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Motivation

 Application characteristics
 Large/massive amounts of data
 Simple application processing requirements
 Desired portability across variety of execution platforms
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 Execution platforms

Cluster CMP/SMP GPGPU
Architecture SPMD MIMD SIMD
Granularity Process Thread x 10 Thread x 100
Partition File Buffer Sub-array
Bandwidth Scare GB/sec GB/sec x 10
Failures Common Uncommon Uncommon
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Motivation

 Programming model
 Purpose

 Focus developer time/effort on salient (unique, distinguished) application 
requirements

 Allow common but complex application requirements (e.g., distribution, 
load balancing, scheduling, failures) to be met by support environment

 Enhance portability via specialized run-time support for different 
architectures

 Pragmatics
 Model correlated with characteristics of application domain
 Allows simpler model semantics and more efficient support environment
 May not express well applications in other domains
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MapReduce model

 Basic operations
 Map: produce a list of (key, value) pairs from the 

input structured as a (key value) pair of a different 
type

(k1,v1)  list (k2, v2)

 Reduce: produce a list of values from an input that 
consists of a key and a list of values associated 
with that key

(k2, list(v2))  list(v2)
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Note: inspired by map/reduce functions in Lisp and other functional programming languages.
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Example
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map(String key, String value) :
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, “1”);

reduce(String key, Iterator values) :
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));
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Example: map phase
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When in the 
course of human 
events it …

It was the best of 
times and the worst 
of times… 

map
(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(when,1), (course,1) (human,1) (events,1) (best,1) …

inputs tasks (M=3) partitions (intermediate files) (R=2)

This paper evaluates 
the suitability of the 
… 

map (this,1) (paper,1) (evaluates,1) (suitability,1) …

(the,1) (of,1) (the,1) …

Over the past five 
years, the authors 
and many… 

map (over,1), (past,1) (five,1) (years,1) (authors,1) (many,1) …

(the,1), (the,1) (and,1) …

Note: partition function places small words in one partition and large words in another.
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Example: reduce phase
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reduce

(in,1) (the,1) (of,1) (it,1) (it,1) (was,1) (the,1) (of,1) …

(the,1) (of,1) (the,1) …

reduce task
partition (intermediate files) (R=2)

(the,1), (the,1) (and,1) …

sort

(and, (1)) (in,(1)) (it, (1,1)) (the, (1,1,1,1,1,1)) 
(of, (1,1,1)) (was,(1))

(and,1) (in,1) (it, 2) (of, 3) (the,6) (was,1)

user’s function

Note: only one of the two reduce tasks shown

run-time function
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Execution Environment
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Execution Environment

 No reduce can begin until map
is complete

 Tasks scheduled based on 
location of data

 If map worker fails any time 
before reduce finishes, task 
must be completely rerun

 Master must communicate 
locations of intermediate files
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Note: figure and text from presentation by Jeff Dean.
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Backup Tasks

 A slow running task (straggler) prolong overall execution
 Stragglers often caused by circumstances local to the worker 

on which the straggler task is running
 Overload on worker machined due to scheduler
 Frequent recoverable disk errors

 Solution
 Abort stragglers when map/reduce computation is near 

end (progress monitored by Master)
 For each aborted straggler, schedule backup 

(replacement) task on another worker

 Can significantly improve overall completion time
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Backup Tasks
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(1) without backup tasks (2) with backup tasks (normal)
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Strategies for Backup Tasks

(1) Create replica of backup task when necessary
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Strategies for Backup Tasks

(2) Leverage work completed by straggler - avoid resorting
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic



MapReduce

Strategies for Backup Tasks

(3) Increase degree of parallelism – subdivide partitions
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Positioning MapReduce
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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Positioning MapReduce
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Note: figure from presentation by Jerry Zhao and Jelena Pjesivac-Grbovic
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MapReduce on SMP/CMP
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Phoenix runtime structure
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Code size

 Comparison with respect to sequential code size
 Observations

 Concurrency add significantly to code size ( ~ 40%)
 MapReduce is code efficient in compatible applications
 Overall, little difference in code size of MR vs Pthreads
 Pthreads version lacks fault tolerance, load balancing, etc.
 Development time and correctness not known
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Speedup measures

 Significant speedup is possible on either architecture
 Clear differences based on application characteristics
 Effects of application characteristics more pronounced than architectural 

differences
 Superlinear speedup due to

 Increased cache capacity with more cores
 Distribution of heaps lowers heap operation costs
 More core and cache capacity for final merge/sort step
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Execution time distribution

 Execution time dominated by Map task
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MapReduce vs Pthreads

 MapReduce compares favorably with Pthreads on 
applications where the MapReduce programming model is 
appropriate

 MapReduce is not a general-purpose programming model 
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MapReduce on GPGPU

 General Purpose Graphics Processing Unit (GPGPU)
 Available as commodity hardware
 GPU vs. CPU

 10x more processors in GPU
 GPU processors have lower clock speed
 Smaller caches on GPU

 Used previously for non-graphics computation in various 
application domains

 Architectural details are vendor-specific
 Programming interfaces emerging

 Question
 Can MapReduce be implemented efficiently on a GPGPU?
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GPGPU Architecture

 Many Single-instruction, Multiple-data (SIMD) multiprocessors
 High bandwidth to device memory
 GPU threads: fast context switch, low creation time
 Scheduling

 Threads on each multiprocessor organized into thread groups
 Thread groups are dynamically scheduled on the multiprocessors

 GPU cannot perform I/O; requires support from CPU
 Application: kernel code (GPU) and host code (CPU)
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System Issues

 Challenges
 Requires low synchronization overhead
 Fine-grain load balancing
 Core tasks of MapReduce are unconventional to 

GPGPU and must be implemented efficiently
 Memory management

 No dynamic memory allocation
 Write conflicts occur when two threads write to the 

same shared region
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MapReduce

System Issues

 Optimizations 
 Two-step memory access scheme to deal with 

memory management issue
 Steps

 Determine size of output for each thread
 Compute prefix sum of output sizes

 Results in fixed size allocation of correct size and 
allows each thread to write to pre-determined location 
without conflict
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System Issues
 Optimizations (continued)

 Hashing (of keys)
 Minimizes more costly comparison of full key value

 Coalesced accesses
 Access by different threads to consecutive memory 

address are combined into one operation
 Keys/values for threads are arranged in adjacent 

memory locations to exploit coalescing
 Built in vector types

 Data may consist of multiple items of same type
 For certain types (char4, int4) entire vector can be 

read as a single operations
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Mars Speedup
 Compared to Phoenix
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 Optimizations 
 Hashing (1.4-4.1X)
 Coalesced accesses (1.2-2.1X)
 Built-in vector types (1.1-2.1X)
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Execution time distribution

 Significant execution time in infrastructure operations
 IO
 Sort
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Co-processing

 Co-processing (speed-up vs. GPU only)
 CPU – Phoenix
 GPU - Mars
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Overall Conclusion

 MapReduce is an effective programming model 
for a class of data-intensive applications

 MapReduce is not appropriate for some 
applications

 MapReduce can be effectively implemented on a 
variety of platforms
 Cluster
 CMP/SMP
 GPGPU
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