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Motivation

 Application characteristics
 Large/massive amounts of data
 Simple application processing requirements
 Desired portability across variety of execution platforms
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 Execution platforms

Cluster CMP/SMP GPGPU
Architecture SPMD MIMD SIMD
Granularity Process Thread x 10 Thread x 100
Partition File Buffer Sub-array
Bandwidth Scare GB/sec GB/sec x 10
Failures Common Uncommon Uncommon
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Motivation

 Programming model
 Purpose

 Focus developer time/effort on salient (unique, distinguished) application 
requirements

 Allow common but complex application requirements (e.g., distribution, 
load balancing, scheduling, failures) to be met by support environment

 Enhance portability via specialized run-time support for different 
architectures

 Pragmatics
 Model correlated with characteristics of application domain
 Allows simpler model semantics and more efficient support environment
 May not express well applications in other domains
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MapReduce model

 Basic operations
 Map: produce a list of (key, value) pairs from the 

input structured as a (key value) pair of a different 
type

(k1,v1)  list (k2, v2)

 Reduce: produce a list of values from an input that 
consists of a key and a list of values associated 
with that key

(k2, list(v2))  list(v2)
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Note: inspired by map/reduce functions in Lisp and other functional programming languages.
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Example
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map(String key, String value) :
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

reduce(String key, Iterator values) :
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));
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Example: map phase
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When in the 
course of human 
events it …

It was the best of 
times and the worst 
of times… 

map
(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(when,1), (course,1) (human,1) (events,1) (best,1) …

inputs tasks (M=3) partitions (intermediate files) (R=2)

This paper evaluates 
the suitability of the 
… 

map (this,1) (paper,1) (evaluates,1) (suitability,1) …

(the,1) (of,1) (the,1) …

Over the past five 
years, the authors 
and many… 

map (over,1), (past,1) (five,1) (years,1) (authors,1) (many,1) …

(the,1), (the,1) (and,1) …

Note: partition function places small words in one partition and large words in another.
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Example: reduce phase
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reduce

(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(the,1) (of,1) (the,1) …

reduce task
partition (intermediate files) (R=2)

(the,1), (the,1) (and,1) …

sort

(and, (1)) (in,(1)) (it, (1,1)) (the, (1,1,1,1,1,1)) 
(of, (1,1,1)) (was,(1))

(and,1) (in,1) (it, 2) (of, 3) (the,6) (was,1)

user’s function

Note: only one of the two reduce tasks shown

run-time function
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Execution Environment
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Execution Environment

 No reduce can begin until map
is complete

 Tasks scheduled based on 
location of data

 If map worker fails any time 
before reduce finishes, task 
must be completely rerun

 Master must communicate 
locations of intermediate files
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Note: figure and text from presentation by Jeff Dean.
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Backup Tasks

 A slow running task (straggler) prolong overall execution
 Stragglers often caused by circumstances local to the worker 

on which the straggler task is running
 Overload on worker machined due to scheduler
 Frequent recoverable disk errors

 Solution
 Abort stragglers when map/reduce computation is near 

end (progress monitored by Master)
 For each aborted straggler, schedule backup 

(replacement) task on another worker

 Can significantly improve overall completion time
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Backup Tasks
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(1) without backup tasks (2) with backup tasks (normal)
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Strategies for Backup Tasks

(1) Create replica of backup task when necessary
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Strategies for Backup Tasks

(2) Leverage work completed by straggler - avoid resorting
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Strategies for Backup Tasks

(3) Increase degree of parallelism – subdivide partitions
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Positioning MapReduce
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Positioning MapReduce
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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MapReduce on SMP/CMP
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Phoenix runtime structure
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MapReduce

Code size

 Comparison with respect to sequential code size
 Observations

 Concurrency add significantly to code size ( ~ 40%)
 MapReduce is code efficient in compatible applications
 Overall, little difference in code size of MR vs Pthreads
 Pthreads version lacks fault tolerance, load balancing, etc.
 Development time and correctness not known
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Speedup measures

 Significant speedup is possible on either architecture
 Clear differences based on application characteristics
 Effects of application characteristics more pronounced than architectural 

differences
 Superlinear speedup due to

 Increased cache capacity with more cores
 Distribution of heaps lowers heap operation costs
 More core and cache capacity for final merge/sort step

Dennis Kafura – CS5204 – Operating Systems 21



MapReduce

Execution time distribution

 Execution time dominated by Map task
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MapReduce vs Pthreads

 MapReduce compares favorably with Pthreads on 
applications where the MapReduce programming model is 
appropriate

 MapReduce is not a general-purpose programming model 
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MapReduce on GPGPU

 General Purpose Graphics Processing Unit (GPGPU)
 Available as commodity hardware
 GPU vs. CPU

 10x more processors in GPU
 GPU processors have lower clock speed
 Smaller caches on GPU

 Used previously for non-graphics computation in various 
application domains

 Architectural details are vendor-specific
 Programming interfaces emerging

 Question
 Can MapReduce be implemented efficiently on a GPGPU?

Dennis Kafura – CS5204 – Operating Systems 24



MapReduce

GPGPU Architecture

 Many Single-instruction, Multiple-data (SIMD) multiprocessors
 High bandwidth to device memory
 GPU threads: fast context switch, low creation time
 Scheduling

 Threads on each multiprocessor organized into thread groups
 Thread groups are dynamically scheduled on the multiprocessors

 GPU cannot perform I/O; requires support from CPU
 Application: kernel code (GPU) and host code (CPU)
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System Issues

 Challenges
 Requires low synchronization overhead
 Fine-grain load balancing
 Core tasks of MapReduce are unconventional to 

GPGPU and must be implemented efficiently
 Memory management

 No dynamic memory allocation
 Write conflicts occur when two threads write to the 

same shared region
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MapReduce

System Issues

 Optimizations 
 Two-step memory access scheme to deal with 

memory management issue
 Steps

 Determine size of output for each thread
 Compute prefix sum of output sizes

 Results in fixed size allocation of correct size and 
allows each thread to write to pre-determined location 
without conflict
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System Issues
 Optimizations (continued)

 Hashing (of keys)
 Minimizes more costly comparison of full key value

 Coalesced accesses
 Access by different threads to consecutive memory 

address are combined into one operation
 Keys/values for threads are arranged in adjacent 

memory locations to exploit coalescing
 Built in vector types

 Data may consist of multiple items of same type
 For certain types (char4, int4) entire vector can be 

read as a single operations
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MapReduce

Mars Speedup
 Compared to Phoenix
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 Optimizations 
 Hashing (1.4-4.1X)
 Coalesced accesses (1.2-2.1X)
 Built-in vector types (1.1-2.1X)
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Execution time distribution

 Significant execution time in infrastructure operations
 IO
 Sort
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Co-processing

 Co-processing (speed-up vs. GPU only)
 CPU – Phoenix
 GPU - Mars
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Overall Conclusion

 MapReduce is an effective programming model 
for a class of data-intensive applications

 MapReduce is not appropriate for some 
applications

 MapReduce can be effectively implemented on a 
variety of platforms
 Cluster
 CMP/SMP
 GPGPU
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