File Systems

Dennis Kafura — CS5204 — Operating Systems

buffer cache

buffer cache
« improves efficiency

File Systems

Structure of a File System

N Generic File System
Specific File System

Host

«delayed writes, read ahead
simproved scheduling
 contains both data and metadata

Disk

metadata
«file organization (inode)
enaming (directories)
management (bitmaps)
data
sapplication defined

Generic Block I'O
Device Driver

Device Controller

> Transport <

Firmware
Electrical
Mechanical

m

Cache

Storage Subsystem

Virginia Dennis Kafura — CS5204 — Operating Systems

|~

File Metadata

inode

access

data

ref. count

direct

direct

/ e

data

—

indirect

dbl. ind.

[\

data

DI

[N

File Systems

Vi
Tech

Dennis Kafura — CS5204 — Operating Systems

|-|_

Directory Metadata

name inode

(root) usr 97

m directory

O file of directory entries

O root directory at a known
location

name inode [] direCtory entry

(97)| staff 27

0 name component
O inode of sub-directory file

m example
name inode
(@N| mgr | 152 [usr/staff/mgr
Virgin Dennis Kafura — CS5204 — Operating Systems

|-|_

Management Metadata

—

bitmap 1001110112 0000111
. logical XX
inode -
physical disk block disk block 0o
disk block
. 1110110100100101
bitmap
Virgin Dennis Kafura — CS5204 — Operating Systems

" A

host (system) failure

Failure Modes

buffer cache

File Systems

N Generic File System
Specific File System

Host

» cached data and metadata lost

 disk contents
* stable (survives)

* metadata may be inconsistent

disk (media) failure

Disk

spotential corruption of arbitrary data/metadata

Generic Block I'O
Device Driver

Device Controller

> Transport <

Firmware
Electrical
Mechanical

m

Cache

Storage Subsystem

Virginia

Dennis Kafura — CS5204 — Operating Systems

|

Goals & Approaches

m Improving performance

O Creating a different structure
m Log-structured file systems
m Google file system

m Improving resilience to crashes
0 Changing structure to reduce/eliminate consistency
problems

m Log-structured file system
m Google file system

O Maintaining consistency on disk
= Journaling (a logging technique)
m Soft updates (enforcing update dependencies)

Virgin Dennis Kafura — CS5204 — Operating Systems

|

Log-structured file system

Concept write

at end of log

log

<— read

from end of log

more recently written block renders obsolete a version of that block written earlier.

Issue Approach
How to structure data/metadata segments
How to manage disk space segment cleaning
Virgin Dennis Kafura — CS5204 — Operating Systems 8

|~
LFS structure

Superblock - list: (segment, size)
Checkpoint region:

iInode map_| seg. usage table map

4
|

segment segment

inode map — list: (inode location, version#)
segment usage table — list: (live bytes, modified time)

segment I I

File Systems

)

LFS

(

superblock

checkpoint
region

segment segment

segment

segment

segment segment

segment

(

I Segment summary block — list: (inode, version, block)

Virgin Dennis Kafura — CS5204 — Operating Systems

" A

Checkpoint

m Creation
0 Flush to disk

data

I-nodes

I-node map blocks
segment usage table

File Systems

O In fixed checkpoint region, write addresses of I-node map blocks and segment
usage table blocks.

O Mark checkpoint region with “current” timestamp.
0 Use two checkpoints for reliability

Virginia

Dennis Kafura — CS5204 — Operating Systems

10

|

Recovery

m Read latest checkpoint

m Roll-forward

m Scan segment usage blocks

0 New inodes are incorporated into inode map (data blocks automatically included)
0 Data blocks for new versions are ignored

= Adjust segment utilizations in segment table map

= Insure consistency of directories and inodes
o Directory operations log
0 Records entry for each directory change
0 Written to log before directory/inode blocks

Virgin Dennis Kafura — CS5204 — Operating Systems 11

File Systems

Segment cleaning

2. clean Q
1. read w

— . IIEEpEIE B

3. update il B

gl 1

m When to execute the segment cleaner? ITHE RIIN]

0O Clean segments are below a threshold

m How many segments to clean at once?

O Until clean segments exceeds a threshold
= Which segments to clean?
m How should live blocks be grouped?

V%Tech Dennis Kafura — CS5204 — Operating Systems 12

A

Cleaning Policies

Write cost
| .
12.0 . Log-structured
_ total bytes read and written Vi E
write cost = - : E
new data written 100 F==-—=======- - = — -
read segs + write live + write new 8.0 L FES today
- new data written , ;
6.0 - i
N + N*u + N*(1 — u) 2 40 g :
N~ w) b o i FFS improved

00 02 04 06 08 1.0
Fraction alive in segment cleaned (u)

“The key to achieving high performance at low cost in a log-structured file system
Is to force the disk into a bimodal segment distribution where most of the
segments are nearly full, a few are empty or nearly empty, and the cleaner can
almost always work with the empty segments.” (Rosenblum/Ousterhout)

V%Tech Dennis Kafura — CS5204 — Operating Systems 13

"

File Systems

Cost benefit policy

m Select for cleaning the

benefit free space generated*age of data (1 - u) *age
cost cost h 14+u
Write cost
| -

segment with the highest ratio

. 12.0 - I
of benefit to cost 100 b - - = j | LFSGreedy
=777 7777==- T T RS eday T
m Use age to approximate the 80~ ; FES today
stability of the data in a 60|
seg ment) :) i LFS Cost-Benefit
4O e [FFS improved
2.0 :
e — S
00 02 04 06 08 10
Disk capacity utilization
Virginia Dennis Kafura — CS5204 — Operating Systems 14

" A

LFS Performace

Files/sec (measured)

180
160
140
120
100

80 |~

60

40 |-

N e % 75 |
7 % 0

20
0

File Systems

Key: |/ Sprite LFS

SunOS

-- 675

Z ’%

. . phmaw RS 300

[
A 225

N
%

e 150

N
DA

Create Read Delete
10000 1K file access

Files/sec (predicted)

...

oo e 7 s~ o
/.:/"’/ yfd s
e 1 B
v

.................. o —
_ _

------------------ e
|7 LA

—— -
Y

7 77

Sund 2*Sund 4*Sund
10000 1K file create

Virginia

Dennis Kafura — CS5204 — Operating Systems

15

" A

LFS Performance

% Sprite LFS

File Systems

kilobytes/sec SunOS
gm ..
Sm e o o R Ll L LT Ty, V --
o I — [
600 --/ / ..
ol B —
o [] -
oo [l LBl T L
200 Vbt M L 7777/} R R R |
T T (-
o L . /é 4

Write Read Write Read Reread

Sequential Random Sequential

Virginia

Dennis Kafura — CS5204 — Operating Systems

16

| A

Resources are highly focused
on user data.

LFS Overhead

Sprite LES recovery time in seconds

File File Data Recovered
Size 1MB | 10MB | SOMB
1 KB 1 21 132
10KB <1 3 17
100 KB <1 1 8

File Systems

Sprite LFS /user6 file system contents

Block type Live data | Log bandwidth
Data blocks* 98.0% 85.2%
Indirect blocks* 1.0% 1.6%
Inode blocks* 0.2% 2.7%
Inode map 0.2% 7.8%

Seg Usage map* 0.0% 2.1%
Summary blocks 0.6% 0.5%
Dir Op Log 0.0% 0.1%

Recovery time is dominated by
the number of files.

Virginia

Dennis Kafura — CS5204 — Operating Systems

17

|-|_

Soft Update Concept

m |dea: maintain dependencies among in-cache
metadata blocks so that writes to disk will
preserve the consistency of the on-disk metadata.

m Ensures that the only metadata inconsistencies are
unclaimed blocks or inodes that can be reclaimed
by a background process examining the active file
system

m Reduces by 40% to 70% the number of disk
writes In file intensive environments

Virgin Dennis Kafura — CS5204 — Operating Systems 18

|

Metadata Dependencies

File Systems

Inode Block Directory Block Inode Block Directory Block
Inode #4 <—-#0> Inode #4 [— _ A#4 >
Inode #5 Inode #5

<B#5> <B#5>
Inode #6 Inode #6
Inode #7 <C#T > Inode #7 <C#r >

(a) Original Organization (b) Create File A

Inode Block Directory Block
Inode #4 [—— _ A 54 >

Inode #5
P -- #0 >
Inode #6

Inode #7

<C#H7 >

(c) Remove File B

m File operations create dependencies between related metadata changes
m Cyclic dependencies can arise between metadata blocks

V%Tech Dennis Kafura — CS5204 — Operating Systems 19

|~

m Maintaining old/new values allows undo-redo operations
m Cyclic dependencies can arise between metadata blocks

Soft Updates Example

Y-old

Y-new

A
I I
X ‘.

I
X-old
X-new

I
I
I

File Systems

dependency

B change

old

new

B change

=T

Dennis Kafura — CS5204 — Operating Systems

20

A

Soft Updates Example

Write block A:

Rollback X in A using X-old
Rollback Y in A using Y-old

Write A to disk

Restore X in A using X-new
Restore Y in A using Y-new

]]
X '
]

Y-old

ahkhwbhE

X-old Y-new
X-new

Write block B:
]]
1. Write B to disk
]] 2. Remove dependency from
XinA

V%Tech Dennis Kafura — CS5204 — Operating Systems 21

Example

Disk
Inode Block Directory Block
Inode #4 < #D>
Inode #5
<B#h >
Inode #6
Inode #7 <CH#7 >

(a) After Metadata Updates

Main Memaory
Inode Block Directory Block
Inode #4 |- < A#d>
Inode #5 .
Tl —#0 >
Incde #6
Inode #7 <CHT >
Inode Block Directory Block
Inode #4 - < A4S
Inode #5
< —#0 >
Incde #6
Inode #7 <CHT >

(b) Safe Version of Directory Block Written

Inode Block Directory Block

Inode #4 <—#0>
Inode #5

<--# >
Inode #6
Inode #7 <C#H >

Inode Block Directory Block

Inode #4 <—#0>
Inode #5

<--F#) >
Inode #6
Inode #7 <C#r>

(c) Inode Block Written

Inode Block Directory Block
Inode #4 < A#d>
Inode #5

< — #0 >
Inode #6
Inode #7 <C#l >

Inode Block Directory Block
Incde #4 < A#d>
Incde #5

< - #0 =
Inode #6
Inode #7 <C#l >

Inode Block Directory Block

Inode #4 <A# >
Inode #5

=—-#0 =
Inode #6
Inode #7 <C#l>

{d) Directory Block Written

File Systems

m A metadata block may be
written more than once to
Insure consistency

Vi
Tech

Dennis Kafura — CS5204 — Operating Systems

22

|

@ Journaling

. Journal | (A, X) | B, V)

memory

disk

TN
S

A, X)| (B,Y)

~

Virgin Dennis Kafura — CS5204 — Operating Systems 23

A

Journaling

m Process:

O record changes to cached metadata blocks in
journal

O periodically write the journal to disk

O on-disk journal records changes in metadata blocks
that have not yet themselves been written to disk

m Recovery:

O apply to disk changes recorded in on-disk journal
O resume use of file system

m On-disk journal

O maintained on same file system as metadata
O stored on separate, stand-alone file system

V%Tedl Dennis Kafura — CS5204 — Operating Systems 24

A

Journaling Transaction Structure

m A journal transaction

0O consists of all metadata updates related to a single operation
O transaction order must obey constraints implied by operations
O the memory journal is a single, merged transaction

m Examples
O Creating a file
m creating a directory entry (modifying a directory block),
m allocating an inode (modifying the inode bitmap),
m initializing the inode (modifying an inode block)
O Writing to a file
m updating the file’s write timestamp (modifying an inode block)

m Mmay also cause changes to inode mapping information and block bitmap if
new data blocks are allocated

Virgin Dennis Kafura — CS5204 — Operating Systems 25

|

Journaling in Linux (ext2fs)

m Close the (merged) transaction

m Start flushing the transaction to disk
O Full metadata block is written to journal

O Descriptor blocks are written that give the home disk
location for each metadata block

m \Wait for all outstanding filesystem operations in this
transaction to complete

m Wait for all outstanding transaction updates to be completely
m Update the journal header blocks to record the new head/tail

m When all metadata blocks have been written to their home
disk location, write a new set of journal header blocks to free
the journal space occupied by the (now completed) transaction

V%Tedl Dennis Kafura — CS5204 — Operating Systems 26

Configurations & Features

File Systems

File System Configurations

Feature

File Systems

log writes are asynchronous

FFS Standard FFS Meta-data updates are synchronous ﬁS,

FFS-async FFS mounted with the async option T < 1 EPE F;w(zlits-[lﬂsync
— . - fa- 1e tes are as i ; at

Soft-Updates FFS mounted with Soft Updates cla-data tipdales ate asylicironous L%FS-EI ; &

LFFS-file FFS augmented with a file log

LFFS-wafs-[12]async

LFFS-wafs-1sync

FFS augmented with a WAFS log
log writes are synchronous

Meta-data updates are atomic.

LFFS-file
LFFS-wafs-[12]*

LFFS-wafs-lasync

FFS augmented with a WAFS log
log writes are asynchronous

LFFS-wafs-2sync

FFS augmented with a WAFS log
log is on separate disk
log writes are synchronous

LFFS-wafs-2async

FFS augmented with a WAFS log
log 1s on a separate disk
log writes are asynchronous

File data blocks are freed in back- Soft Updates
ground

New data blocks are written before |Soft Updates
modes

Recovery requires full file system FFS

scan

Recovery requires log replay LFFS-*

Recovery 1s non-deterministic and
may be impossible

FFS-async

Virginia

Dennis Kafura — CS5204 — Operating Systems

27

A

Benchmark study

File Systems

Unpack | Config

Absolute Time (in seconds)

Build

Total

FFS-async 1.02 10.38 42.60 53.99

Performance Relative to FFS-async
FFS 0.14 0.66 0.85 0.73
Soft-Updates 0.99 0.98 1.01 1.01
LFFS-file 0.72 1.08 0.95 0.96
LFFS-wafs-1syne 0.15 1.01 0.88 0.82
LFFS-wafs-lasync 0.90 0.94 1.00 0.99
LFFS-wafs-2sync 0.20 0.85 0.93 0.86
LFFS-wafs-2async 0.90 1.05 0.98 0.99

SSH Benchmark

Virginia

Dennis Kafura — CS5204 — Operating Systems

28

	File Systems
	Structure of a File System
	File Metadata
	Directory Metadata
	Management Metadata
	Failure Modes
	Goals & Approaches
	Log-structured file system
	LFS structure
	Checkpoint
	Recovery
	Segment cleaning
	Cleaning Policies
	Cost benefit policy
	LFS Performace
	LFS Performance
	LFS Overhead
	Soft Update Concept
	Metadata Dependencies
	Soft Updates Example
	Soft Updates Example
	Example
	Journaling
	Journaling
	Journaling Transaction Structure
	Journaling in Linux (ext2fs)
	Configurations & Features
	Benchmark study

