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Structure of a File System
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buffer cache
• improves efficiency

•delayed writes, read ahead
•improved scheduling

• contains both data and metadata

buffer cache

metadata
•file organization (inode)
•naming (directories)
•management (bitmaps)

data
•application defined
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File Metadata
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Directory Metadata
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name inode

(root) usr 97

name inode

(97) staff 27

name inode

(27) mgr 152

 directory
 file of directory entries
 root directory at a known 

location

 directory entry
 name component
 inode of sub-directory file

 example
/usr/staff/mgr
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Management Metadata
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logical

physical disk block disk block

1   0   0  1  1   1   0   1  1   0  0   0   0  1  1   1bitmap

1   1   1  0  1   1   0   1  0   0  1   0   0  1  0   1
disk block
bitmap

inode
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Failure Modes
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host (system) failure
• cached data and metadata lost
• disk contents 

• stable (survives)
• metadata may be inconsistent

buffer cache

disk (media) failure
•potential corruption of arbitrary data/metadata
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Goals & Approaches

 Improving performance
 Creating a different structure

 Log-structured file systems
 Google file system

 Improving resilience to crashes
 Changing structure to reduce/eliminate consistency 

problems
 Log-structured file system
 Google file system

 Maintaining consistency on disk
 Journaling (a logging technique)
 Soft updates (enforcing update dependencies)
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Log-structured file system
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log

write

read

at end of log

from end of log

more recently written block renders obsolete a version of that block written earlier.

Issue Approach
How to structure data/metadata segments
How to manage disk space segment cleaning

Concept
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LFS structure

Dennis Kafura – CS5204 – Operating Systems 9

superblock
checkpoint 
region

segment

segment

segment

segment

segment

segment

segment

LFS

Superblock - list: (segment, size)

Checkpoint region: 

inode map – list: (inode location, version#)
segment usage table – list: (live bytes, modified time)

segment

inode map seg. usage table map

segment segment

Segment summary block – list: (inode, version, block)
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Checkpoint

 Creation
 Flush to disk

 data
 I-nodes
 I-node map blocks 
 segment usage table

 In fixed checkpoint region, write addresses of I-node map blocks and segment 
usage table blocks.

 Mark checkpoint region with “current” timestamp.
 Use two checkpoints for reliability

Dennis Kafura – CS5204 – Operating Systems 10



File Systems

Recovery
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 Read latest checkpoint

 Roll-forward
 Scan segment usage blocks

 New inodes are incorporated into inode map (data blocks automatically included)
 Data blocks for new versions are ignored

 Adjust segment utilizations in segment table map
 Insure consistency of directories and inodes

 Directory operations log
 Records entry for each directory change
 Written to log before directory/inode blocks
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Segment cleaning
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LFS
1. read

3. update

 When to execute the segment cleaner?
 Clean segments  are below a threshold

 How many segments to clean at once?
 Until clean segments exceeds a threshold

 Which segments to clean?
 How should live blocks be grouped?

2. clean
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Cleaning Policies
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“The key to achieving high performance at low cost in a log-structured file system 
is to force the disk into a bimodal segment distribution where most of the 
segments are nearly full, a few are empty or nearly empty, and the cleaner can 
almost always work with the empty segments.” (Rosenblum/Ousterhout)
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Cost benefit policy

 Select for cleaning the 
segment with the highest ratio 
of benefit to cost

 Use age to approximate the 
stability of the data in a 
segment
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LFS Performace
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LFS Performance
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LFS Overhead
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Recovery time is dominated by 
the number of files.

Resources are highly focused 
on  user data.
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Soft Update Concept

 Idea: maintain dependencies among in-cache 
metadata blocks so that writes to disk will 
preserve the consistency of the on-disk metadata.

 Ensures that the only metadata inconsistencies are 
unclaimed blocks or inodes that can be reclaimed 
by a background process examining the active file 
system

 Reduces by 40% to 70% the number of disk 
writes in file intensive environments
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Metadata Dependencies

 File operations create dependencies between related metadata changes
 Cyclic dependencies can arise between metadata blocks
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Soft Updates Example
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old

new

change

change

dependency

X Y

A

B C

X-old

X-new

Y-old

Y-new

 Maintaining old/new values allows undo-redo operations
 Cyclic dependencies can arise between metadata blocks



File Systems

Soft Updates Example
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X Y

A

B C

X-old

X-new

Y-old

Y-new

Write block A:
1. Rollback X in A using X-old
2. Rollback Y in A using Y-old
3. Write A to disk
4. Restore X in A using X-new
5. Restore Y in A using Y-new

Write block B:
1. Write B to disk
2. Remove dependency from 

X in A
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Example

 A metadata block may be 
written more than once to 
insure consistency
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Journaling 
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X
A

B
Y

(A, X) (B, Y)Journal
memory

disk

1

2

3

4

5

(A, X) (B, Y)

76
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Journaling

 Process: 
 record changes to cached metadata blocks in 

journal
 periodically write the journal to disk
 on-disk journal records changes in metadata blocks 

that have not yet themselves been written to disk

 Recovery: 
 apply to disk changes recorded in on-disk journal
 resume use of file system

 On-disk journal
 maintained on same file system as metadata
 stored on separate, stand-alone file system
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Journaling Transaction Structure

 A journal transaction 
 consists of all metadata updates related to a single operation
 transaction order must obey constraints implied by operations
 the memory journal is a single, merged transaction

 Examples
 Creating a file

 creating a directory entry (modifying a directory block), 
 allocating an inode (modifying the inode bitmap), 
 initializing the inode (modifying an inode block)

 Writing to a file
 updating the file’s write timestamp ( modifying an inode block)
 may also cause changes to inode mapping information and block bitmap if 

new data blocks are allocated
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Journaling in Linux (ext2fs)

 Close the (merged) transaction
 Start flushing the transaction to disk

 Full metadata block is written to journal
 Descriptor blocks are written that give the home disk 

location for each metadata block

 Wait for all outstanding filesystem operations in this 
transaction to complete

 Wait for all outstanding transaction updates to be completely
 Update the journal header blocks to record the new head/tail 
 When all metadata blocks have been written to their home 

disk location, write a new set of journal header blocks to free 
the journal space occupied by the (now completed) transaction
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Configurations & Features
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Benchmark study
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SSH Benchmark
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