
Google File System

Google File System

CS 5204 – Operating Systems 2

Google Disk Farm

Early days…

…1999…

Google File System

Google Disk Farm

Dennis Kafura – CS5204 – Operating Systems 3

…today

Google File System

CS 5204 – Operating Systems 4

Design

 Design factors
 Failures are common (built from inexpensive

commodity components)
 Files

 large (multi-GB)
 mutation principally via appending new data
 low-overhead atomicity essential

 Co-design applications and file system API
 Sustained bandwidth more critical than low latency

 File structure
 Divided into 64 MB chunks
 Chunk identified by 64-bit handle
 Chunks replicated (default 3

replicas)
 Chunks divided into 64KB blocks
 Each block has a 32-bit checksum

…

chunk

file

blocks

Google File System

CS 5204 – Operating Systems 5

Architecture

 Master
 Manages namespace/metadata
 Manages chunk creation, replication, placement
 Performs snapshot operation to create duplicate of file or directory tree
 Performs checkpointing and logging of changes to metadata

 Chunkservers
 Stores chunk data and checksum for each block
 On startup/failure recovery, reports chunks to master
 Periodically reports sub-set of chunks to master (to detect no longer needed

chunks)

metadata

data

Google File System

CS 5204 – Operating Systems 6

Mutation operations

 Primary replica
 Holds lease assigned by master (60 sec. default)
 Assigns serial order for all mutation operations

performed on replicas

 Write operation
 1-2: client obtains replica locations and identity of

primary replica
 3: client pushes data to replicas (stored in LRU

buffer by chunk servers holding replicas)
 4: client issues update request to primary
 5: primary forwards/performs write request
 6: primary receives replies from replica
 7: primary replies to client

 Record append operation
 Performed atomically (one byte sequence)
 At-least-once semantics
 Append location chosen by GFS and returned to client
 Extension to step 5:

 If record fits in current chunk: write record and tell replicas the offset
 If record exceeds chunk: pad the chunk, reply to client to use next chunk

Google File System

CS 5204 – Operating Systems 7

Consistency Guarantees

 Write
 Concurrent writes may be consistent but undefined
 Write operations that are large or cross chunk boundaries

are subdivided by client into individual writes
 Concurrent writes may become interleaved

 Record append
 Atomically, at-least-once semantics
 Client retries failed operation
 After successful retry, replicas are defined

in region of append but may have
intervening undefined regions

 Application safeguards
 Use record append rather than write
 Insert checksums in record headers to detect fragments
 Insert sequence numbers to detect duplicates

primary

replica

consistent

primary

replica

defined

primary

replica

inconsistent

Google File System

CS 5204 – Operating Systems 8

Metadata management

 Namespace
 Logically a mapping from pathname to chunk list
 Allows concurrent file creation in same directory
 Read/write locks prevent conflicting operations
 File deletion by renaming to a hidden name; removed during regular scan

 Operation log
 Historical record of metadata changes
 Kept on multiple remote machines
 Checkpoint created when log exceeds threshold
 When checkpointing, switch to new log and create checkpoint in separate thread
 Recovery made from most recent checkpoint and subsequent log

 Snapshot
 Revokes leases on chunks in file/directory
 Log operation
 Duplicate metadata (not the chunks!) for the source
 On first client write to chunk:

 Required for client to gain access to chunk
 Reference count > 1 indicates a duplicated chunk
 Create a new chunk and update chunk list for duplicate

pathname lock chunk list
/home

/home/user

/home/user/foo

/save

write

read

read

Chunk88f703,…

Chunk6254ee0,…

Chunk8ffe07783,…

Chunk4400488,…Logical structure

Google File System

CS 5204 – Operating Systems 9

Chunk/replica management

 Placement
 On chunkservers with below-average disk space utilization
 Limit number of “recent” creations on a chunkserver (since access traffic

will follow)
 Spread replicas across racks (for reliability)

 Reclamation
 Chunk become garbage when file of which they are a part is deleted
 Lazy strategy (garbage college) is used since no attempt is made to

reclaim chunks at time of deletion
 In periodic “HeartBeat” message chunkserver reports to the master a

subset of its current chunks
 Master identifies which reported chunks are no longer accessible (i.e., are

garbage)
 Chunkserver reclaims garbage chunks

 Stale replica detection
 Master assigns a version number to each chunk/replica
 Version number incremented each time a lease is granted
 Replicas on failed chunkservers will not have the current version number
 Stale replicas removed as part of garbage collection

Google File System

CS 5204 – Operating Systems 10

Performance

	Google File System
	Google Disk Farm
	Google Disk Farm
	Design
	Architecture
	Mutation operations
	Consistency Guarantees
	Metadata management
	Chunk/replica management
	Performance

