
File Systems

1Dennis Kafura – CS5204 – Operating Systems

File Systems

Dennis Kafura – CS5204 – Operating Systems

Structure of a File System

2

buffer cache
• improves efficiency

•delayed writes, read ahead
•improved scheduling

• contains both data and metadata

buffer cache

metadata
•file organization (inode)
•naming (directories)
•management (bitmaps)

data
•application defined

File Systems

File Metadata

Dennis Kafura – CS5204 – Operating Systems 3

direct

ref. count

access

direct

indirect

dbl. ind.

inode
data

data data

I

DI

I

I

data

File Systems

Directory Metadata

Dennis Kafura – CS5204 – Operating Systems 4

name inode

(root) usr 97

name inode

(97) staff 27

name inode

(27) mgr 152

 directory
 file of directory entries
 root directory at a known

location

 directory entry
 name component
 inode of sub-directory file

 example
/usr/staff/mgr

File Systems

Management Metadata

Dennis Kafura – CS5204 – Operating Systems 5

logical

physical disk block disk block

1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 1bitmap

1 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1
disk block
bitmap

inode

File Systems

Dennis Kafura – CS5204 – Operating Systems

Failure Modes

6

host (system) failure
• cached data and metadata lost
• disk contents

• stable (survives)
• metadata may be inconsistent

buffer cache

disk (media) failure
•potential corruption of arbitrary data/metadata

File Systems

Goals & Approaches

 Improving performance
 Creating a different structure

 Log-structured file systems
 Google file system

 Improving resilience to crashes
 Changing structure to reduce/eliminate consistency

problems
 Log-structured file system
 Google file system

 Maintaining consistency on disk
 Journaling (a logging technique)
 Soft updates (enforcing update dependencies)

Dennis Kafura – CS5204 – Operating Systems 7

File Systems

Log-structured file system

Dennis Kafura – CS5204 – Operating Systems 8

log

write

read

at end of log

from end of log

more recently written block renders obsolete a version of that block written earlier.

Issue Approach
How to structure data/metadata segments
How to manage disk space segment cleaning

Concept

File Systems

LFS structure

Dennis Kafura – CS5204 – Operating Systems 9

superblock
checkpoint
region

segment

segment

segment

segment

segment

segment

segment

LFS

Superblock - list: (segment, size)

Checkpoint region:

inode map – list: (inode location, version#)
segment usage table – list: (live bytes, modified time)

segment

inode map seg. usage table map

segment segment

Segment summary block – list: (inode, version, block)

File Systems

Checkpoint

 Creation
 Flush to disk

 data
 I-nodes
 I-node map blocks
 segment usage table

 In fixed checkpoint region, write addresses of I-node map blocks and segment
usage table blocks.

 Mark checkpoint region with “current” timestamp.
 Use two checkpoints for reliability

Dennis Kafura – CS5204 – Operating Systems 10

File Systems

Recovery

Dennis Kafura – CS5204 – Operating Systems 11

 Read latest checkpoint

 Roll-forward
 Scan segment usage blocks

 New inodes are incorporated into inode map (data blocks automatically included)
 Data blocks for new versions are ignored

 Adjust segment utilizations in segment table map
 Insure consistency of directories and inodes

 Directory operations log
 Records entry for each directory change
 Written to log before directory/inode blocks

File Systems

Segment cleaning

Dennis Kafura – CS5204 – Operating Systems 12

LFS
1. read

3. update

 When to execute the segment cleaner?
 Clean segments are below a threshold

 How many segments to clean at once?
 Until clean segments exceeds a threshold

 Which segments to clean?
 How should live blocks be grouped?

2. clean

File Systems

Cleaning Policies

Dennis Kafura – CS5204 – Operating Systems 13

“The key to achieving high performance at low cost in a log-structured file system
is to force the disk into a bimodal segment distribution where most of the
segments are nearly full, a few are empty or nearly empty, and the cleaner can
almost always work with the empty segments.” (Rosenblum/Ousterhout)

File Systems

Cost benefit policy

 Select for cleaning the
segment with the highest ratio
of benefit to cost

 Use age to approximate the
stability of the data in a
segment

Dennis Kafura – CS5204 – Operating Systems 14

File Systems

LFS Performace

Dennis Kafura – CS5204 – Operating Systems 15

File Systems

LFS Performance

Dennis Kafura – CS5204 – Operating Systems 16

File Systems

LFS Overhead

Dennis Kafura – CS5204 – Operating Systems 17

Recovery time is dominated by
the number of files.

Resources are highly focused
on user data.

File Systems

Soft Update Concept

 Idea: maintain dependencies among in-cache
metadata blocks so that writes to disk will
preserve the consistency of the on-disk metadata.

 Ensures that the only metadata inconsistencies are
unclaimed blocks or inodes that can be reclaimed
by a background process examining the active file
system

 Reduces by 40% to 70% the number of disk
writes in file intensive environments

Dennis Kafura – CS5204 – Operating Systems 18

File Systems

Metadata Dependencies

 File operations create dependencies between related metadata changes
 Cyclic dependencies can arise between metadata blocks

Dennis Kafura – CS5204 – Operating Systems 19

File Systems

Soft Updates Example

Dennis Kafura – CS5204 – Operating Systems 20

old

new

change

change

dependency

X Y

A

B C

X-old

X-new

Y-old

Y-new

 Maintaining old/new values allows undo-redo operations
 Cyclic dependencies can arise between metadata blocks

File Systems

Soft Updates Example

Dennis Kafura – CS5204 – Operating Systems 21

X Y

A

B C

X-old

X-new

Y-old

Y-new

Write block A:
1. Rollback X in A using X-old
2. Rollback Y in A using Y-old
3. Write A to disk
4. Restore X in A using X-new
5. Restore Y in A using Y-new

Write block B:
1. Write B to disk
2. Remove dependency from

X in A

File Systems

Example

 A metadata block may be
written more than once to
insure consistency

Dennis Kafura – CS5204 – Operating Systems 22

File Systems

Journaling

Dennis Kafura – CS5204 – Operating Systems 23

X
A

B
Y

(A, X) (B, Y)Journal
memory

disk

1

2

3

4

5

(A, X) (B, Y)

76

File Systems

Journaling

 Process:
 record changes to cached metadata blocks in

journal
 periodically write the journal to disk
 on-disk journal records changes in metadata blocks

that have not yet themselves been written to disk

 Recovery:
 apply to disk changes recorded in on-disk journal
 resume use of file system

 On-disk journal
 maintained on same file system as metadata
 stored on separate, stand-alone file system

Dennis Kafura – CS5204 – Operating Systems 24

File Systems

Journaling Transaction Structure

 A journal transaction
 consists of all metadata updates related to a single operation
 transaction order must obey constraints implied by operations
 the memory journal is a single, merged transaction

 Examples
 Creating a file

 creating a directory entry (modifying a directory block),
 allocating an inode (modifying the inode bitmap),
 initializing the inode (modifying an inode block)

 Writing to a file
 updating the file’s write timestamp (modifying an inode block)
 may also cause changes to inode mapping information and block bitmap if

new data blocks are allocated

Dennis Kafura – CS5204 – Operating Systems 25

File Systems

Journaling in Linux (ext2fs)

 Close the (merged) transaction
 Start flushing the transaction to disk

 Full metadata block is written to journal
 Descriptor blocks are written that give the home disk

location for each metadata block

 Wait for all outstanding filesystem operations in this
transaction to complete

 Wait for all outstanding transaction updates to be completely
 Update the journal header blocks to record the new head/tail
 When all metadata blocks have been written to their home

disk location, write a new set of journal header blocks to free
the journal space occupied by the (now completed) transaction

Dennis Kafura – CS5204 – Operating Systems 26

File Systems

Configurations & Features

Dennis Kafura – CS5204 – Operating Systems 27

File Systems

Benchmark study

Dennis Kafura – CS5204 – Operating Systems 28

SSH Benchmark

	File Systems
	Structure of a File System
	File Metadata
	Directory Metadata
	Management Metadata
	Failure Modes
	Goals & Approaches
	Log-structured file system
	LFS structure
	Checkpoint
	Recovery
	Segment cleaning
	Cleaning Policies
	Cost benefit policy
	LFS Performace
	LFS Performance
	LFS Overhead
	Soft Update Concept
	Metadata Dependencies
	Soft Updates Example
	Soft Updates Example
	Example
	Journaling
	Journaling
	Journaling Transaction Structure
	Journaling in Linux (ext2fs)
	Configurations & Features
	Benchmark study

