evolve in different ways depending on the interactions
among processes.

π Calculus

CS 5204 – Operating Systems 11

Mobility
Mobility in the π-calculus:

•refers to dynamic change in the communication topology
among processes
•is accomplished by a process acquiring and losing ports
through which it may communicate with other processes

•is realized by transmitting the name of a port as the value of
some communication between two processes allowing the
transmitted port to be known to the receiving process

A

B

C
x

y

x

y
A

B

C
x

y
x

y

π Calculus

CS 5204 – Operating Systems 12

Mobility

A

B

C
x

y

x

y
A

B

C
x

y
x

y

A(x,y) = x.A(x,y) + y(x).A’(y) B(y) = y(z).z.B’(y,z)
A’(y) = … B’(y,z) = …

(A | B | C) = (x.A(x,y) + y(x).A’(y) | y(z).z.B’(y,z) | C)
= (A’(y) | x.B’(y,x) | C)

π Calculus

CS 5204 – Operating Systems 13

Mobility

CENTRE1

BASE1
IDLEBASE2

talk1

alert1

switch1

alert2

give2give1

CAR(talk1, switch1)

π Calculus

CS 5204 – Operating Systems 14

Mobility

CENTRE2

IDLEBASE1
BASE2

talk2

alert1

switch2

alert2

give2give1

CAR(talk2, switch2)

π Calculus

CS 5204 – Operating Systems 15

CAR(talk, switch) = talk.CAR(talk, switch)
+ switch(talk’ switch’).CAR(talk’, switch’)

Mobility

The bases can be modeled by:

The car’s behavior can be described as:

BASE(talk, switch, give, alert) = talk.BASE(talk, switch, give, alert)
+ give(t, s).switch t s .IDLEBASE(talk, switch, give, alert)

IDLEBASE(talk, switch, give, alert) = alert.BASE(talk, switch, give, alert)

π Calculus

CS 5204 – Operating Systems 16

Mobility

A simple control system, that alternates between the two
transmitters, is given by:

CENTRE1 = give1 talk2 switch2 .alert2.CENTRE2

CENTRE2 = give2 talk1 switch1 .alert1.CENTRE1

The mobile transmission system is:

SYSTEM1 = (ν talk1, switch1, give1, alert1, talk2, switch2, give2, alert2)
(Car(talk1, switch1) | BASE1 | IDLEBASE2 | CENTRE1)

where BASEi = BASE(talki, switchi, givei, alerti) for i = 1,2
IDLEBASEi = IDLEBASE(talki, switchi, givei, alerti) for i = 1,2

π Calculus

CS 5204 – Operating Systems 17

Replication

Client(open, close, request, reply) = open.request1.reply1. request2.reply2.close.0

The terminating process definition:

can be used to describe a longer-running system using replication as follows:

SYSTEM = (! Client | Server)

Which is equivalent to spawning/forking as many copies of the Client process
as desired.

π Calculus

CS 5204 – Operating Systems 18

Restriction
A name that is private to a process or a group of collaborating processes can be
defined by restriction similar to the effect of scoping or encapsulation.

Suppose that two different process are each attempting to communicate two
values to a process using port x. The following will not work correctly:

Because the middle process could receive the a from the left process and the c
from the right process. Encapsulation can be used to create a “private” link along
which the values can be passed with interference, as in:

xa. xb…. | x(f).x(g)…. | xc.xd...

(ν w)(xw.wa.wb …) | x(u).u(f).u(g)… | (ν t)(xt.tc.td…)

	p-Calculus
	Theoretical Foundations of Concurrency
	A Quick Overview
	The Structure of a Process
	A Sequential Process
	A Repetitive Sequential Process
	A Process with Alternative Behavior
	Communicating Processes
	Binding Names on Input
	Semantics of Concurrent Communication
	Mobility
	Mobility
	Mobility
	Mobility
	Mobility
	Mobility
	Replication
	Restriction

