
Google File System

Google File System

CS 5204 – Operating Systems 2

Google Disk Farm

Early days…

…1999…

Google File System

Google Disk Farm

Dennis Kafura – CS5204 – Operating Systems 3

…today

Google File System

CS 5204 – Operating Systems 4

Design

 Design factors
 Failures are common (built from inexpensive

commodity components)
 Files

 large (multi-GB)
 mutation principally via appending new data
 low-overhead atomicity essential

 Co-design applications and file system API
 Sustained bandwidth more critical than low latency

 File structure
 Divided into 64 MB chunks
 Chunk identified by 64-bit handle
 Chunks replicated (default 3

replicas)
 Chunks divided into 64KB blocks
 Each block has a 32-bit checksum

…

chunk

file

blocks

Google File System

CS 5204 – Operating Systems 5

Architecture

 Master
 Manages namespace/metadata
 Manages chunk creation, replication, placement
 Performs snapshot operation to create duplicate of file or directory tree
 Performs checkpointing and logging of changes to metadata

 Chunkservers
 Stores chunk data and checksum for each block
 On startup/failure recovery, reports chunks to master
 Periodically reports sub-set of chunks to master (to detect no longer needed

chunks)

metadata

data

Google File System

CS 5204 – Operating Systems 6

Mutation operations

 Primary replica
 Holds lease assigned by master (60 sec. default)
 Assigns serial order for all mutation operations

performed on replicas

 Write operation
 1-2: client obtains replica locations and identity of

primary replica
 3: client pushes data to replicas (stored in LRU

buffer by chunk servers holding replicas)
 4: client issues update request to primary
 5: primary forwards/performs write request
 6: primary receives replies from replica
 7: primary replies to client

 Record append operation
 Performed atomically (one byte sequence)
 At-least-once semantics
 Append location chosen by GFS and returned to client
 Extension to step 5:

 If record fits in current chunk: write record and tell replicas the offset
 If record exceeds chunk: pad the chunk, reply to client to use next chunk

Google File System

CS 5204 – Operating Systems 7

Consistency Guarantees

 Write
 Concurrent writes may be consistent but undefined
 Write operations that are large or cross chunk boundaries

are subdivided by client into individual writes
 Concurrent writes may become interleaved

 Record append
 Atomically, at-least-once semantics
 Client retries failed operation
 After successful retry, replicas are defined

in region of append but may have
intervening undefined regions

 Application safeguards
 Use record append rather than write
 Insert checksums in record headers to detect fragments
 Insert sequence numbers to detect duplicates

primary

replica

consistent

primary

replica

defined

primary

replica

inconsistent

Google File System

CS 5204 – Operating Systems 8

Metadata management

 Namespace
 Logically a mapping from pathname to chunk list
 Allows concurrent file creation in same directory
 Read/write locks prevent conflicting operations
 File deletion by renaming to a hidden name; removed during regular scan

 Operation log
 Historical record of metadata changes
 Kept on multiple remote machines
 Checkpoint created when log exceeds threshold
 When checkpointing, switch to new log and create checkpoint in separate thread
 Recovery made from most recent checkpoint and subsequent log

 Snapshot
 Revokes leases on chunks in file/directory
 Log operation
 Duplicate metadata (not the chunks!) for the source
 On first client write to chunk:

 Required for client to gain access to chunk
 Reference count > 1 indicates a duplicated chunk
 Create a new chunk and update chunk list for duplicate

pathname lock chunk list
/home

/home/user

/home/user/foo

/save

write

read

read

Chunk88f703,…

Chunk6254ee0,…

Chunk8ffe07783,…

Chunk4400488,…Logical structure

Google File System

CS 5204 – Operating Systems 9

Chunk/replica management

 Placement
 On chunkservers with below-average disk space utilization
 Limit number of “recent” creations on a chunkserver (since access traffic

will follow)
 Spread replicas across racks (for reliability)

 Reclamation
 Chunk become garbage when file of which they are a part is deleted
 Lazy strategy (garbage college) is used since no attempt is made to

reclaim chunks at time of deletion
 In periodic “HeartBeat” message chunkserver reports to the master a

subset of its current chunks
 Master identifies which reported chunks are no longer accessible (i.e., are

garbage)
 Chunkserver reclaims garbage chunks

 Stale replica detection
 Master assigns a version number to each chunk/replica
 Version number incremented each time a lease is granted
 Replicas on failed chunkservers will not have the current version number
 Stale replicas removed as part of garbage collection

Google File System

CS 5204 – Operating Systems 10

Performance

	Google File System
	Google Disk Farm
	Google Disk Farm
	Design
	Architecture
	Mutation operations
	Consistency Guarantees
	Metadata management
	Chunk/replica management
	Performance

