
MapReduce

Concurrency for data-intensive
applications

1Dennis Kafura – CS5204 – Operating Systems

MapReduce

MapReduce

Dennis Kafura – CS5204 – Operating Systems 2

Jeff Dean

Sanjay Ghemawat

MapReduce

Dennis Kafura – CS5204 – Operating Systems

Motivation

 Application characteristics
 Large/massive amounts of data
 Simple application processing requirements
 Desired portability across variety of execution platforms

3

 Execution platforms

Cluster CMP/SMP GPGPU
Architecture SPMD MIMD SIMD
Granularity Process Thread x 10 Thread x 100
Partition File Buffer Sub-array
Bandwidth Scare GB/sec GB/sec x 10
Failures Common Uncommon Uncommon

MapReduce

Dennis Kafura – CS5204 – Operating Systems

Motivation

 Programming model
 Purpose

 Focus developer time/effort on salient (unique, distinguished) application
requirements

 Allow common but complex application requirements (e.g., distribution,
load balancing, scheduling, failures) to be met by support environment

 Enhance portability via specialized run-time support for different
architectures

 Pragmatics
 Model correlated with characteristics of application domain
 Allows simpler model semantics and more efficient support environment
 May not express well applications in other domains

4

MapReduce

MapReduce model

 Basic operations
 Map: produce a list of (key, value) pairs from the

input structured as a (key value) pair of a different
type

(k1,v1) list (k2, v2)

 Reduce: produce a list of values from an input that
consists of a key and a list of values associated
with that key

(k2, list(v2)) list(v2)

Dennis Kafura – CS5204 – Operating Systems 5

Note: inspired by map/reduce functions in Lisp and other functional programming languages.

MapReduce

Example

Dennis Kafura – CS5204 – Operating Systems 6

map(String key, String value) :
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

reduce(String key, Iterator values) :
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

MapReduce

Example: map phase

Dennis Kafura – CS5204 – Operating Systems 7

When in the
course of human
events it …

It was the best of
times and the worst
of times…

map
(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(when,1), (course,1) (human,1) (events,1) (best,1) …

inputs tasks (M=3) partitions (intermediate files) (R=2)

This paper evaluates
the suitability of the
…

map (this,1) (paper,1) (evaluates,1) (suitability,1) …

(the,1) (of,1) (the,1) …

Over the past five
years, the authors
and many…

map (over,1), (past,1) (five,1) (years,1) (authors,1) (many,1) …

(the,1), (the,1) (and,1) …

Note: partition function places small words in one partition and large words in another.

MapReduce

Example: reduce phase

Dennis Kafura – CS5204 – Operating Systems 8

reduce

(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(the,1) (of,1) (the,1) …

reduce task
partition (intermediate files) (R=2)

(the,1), (the,1) (and,1) …

sort

(and, (1)) (in,(1)) (it, (1,1)) (the, (1,1,1,1,1,1))
(of, (1,1,1)) (was,(1))

(and,1) (in,1) (it, 2) (of, 3) (the,6) (was,1)

user’s function

Note: only one of the two reduce tasks shown

run-time function

MapReduce

Execution Environment

Dennis Kafura – CS5204 – Operating Systems 9

MapReduce

Execution Environment

 No reduce can begin until map
is complete

 Tasks scheduled based on
location of data

 If map worker fails any time
before reduce finishes, task
must be completely rerun

 Master must communicate
locations of intermediate files

Dennis Kafura – CS5204 – Operating Systems 10

Note: figure and text from presentation by Jeff Dean.

MapReduce

Backup Tasks

 A slow running task (straggler) prolong overall execution
 Stragglers often caused by circumstances local to the worker

on which the straggler task is running
 Overload on worker machined due to scheduler
 Frequent recoverable disk errors

 Solution
 Abort stragglers when map/reduce computation is near

end (progress monitored by Master)
 For each aborted straggler, schedule backup

(replacement) task on another worker

 Can significantly improve overall completion time

Dennis Kafura – CS5204 – Operating Systems 11

MapReduce

Backup Tasks

Dennis Kafura – CS5204 – Operating Systems 12

(1) without backup tasks (2) with backup tasks (normal)

MapReduce

Strategies for Backup Tasks

(1) Create replica of backup task when necessary

Dennis Kafura – CS5204 – Operating Systems 13

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Strategies for Backup Tasks

(2) Leverage work completed by straggler - avoid resorting

Dennis Kafura – CS5204 – Operating Systems 14

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Strategies for Backup Tasks

(3) Increase degree of parallelism – subdivide partitions

Dennis Kafura – CS5204 – Operating Systems 15

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Positioning MapReduce

Dennis Kafura – CS5204 – Operating Systems 16

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

Positioning MapReduce

Dennis Kafura – CS5204 – Operating Systems 17

Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic

MapReduce

MapReduce on SMP/CMP

Dennis Kafura – CS5204 – Operating Systems 18

memory

L2 cache

L1 cache

memory

L2 cache

L1 cache

. . .
CMP

SMP

. . .

memory

L2 cache

L1
L1

L1
L1

L1
L1

L1
L1

MapReduce

Phoenix runtime structure

Dennis Kafura – CS5204 – Operating Systems 19

MapReduce

Code size

 Comparison with respect to sequential code size
 Observations

 Concurrency add significantly to code size (~ 40%)
 MapReduce is code efficient in compatible applications
 Overall, little difference in code size of MR vs Pthreads
 Pthreads version lacks fault tolerance, load balancing, etc.
 Development time and correctness not known

Dennis Kafura – CS5204 – Operating Systems 20

MapReduce

Speedup measures

 Significant speedup is possible on either architecture
 Clear differences based on application characteristics
 Effects of application characteristics more pronounced than architectural

differences
 Superlinear speedup due to

 Increased cache capacity with more cores
 Distribution of heaps lowers heap operation costs
 More core and cache capacity for final merge/sort step

Dennis Kafura – CS5204 – Operating Systems 21

MapReduce

Execution time distribution

 Execution time dominated by Map task

Dennis Kafura – CS5204 – Operating Systems 22

MapReduce

MapReduce vs Pthreads

 MapReduce compares favorably with Pthreads on
applications where the MapReduce programming model is
appropriate

 MapReduce is not a general-purpose programming model

Dennis Kafura – CS5204 – Operating Systems 23

MapReduce

MapReduce on GPGPU

 General Purpose Graphics Processing Unit (GPGPU)
 Available as commodity hardware
 GPU vs. CPU

 10x more processors in GPU
 GPU processors have lower clock speed
 Smaller caches on GPU

 Used previously for non-graphics computation in various
application domains

 Architectural details are vendor-specific
 Programming interfaces emerging

 Question
 Can MapReduce be implemented efficiently on a GPGPU?

Dennis Kafura – CS5204 – Operating Systems 24

MapReduce

GPGPU Architecture

 Many Single-instruction, Multiple-data (SIMD) multiprocessors
 High bandwidth to device memory
 GPU threads: fast context switch, low creation time
 Scheduling

 Threads on each multiprocessor organized into thread groups
 Thread groups are dynamically scheduled on the multiprocessors

 GPU cannot perform I/O; requires support from CPU
 Application: kernel code (GPU) and host code (CPU)

Dennis Kafura – CS5204 – Operating Systems 25

MapReduce

System Issues

 Challenges
 Requires low synchronization overhead
 Fine-grain load balancing
 Core tasks of MapReduce are unconventional to

GPGPU and must be implemented efficiently
 Memory management

 No dynamic memory allocation
 Write conflicts occur when two threads write to the

same shared region

Dennis Kafura – CS5204 – Operating Systems 26

MapReduce

System Issues

 Optimizations
 Two-step memory access scheme to deal with

memory management issue
 Steps

 Determine size of output for each thread
 Compute prefix sum of output sizes

 Results in fixed size allocation of correct size and
allows each thread to write to pre-determined location
without conflict

Dennis Kafura – CS5204 – Operating Systems 27

MapReduce

System Issues
 Optimizations (continued)

 Hashing (of keys)
 Minimizes more costly comparison of full key value

 Coalesced accesses
 Access by different threads to consecutive memory

address are combined into one operation
 Keys/values for threads are arranged in adjacent

memory locations to exploit coalescing
 Built in vector types

 Data may consist of multiple items of same type
 For certain types (char4, int4) entire vector can be

read as a single operations

Dennis Kafura – CS5204 – Operating Systems 28

MapReduce

Mars Speedup
 Compared to Phoenix

Dennis Kafura – CS5204 – Operating Systems 29

 Optimizations
 Hashing (1.4-4.1X)
 Coalesced accesses (1.2-2.1X)
 Built-in vector types (1.1-2.1X)

MapReduce

Execution time distribution

 Significant execution time in infrastructure operations
 IO
 Sort

Dennis Kafura – CS5204 – Operating Systems 30

MapReduce

Co-processing

 Co-processing (speed-up vs. GPU only)
 CPU – Phoenix
 GPU - Mars

Dennis Kafura – CS5204 – Operating Systems 31

MapReduce

Overall Conclusion

 MapReduce is an effective programming model
for a class of data-intensive applications

 MapReduce is not appropriate for some
applications

 MapReduce can be effectively implemented on a
variety of platforms
 Cluster
 CMP/SMP
 GPGPU

Dennis Kafura – CS5204 – Operating Systems 32

	MapReduce
	MapReduce
	Motivation
	Motivation
	MapReduce model
	Example
	Example: map phase
	Example: reduce phase
	Execution Environment
	Execution Environment
	Backup Tasks
	Backup Tasks
	Strategies for Backup Tasks
	Strategies for Backup Tasks
	Strategies for Backup Tasks
	Positioning MapReduce
	Positioning MapReduce
	MapReduce on SMP/CMP
	Phoenix runtime structure
	Code size
	Speedup measures
	Execution time distribution
	MapReduce vs Pthreads
	MapReduce on GPGPU
	GPGPU Architecture
	System Issues
	System Issues
	System Issues
	Mars Speedup
	Execution time distribution
	Co-processing
	Overall Conclusion

