
MapReduce

Concurrency for data-intensive
applications

1Dennis Kafura – CS5204 – Operating Systems

MapReduce

MapReduce

Dennis Kafura – CS5204 – Operating Systems 2

Jeff Dean

Sanjay Ghemawat

MapReduce

Dennis Kafura – CS5204 – Operating Systems

Motivation

 Application characteristics
 Large/massive amounts of data
 Simple application processing requirements
 Desired portability across variety of execution platforms

3

 Execution platforms

Cluster CMP/SMP GPGPU
Architecture SPMD MIMD SIMD
Granularity Process Thread x 10 Thread x 100
Partition File Buffer Sub-array
Bandwidth Scare GB/sec GB/sec x 10
Failures Common Uncommon Uncommon

MapReduce

Dennis Kafura – CS5204 – Operating Systems

Motivation

 Programming model
 Purpose

 Focus developer time/effort on salient (unique, distinguished) application
requirements

 Allow common but complex application requirements (e.g., distribution,
load balancing, scheduling, failures) to be met by support environment

 Enhance portability via specialized run-time support for different
architectures

 Pragmatics
 Model correlated with characteristics of application domain
 Allows simpler model semantics and more efficient support environment
 May not express well applications in other domains

4

MapReduce

MapReduce model

 Basic operations
 Map: produce a list of (key, value) pairs from the

input structured as a (key value) pair of a different
type

(k1,v1)  list (k2, v2)

 Reduce: produce a list of values from an input that
consists of a key and a list of values associated
with that key

(k2, list(v2))  list(v2)

Dennis Kafura – CS5204 – Operating Systems 5

Note: inspired by map/reduce functions in Lisp and other functional programming languages.

MapReduce

Example

Dennis Kafura – CS5204 – Operating Systems 6

map(String key, String value) :
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

reduce(String key, Iterator values) :
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

MapReduce

Example: map phase

Dennis Kafura – CS5204 – Operating Systems 7

When in the
course of human
events it …

It was the best of
times and the worst
of times…

map
(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(when,1), (course,1) (human,1) (events,1) (best,1) …

inputs tasks (M=3) partitions (intermediate files) (R=2)

This paper evaluates
the suitability of the
…

map (this,1) (paper,1) (evaluates,1) (suitability,1) …

(the,1) (of,1) (the,1) …

Over the past five
years, the authors
and many…

map (over,1), (past,1) (five,1) (years,1) (authors,1) (many,1) …

(the,1), (the,1) (and,1) …

Note: partition function places small words in one partition and large words in another.

MapReduce

Example: reduce phase

Dennis Kafura – CS5204 – Operating Systems 8

reduce

(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(the,1) (of,1) (the,1) …

reduce task
partition (intermediate files) (R=2)

(the,1), (the,1) (and,1) …

sort

(and, (1)) (in,(1)) (it, (1,1)) (the, (1,1,1,1,1,1))
(of, (1,1,1)) (was,(1))

(and,1) (in,1) (it, 2) (of, 3) (the,6) (was,1)

user’s function

Note: only one of the two reduce tasks shown

run-time function

MapReduce

Execution Environment

Dennis Kafura – CS5204 – Operating Systems 9

MapReduce

Execution Environment

 No reduce can begin until map
is complete

 Tasks scheduled based on
location of data

 If map worker fails any time
before reduce finishes, task
must be completely rerun

 Master must communicate
locations of intermediate files

Dennis Kafura – CS5204 – Operating Systems 10

Note: figure and text from presentation by Jeff Dean.

MapReduce

Backup Tasks

 A slow running task (straggler) prolong overall execution
 Stragglers often caused by circumstances local to the worker

on which the straggler task is running
 Overload on worker machined due to scheduler
 Frequent recoverable disk errors

 Solution
 Abort stragglers when map/reduce computation is near

end (progress monitored by Master)
 For each aborted straggler, schedule backup

(replacement) task on another worker

 Can significantly improve overall completion time

Dennis Kafura – CS5204 – Operating Systems 11

MapReduce

Backup Tasks

Dennis Kafura – CS5204 – Operating Systems 12

(1) without backup tasks (2) with backup tasks (normal)

MapReduce

Strategies for Backup Tasks

(1) Create replica of backup task when necessary

Dennis Kafura – CS5204 – Operating Systems 13

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Strategies for Backup Tasks

(2) Leverage work completed by straggler - avoid resorting

Dennis Kafura – CS5204 – Operating Systems 14

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Strategies for Backup Tasks

(3) Increase degree of parallelism – subdivide partitions

Dennis Kafura – CS5204 – Operating Systems 15

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Positioning MapReduce

Dennis Kafura – CS5204 – Operating Systems 16

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Positioning MapReduce

Dennis Kafura – CS5204 – Operating Systems 17

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

MapReduce on SMP/CMP

Dennis Kafura – CS5204 – Operating Systems 18

memory

L2 cache

L1 cache

memory

L2 cache

L1 cache

. . .
CMP

SMP

. . .

memory

L2 cache

L1
L1

L1
L1

L1
L1

L1
L1

MapReduce

Phoenix runtime structure

Dennis Kafura – CS5204 – Operating Systems 19

MapReduce

Code size

 Comparison with respect to sequential code size
 Observations

 Concurrency add significantly to code size (~ 40%)
 MapReduce is code efficient in compatible applications
 Overall, little difference in code size of MR vs Pthreads
 Pthreads version lacks fault tolerance, load balancing, etc.
 Development time and correctness not known

Dennis Kafura – CS5204 – Operating Systems 20

MapReduce

Speedup measures

 Significant speedup is possible on either architecture
 Clear differences based on application characteristics
 Effects of application characteristics more pronounced than architectural

differences
 Superlinear speedup due to

 Increased cache capacity with more cores
 Distribution of heaps lowers heap operation costs
 More core and cache capacity for final merge/sort step

Dennis Kafura – CS5204 – Operating Systems 21

MapReduce

Execution time distribution

 Execution time dominated by Map task

Dennis Kafura – CS5204 – Operating Systems 22

MapReduce

MapReduce vs Pthreads

 MapReduce compares favorably with Pthreads on
applications where the MapReduce programming model is
appropriate

 MapReduce is not a general-purpose programming model

Dennis Kafura – CS5204 – Operating Systems 23

MapReduce

MapReduce on GPGPU

 General Purpose Graphics Processing Unit (GPGPU)
 Available as commodity hardware
 GPU vs. CPU

 10x more processors in GPU
 GPU processors have lower clock speed
 Smaller caches on GPU

 Used previously for non-graphics computation in various
application domains

 Architectural details are vendor-specific
 Programming interfaces emerging

 Question
 Can MapReduce be implemented efficiently on a GPGPU?

Dennis Kafura – CS5204 – Operating Systems 24

MapReduce

GPGPU Architecture

 Many Single-instruction, Multiple-data (SIMD) multiprocessors
 High bandwidth to device memory
 GPU threads: fast context switch, low creation time
 Scheduling

 Threads on each multiprocessor organized into thread groups
 Thread groups are dynamically scheduled on the multiprocessors

 GPU cannot perform I/O; requires support from CPU
 Application: kernel code (GPU) and host code (CPU)

Dennis Kafura – CS5204 – Operating Systems 25

MapReduce

System Issues

 Challenges
 Requires low synchronization overhead
 Fine-grain load balancing
 Core tasks of MapReduce are unconventional to

GPGPU and must be implemented efficiently
 Memory management

 No dynamic memory allocation
 Write conflicts occur when two threads write to the

same shared region

Dennis Kafura – CS5204 – Operating Systems 26

MapReduce

System Issues

 Optimizations
 Two-step memory access scheme to deal with

memory management issue
 Steps

 Determine size of output for each thread
 Compute prefix sum of output sizes

 Results in fixed size allocation of correct size and
allows each thread to write to pre-determined location
without conflict

Dennis Kafura – CS5204 – Operating Systems 27

MapReduce

System Issues
 Optimizations (continued)

 Hashing (of keys)
 Minimizes more costly comparison of full key value

 Coalesced accesses
 Access by different threads to consecutive memory

address are combined into one operation
 Keys/values for threads are arranged in adjacent

memory locations to exploit coalescing
 Built in vector types

 Data may consist of multiple items of same type
 For certain types (char4, int4) entire vector can be

read as a single operations

Dennis Kafura – CS5204 – Operating Systems 28

MapReduce

Mars Speedup
 Compared to Phoenix

Dennis Kafura – CS5204 – Operating Systems 29

 Optimizations
 Hashing (1.4-4.1X)
 Coalesced accesses (1.2-2.1X)
 Built-in vector types (1.1-2.1X)

MapReduce

Execution time distribution

 Significant execution time in infrastructure operations
 IO
 Sort

Dennis Kafura – CS5204 – Operating Systems 30

MapReduce

Co-processing

 Co-processing (speed-up vs. GPU only)
 CPU – Phoenix
 GPU - Mars

Dennis Kafura – CS5204 – Operating Systems 31

MapReduce

Overall Conclusion

 MapReduce is an effective programming model
for a class of data-intensive applications

 MapReduce is not appropriate for some
applications

 MapReduce can be effectively implemented on a
variety of platforms
 Cluster
 CMP/SMP
 GPGPU

Dennis Kafura – CS5204 – Operating Systems 32

	MapReduce
	MapReduce
	Motivation
	Motivation
	MapReduce model
	Example
	Example: map phase
	Example: reduce phase
	Execution Environment
	Execution Environment
	Backup Tasks
	Backup Tasks
	Strategies for Backup Tasks
	Strategies for Backup Tasks
	Strategies for Backup Tasks
	Positioning MapReduce
	Positioning MapReduce
	MapReduce on SMP/CMP
	Phoenix runtime structure
	Code size
	Speedup measures
	Execution time distribution
	MapReduce vs Pthreads
	MapReduce on GPGPU
	GPGPU Architecture
	System Issues
	System Issues
	System Issues
	Mars Speedup
	Execution time distribution
	Co-processing
	Overall Conclusion

