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MAPREDUCE: SIMPLIFIED DATA PROCESSING

Abstract

ON LARGE CLUSTERS

by Jeffrey Dean and Sanjay Ghemawat

apReduce is a programming model and an associated implementation for processing

and generating large datasets that is

amenable to a broad variety of real-world tasks.

Users specify the computation in terms of a map and a reduce function, and the under-
lying runtime system automatically parallelizes the computation across large-scale clusters of

machines, handles machine failures, and sched

ules inter-machine communication to make effi-

cient use of the network and disks. Programmers find the system easy to use: more than ten
thousand distinct MapReduce programs have been implemented internally at Google over the
past four years, and an average of one hundred thousand MapReduce jobs are executed on

Google's clusters every day, processing a total of

I Introduction

Prior to our deselopment of Mapleduce, the authors and many others

at Cioagle Implemented hundreds of spectal-purpase computations that

procass large amounts af raw data, such as crawlad documents. Web
logs. etc. 1o compute variaus kinds of derived data, such as

the graph structare of Web

s cruwled per host, and

documents, summaries of the nurmb
the sat of mast frequent
tons are conceptually stratghtforward. However, the Input ata
ally large and the computa o be distribatad across hun
o thousands f machines in order to fink amount of
ume. The tssues of how to parallelize the computation. distribute the
data, and handle fullures conspire to ohscure the orlginal simple com-
putation with large amounts of complex code to deal with these ssues.

As a reaction Lo this complaxty, we designed 1 naw abstraction that
allows us to express the simple computations we were trying to perform
but bides the messy detatl of parallelizaton. Fault tolerance, data distt
bution and load balancing In 2 library. Our abstruction is inspired by the
ap andl refuce primitives presant in Lisp and many cther functional lan-
suages. We realied that most of cur computations mvohed applying 1
mag oparation to each logical ecord in Gur npu n ceder ko compule 1
sat of ntermadiate keyfvalue pais. and then applying a reduce operation
tcall the values that shared the same key n order to crmbin the derwved
data appropriately Our use of  functional model with user-specified map
and reduce apecations alkows us to paralolze L
and ta use reewccution as the primary mechantsm far fault
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f more than twenty petabytes of data per day.

“The maor contributions of this work are a stmple and powerful
interface that enables automatic parallelization and distribation of
large-scale computations, combined with an implementati
interfaca that achisves high performance on large m
modity PCs. The programming model can also be wsed to parallelise
computations acmss multiple cores of the same machine

Section 2 descrtbes the basic programming madel and gives several
axamplos. In S we doscribe an implamentation of the MapRaduce
interface talkred towards our cluster-based computing environment
Section 4 describas sevaral refinements of the programming madel that

we bave found usefulSection 5 has performance meastrements of aur
implementation for a variaty of asks. In Section 6, we axplar the use of
Mapheduce within Coogle Inchuding our experiences I using It asthe ba
st for 4 rewnte of our production indexing system. Section 7
lated and future work.

Iscussas re

sramming Model
mpulation takes a sel of inpus key/vulue pairs, and produces o
sat of utput hayivalue pais. The
exprasses the computation as bwo functions: m;
Map, writsen by the user, o
sermediate beyivalue pairs. The Maph
all ntermediate valuas assoctated with the same inte
and passes them Lo the reduce functi
“The raduca function. also wrtten

the user, accepls an tnierme-
cy. It marges these values
allr set of values. Typically Just zero ar
put value s producad on. The intermediate
values are supplied o the $uce function via an iterator. This
allows us 1o han of values that are toa large to

21 Example
Consider the problem of caunting the number of occurrences of each
word in 4 large collection of documents. The user would write code
similr to the Followtng pseudocode
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Motivation

m Application characteristics
O Large/massive amounts of data
O Simple application processing requirements
O Desired portability across variety of execution platforms

m EXxecution platforms

| Cluster | CMPISVP_| _GPGPU

Architecture  SPMD MIMD SIMD
Granularity Process Thread x 10 Thread x 100
Partition File Buffer Sub-array
Bandwidth Scare GB/sec GB/sec x 10
Failures Common Uncommon Uncommon
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Motivation

m Programming model

O Purpose

m Focus developer time/effort on salient (unique, distinguished) application
requirements

= Allow common but complex application requirements (e.g., distribution,
load balancing, scheduling, failures) to be met by support environment

m Enhance portability via specialized run-time support for different
architectures

O Pragmatics
m Model correlated with characteristics of application domain
= Allows simpler model semantics and more efficient support environment
= May not express well applications in other domains
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MapReduce model

m Basic operations

O Map: produce a list of (key, value) pairs from the
input structured as a (key value) pair of a different

type
(k1,v1) > list (K2, v2)

0 Reduce: produce a list of values from an input that
consists of a key and a list of values associated

with that key

(k2, list(v2)) > list(v2)

Note: inspired by map/reduce functions in Lisp and other functional programming languages.
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Example

map(String key, String value)
// Kkey: document name
// value: document contents
for each word w 1n value:
EmitIntermediate(w, “17);

reduce(String key, lterator values) :
// key: a word
// values: a list of counts
int result = O;
for each v 1n values:
result += Parselnt(v);
Emit(AsString(result));
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Example: map phase

inputs tasks (M=3) partitions (intermediate files) (R=2)

(when,1), (course,1) (human,l1) (events,1) (best,1) ...
ma <
p (in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) ...

When in the
course of human
events it ...

It was the best of
times and the worst
of times...

)?Q/;r;"ﬂlﬁepiig'(\)/; s\ m ap < (over,1), (past,1) (five,1) (years,1) (authors,1) (many,1) ...
and many...
(the,1), (the,1) (and,1) ...
This paper evaluates (this,1) (paper,1) (evaluates,1) (suitability,1) ...
the suitability of the map <
(the,1) (of,1) (the,1) ...

Note: partition function places small words in one partition and large words in another.
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Example: reduce phase

partition (intermediate files) (R=2)
reduce task

(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of 1) ...

Sort run-time function

(the,1), (the,1) (and,1) ...

(and, (1)) (in,(1)) (it, (1,1)) (the, (1,1,1,1,1,1))
(of, (1,1,1)) (was, (1))

(the,1) (of,1) (the,1) ...

fe d uce | user's function

(and,1) (in,1) (it, 2) (of, 3) (the,6) (was,1)

Note: only one of the two reduce tasks shown
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Execution Environment

User

Program

(1) fork ..~
: (1 ]gfork

2) .. -, 2
assign assign
r reduce

split 0

split 1
split 2
split 3
split 4

Input Map Intermediate files Reduce
files phasr (on local disks) phase

MapReduce

output
file 0

output
file 1

Output

files
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Execution Environment

Input ke_y*value Input ke_y*value
m  No reduce can begin until map
' ! Is complete
Data store 1 map Data store n map
m Tasks scheduled based on
l location of data
v;kuez; Vgiuagsz ) vg\(jgs& ) vgijgsj ‘ ) VSTU;’SZ' ) vgiuezss‘ ) - H
e m If map worker fails any time
== Barrier‘ == : Aggregates intermediate values by output key ' ‘ bEfO re red Uce fi n iSheS, taSk
\ntelf'ﬁ'lyeli,iate imteti'lyezd,iate intetiwye?c’lﬂiate m USt be CO m p I ete Iy re ru n
values values values N
! : m  Master must communicate
reduce reduce reduce - - - -
locations of intermediate files
final'key 1 final'key 2 final'key 3
values values values

Note: figure and text from presentation by Jeff Dean.

V%Tech Dennis Kafura — CS5204 — Operating Systems 10



|

Backup Tasks

m A slow running task (straggler) prolong overall execution

m Stragglers often caused by circumstances local to the worker
on which the straggler task is running

0 Overload on worker machined due to scheduler
O Frequent recoverable disk errors

m Solution

O Abort stragglers when map/reduce computation is near
end (progress monitored by Master)

O For each aborted straggler, schedule backup
(replacement) task on another worker

m Can significantly improve overall completion time
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Backup Tasks

20000 20000

— Done _ Done
é 15000 — é 15000 -
< 10000 - < 10000 -
2 s000 2 5000 -
0 I 0 L L B B
500 1000 500 1000
20000 — 20000 1
= 15000 & 15000 -
z =
T 10000 = 10000 -
: 5000 & 5000
= 7 = 7
Z o/\/““\ E N
500 1000 500 1000
20000 — 20000 ~
2 15000 2 15000 -
- =
= 10000 Z 10000 -
2 2
= 5000 — = 5000
O- /\"W = M
0 T T T T T T T 7 T T T T 0 T T T T I T T T T T T
500 1000 500 1000
Seconds Seconds
(1) without backup tasks (2) with backup tasks (normal)
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MapReduce

Strategies for Backup Tasks

map reduce worker
warker
CEPSET
@ file O
ep NN/ |
warker l

" output
file O
map
warker

(1) Create replica of backup task when necessary

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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MapReduce

Strategies for Backup Tasks

map
warker

map reduce waorker
worker
reducer output
file O
map
warker
= output
- file O

(2) Leverage work completed by straggler - avoid resorting

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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MapReduce

Strategies for Backup Tasks

map reduce worker
warker
reduce output
sarter () fle 0
map T
worker
ut
R ([ outp
file 0.2
worker
: output
R U:] file 0.1
, output
R @D file 0.0

(3) Increase degree of parallelism — subdivide partitions

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Positioning MapReduce

....................

Q

2

£

o |

@

= : DBMS/SQL
g |
EE ...............................................
s8 ! L
§,E I
o : MapReduce

T R

s |

_g l . ...............................................

g8 | MP!

e ¥

@ :

e N N e
Flat raw files Data Structured
Organization

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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MapReduce

Positioning MapReduce

MPI

MapReduce

DBMS/SQL

What they are

A general parrellel
programming paradigm

A programming paradigm
and its associated execution
system

A system to store, manipulate
and serve data.

Programming Model

Messages passing between
nodes

Restricted to Map/Reduce
operations

Declarative on data
query/retrieving;
Stored procedures

Data organization

No assumption

"files" can be sharded

Organized datastructures

Data to be manipulated

Any

k,v pairs: string/protomsqg

Tables with rich types

Execution model

Nodes are independent

Map/Shuffle/Reduce
Checkpointing/Backup
Physical data locality

Transaction
Query/operation optimization
Materialized view

Usabhility

Steep learning curve®;
difficult to debug

Simple concept
Could be hard to optimize

Declarative interface;
Could be hard to debug in
runtime

Key selling point

Flexible to accommodate
various applications

Plow through large amount
of data with commodity
hardware

Interactive querying the data;
Maintain a consistent view
across clients

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

=T
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MapReduce on SMP/CMP

SMP
CMP n "

L1 cache L1 cache

L2cache | = = &|L2 cache

\_uf |
o] |
—[ Ll
gital memory | * * ® | memor
| y
L1l
1
L1 | [ CMP [ SMP |
Model Sun Fire T1200 Sun Ultra-Enterprise 6000
CPU Type UltraSparc T1 UltraSparc 11
|2 Cache f;inglc—i:;suc fl—wuy issue
in-order in-order
CPU Count 8 24
Threads/CPU | 4 I
L1 Cache 8KB 4-way SA [6KB DM
memory L2 Size SMB 12-way SA | 512KB per CPU
shared (off chip)
Clock Freq. 1.2 GHz 250 MHz
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Phoenix runtime structure

Map Stage

Reduce Stage

MapReduce

Y

T »@p\m— N
+— - |' - _/ 5 / B — 4 -5'
3 Ly spit : | : .}/Merg\. 2
£ A - . - TS
7N J N -
1 }Qﬂap - ( Parti Redu?—b [ a y
| _/ | \ ) | / \ J/
- \ —\ Merg ¥
e (- ool
Worker N Worker M
Figure 1. The basic data flow for the Phoenix runtime.
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Code size

Description Data Sets Code Size Ratio
Pthreads | Phoenix
Word Determine frequency of words in a file S:10MB, M:50MB, L:100MB 1.8 0.9
Count
Matrix Dense integer matrix multiplication S:100x 100, M:500x500, L:1000x 1000 1.8 2.2
Multiply
Reverse Build reverse index for links in HTML files S:100MB, M:500MB. L: 1GB 1.5 0.9
Index
Kmeans Iterative clustering algorithm to classify 3D | S: 10K, M:50K. L: 100K points 1.2 1.7
data points into groups
String Search file with keys for an encrypted word S:50MB, M: 100MB, L:500MB 1.8 1.5
Match
PCA Principal components analysis on a matrix S:500x500, M:1000x 1000, L:1500x 1500 1.7 2.5
Histogram | Determine frequency of each RGB compo- | S:100MB, M:400MB, L:1.4GB 24 2.2
nent in a set of images
Linear Compute the best fit line for a set of points S:50M, M:100M, L:500M 1.7 1.6
Regression

m  Comparison with respect to sequential code size

m  Observations

O Concurrency add significantly to code size ( ~ 40%)
MapReduce is code efficient in compatible applications
Overall, little difference in code size of MR vs Pthreads
Pthreads version lacks fault tolerance, load balancing, etc.
Development time and correctness not known

O O 0O O
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MapReduce

Speedup measures

42 72 3539

30 [2 Cores 30 m2 Cores
W4 Cores W4 Cores
18 Cores 8 Cores
25 25 ) 116 Cores
w24 Cores
o 20 B _20
= -
= =
g ] 3
» 15 a 15 =
o o
E =
10 = “10
D |
PCA PCA

D |
Histogram  LinearRag worgCount  MafrixMult  StringMatch  Kmesns  Reverssindes Hisfogram  LingarRag

wordCount  Matrixmuit  StingMatch Kmagns  Reverssindsay

m Significant speedup is possible on either architecture
m Clear differences based on application characteristics
m Effects of application characteristics more pronounced than architectural
differences
m  Superlinear speedup due to
O Increased cache capacity with more cores
O Distribution of heaps lowers heap operation costs
0 More core and cache capacity for final merge/sort step
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Execution time distribution

0.35
O Merge

B Reduce
0.30 = Map

0.25

0.20

=
n

CMP Normalized Execution Time
o
=

0.05

0.00
2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

WordCount MatrixMult StringMatch Kmeans Reverselndex PCA Histogram LinsarReg

m Execution time dominated by Map task

Virginia 'WT och Dennis Kafura — CS5204 — Operating Systems
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MapReduce vs Pthreads

3]
=
fad
=]

B Pthreads @ Pthreads

B Phoenix W Phoenix

CMP Speedup
j—y == o) [l
= (4] = [42]
SMP Speedup
iy ury %] Fad
L] o =] o

(]
5]

String_match Kmeans Rewvarsalndex ~ PCA Histogram Linear_reg

Wordcount  Matrix_mult  String_match Kmaans Reversalndex PCA& Histogram Linear_rag Wordcount  Matrle_muilt

m MapReduce compares favorably with Pthreads on
applications where the MapReduce programming model is

appropriate
m MapReduce Is not a general-purpose programming model
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MapReduce on GPGPU

m General Purpose Graphics Processing Unit (GPGPU)
O Available as commodity hardware
0 GPU vs. CPU
= 10X more processors in GPU
s GPU processors have lower clock speed
= Smaller caches on GPU
O Used previously for non-graphics computation in various

application domains
O Architectural details are vendor-specific

O Programming interfaces emerging

m Question
0 Can MapReduce be implemented efficiently on a GPGPU?

Virgini Dennis Kafura — CS5204 — Operating Systems 24
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GPGPU Architecture

GPU

Multiprocessor 1

P+

Pol™

Pn

Multiprocessor P

P

=FI

Pn

MapReduce

CPU

e

-

Many Single-instruction, Multiple-data (SIMD) multiprocessors
High bandwidth to device memory

GPU threads: fast context switch, low creation time

Scheduling

0O Threads on each multiprocessor organized into thread groups
O Thread groups are dynamically scheduled on the multiprocessors

GPU cannot perform 1/O; requires support from CPU
Application: kernel code (GPU) and host code (CPU)

Vi
Tech
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System Issues

m Challenges
O Requires low synchronization overhead
O Fine-grain load balancing

0 Core tasks of MapReduce are unconventional to
GPGPU and must be implemented efficiently

O Memory management
= No dynamic memory allocation

m Write conflicts occur when two threads write to the
same shared region

Virgin Dennis Kafura — CS5204 — Operating Systems
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System Issues

m Optimizations
O Two-step memory access scheme to deal with
memory management issue
m Steps
0 Determine size of output for each thread
0 Compute prefix sum of output sizes
m Results in fixed size allocation of correct size and
allows each thread to write to pre-determined location
without conflict
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System Issues

m Optimizations (continued)
O Hashing (of keys)

= Minimizes more costly comparison of full key value
0 Coalesced accesses

m Access by different threads to consecutive memory
address are combined into one operation

m Keys/values for threads are arranged in adjacent
memory locations to exploit coalescing
O Built in vector types
= Data may consist of multiple items of same type

m For certain types (char4, int4) entire vector can be
read as a single operations

Virgin Dennis Kafura — CS5204 — Operating Systems
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Mars Speedup

m Compared to Phoenix

m Optimizations

18

17
16 7
15 4
14

O Hashing (1.4-4.1X)
0 Coalesced accesses (1.2-2.1X)

O Built-in vector types (1.1-2.1X)

MapReduce

as
B M
0L

ol

SM

II

SS

MM

PVC

PVR

=T
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Execution time distribution

100% e iy B OB OO

o NN N NN N
s 80% \E % }\‘{\—
z 0% ‘“a;; % -
2 60% % % 0
2 50% \“ﬁ N
3 5 0 \%.__.: [ Map
- 40% %\ M Sort
,*_E 30% % M Redue
| 20% %

10% :‘x

0% | T T | |

SM I SS MM PVC PVR

m Significant execution time In infrastructure operations
0 10
O Sort
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Co-processing

m Co-processing (speed-up vs. GPU only)
0 CPU - Phoenix

0 GPU - Mars
1.60
1.46
1.43 138
1.40 1.26
120 1.16
1.04
1.00
[="
g
2 0.80
[="
wn
0.60
0.40
0.20
0.00 I I
SM 11 SS MM PVC PVR
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Overall Conclusion

m MapReduce Is an effective programming model
for a class of data-intensive applications

m MapReduce Is not appropriate for some
applications

m MapReduce can be effectively implemented on a

variety of platforms
O Cluster

O CMP/SMP

0 GPGPU

Virgin Dennis Kafura — CS5204 — Operating Systems 32



	MapReduce
	MapReduce
	Motivation
	Motivation
	MapReduce model
	Example
	Example: map phase
	Example: reduce phase
	Execution Environment
	Execution Environment
	Backup Tasks
	Backup Tasks
	Strategies for Backup Tasks
	Strategies for Backup Tasks
	Strategies for Backup Tasks
	Positioning MapReduce
	Positioning MapReduce
	MapReduce on SMP/CMP
	Phoenix runtime structure
	Code size
	Speedup measures
	Execution time distribution
	MapReduce vs Pthreads
	MapReduce on GPGPU
	GPGPU Architecture
	System Issues
	System Issues
	System Issues
	Mars Speedup
	Execution time distribution
	Co-processing
	Overall Conclusion

