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File Metadata
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Directory Metadata

name inode

(root) usr 97

m directory

O file of directory entries

O root directory at a known
location

name inode [ ] direCtory entry

(97)| staff 27

0 name component
O inode of sub-directory file

m example
name inode
(@N| mgr | 152 [usr/staff/mgr
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Management Metadata
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host (system) failure

Failure Modes

buffer cache

File Systems

N Generic File System
Specific File System

Host

» cached data and metadata lost

 disk contents
* stable (survives)

* metadata may be inconsistent

disk (media) failure

Disk

spotential corruption of arbitrary data/metadata

Generic Block I'O
Device Driver

Device Controller

> Transport <

Firmware
Electrical
Mechanical

m

Cache
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Goals & Approaches

m Improving performance

O Creating a different structure
m Log-structured file systems
m Google file system

m Improving resilience to crashes
0 Changing structure to reduce/eliminate consistency
problems

m Log-structured file system
m Google file system

O Maintaining consistency on disk
= Journaling (a logging technique)
m Soft updates (enforcing update dependencies)
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Log-structured file system

Concept write

at end of log

log

<— read

from end of log

more recently written block renders obsolete a version of that block written earlier.

Issue Approach
How to structure data/metadata segments
How to manage disk space segment cleaning
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LFS structure

Superblock - list: (segment, size)
Checkpoint region:

iInode map_| seg. usage table map

4
|

segment segment

inode map — list: (inode location, version#)
segment usage table — list: (live bytes, modified time)

segment I I

File Systems

)

LFS

(

superblock

checkpoint
region

segment segment

segment

segment

segment segment

segment

(

I Segment summary block — list: (inode, version, block)
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Checkpoint

m Creation
0 Flush to disk

data

I-nodes

I-node map blocks
segment usage table

File Systems

O In fixed checkpoint region, write addresses of I-node map blocks and segment
usage table blocks.

O Mark checkpoint region with “current” timestamp.
0 Use two checkpoints for reliability

Virginia
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Recovery

m Read latest checkpoint

m Roll-forward

m Scan segment usage blocks

0 New inodes are incorporated into inode map (data blocks automatically included)
0 Data blocks for new versions are ignored

= Adjust segment utilizations in segment table map

= Insure consistency of directories and inodes
o Directory operations log
0 Records entry for each directory change
0 Written to log before directory/inode blocks
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Segment cleaning

2. clean Q
1. read w

— . IIEEpEIE B

3. update il B

gl 1

m  When to execute the segment cleaner? ITHE RIIN ]

0O Clean segments are below a threshold

m  How many segments to clean at once?

O Until clean segments exceeds a threshold
= Which segments to clean?
m  How should live blocks be grouped?
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Cleaning Policies

Write cost
| .
12.0 . Log-structured
_ total bytes read and written Vi E
write cost = - : E
new data written 100 F==-—=======- - = — -
read segs + write live + write new 8.0 L FES today
- new data written , ;
6.0 - i
N + N*u + N*(1 — u) 2 40 g :
N~ w) b o i FFS improved

00 02 04 06 08 1.0
Fraction alive in segment cleaned (u)

“The key to achieving high performance at low cost in a log-structured file system
Is to force the disk into a bimodal segment distribution where most of the
segments are nearly full, a few are empty or nearly empty, and the cleaner can
almost always work with the empty segments.” (Rosenblum/Ousterhout)
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File Systems

Cost benefit policy

m Select for cleaning the

benefit  free space generated*age of data (1 - u) *age
cost cost h 14+u
Write cost
| -

segment with the highest ratio

. 12.0 - I
of benefit to cost 100 b - - = j | LFSGreedy
=777 7777==- T T RS eday T
m Use age to approximate the 80~ ; FES today
stability of the data in a 60|
seg ment ) : ) i LFS Cost-Benefit
4O e [ FFS improved
2.0 :
e — S
00 02 04 06 08 10
Disk capacity utilization
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LFS Performace

Files/sec (measured)
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LFS Performance

% Sprite LFS

File Systems
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Resources are highly focused
on user data.

LFS Overhead

Sprite LES recovery time in seconds

File File Data Recovered
Size 1MB | 10MB | SOMB
1 KB 1 21 132
10KB <1 3 17
100 KB <1 1 8

File Systems

Sprite LFS /user6 file system contents

Block type Live data | Log bandwidth
Data blocks* 98.0% 85.2%
Indirect blocks* 1.0% 1.6%
Inode blocks* 0.2% 2.7%
Inode map 0.2% 7.8%

Seg Usage map* 0.0% 2.1%
Summary blocks 0.6% 0.5%
Dir Op Log 0.0% 0.1%

Recovery time is dominated by
the number of files.

Virginia
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Soft Update Concept

m |dea: maintain dependencies among in-cache
metadata blocks so that writes to disk will
preserve the consistency of the on-disk metadata.

m Ensures that the only metadata inconsistencies are
unclaimed blocks or inodes that can be reclaimed
by a background process examining the active file
system

m Reduces by 40% to 70% the number of disk
writes In file intensive environments
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Metadata Dependencies

File Systems

Inode Block  Directory Block Inode Block  Directory Block
Inode #4 <—-#0> Inode #4 [— _ A#4 >
Inode #5 Inode #5

<B#5> <B#5>
Inode #6 Inode #6
Inode #7 <C#T > Inode #7 <C#r >

(a) Original Organization (b) Create File A

Inode Block  Directory Block
Inode #4 [—— _ A 54 >

Inode #5
P -- #0 >
Inode #6

Inode #7

<C#H7 >

(c) Remove File B

m File operations create dependencies between related metadata changes
m Cyclic dependencies can arise between metadata blocks
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m Maintaining old/new values allows undo-redo operations
m Cyclic dependencies can arise between metadata blocks

Soft Updates Example

Y-old

Y-new

A
I I
X ‘.

I
X-old
X-new

I
I
I

File Systems

dependency

B change

old

new

B change

=T
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Soft Updates Example

Write block A:

Rollback X in A using X-old
Rollback Y in A using Y-old

Write A to disk

Restore X in A using X-new
Restore Y in A using Y-new

] ]
X '
]

Y-old

ahkhwbhE

X-old Y-new
X-new

Write block B:
] ]
1. Write B to disk
] ] 2. Remove dependency from
XinA
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Disk
Inode Block  Directory Block
Inode #4 < #D>
Inode #5
<B#h >
Inode #6
Inode #7 <CH#7 >

(a) After Metadata Updates

Main Memaory
Inode Block  Directory Block
Inode #4 |- < A#d>
Inode #5 .
Tl —#0 >
Incde #6
Inode #7 <CHT >
Inode Block  Directory Block
Inode #4 - < A4S
Inode #5
< —#0 >
Incde #6
Inode #7 <CHT >

(b) Safe Version of Directory Block Written

Inode Block  Directory Block

Inode #4 <—#0>
Inode #5

<--# >
Inode #6
Inode #7 <C#H >

Inode Block  Directory Block

Inode #4 <—#0>
Inode #5

<--F#) >
Inode #6
Inode #7 <C#r>

(c) Inode Block Written

Inode Block  Directory Block
Inode #4 < A#d>
Inode #5

< — #0 >
Inode #6
Inode #7 <C#l >

Inode Block  Directory Block
Incde #4 < A#d>
Incde #5

< - #0 =
Inode #6
Inode #7 <C#l >

Inode Block  Directory Block

Inode #4 <A# >
Inode #5

=—-#0 =
Inode #6
Inode #7 <C#l>

{d) Directory Block Written

File Systems

m A metadata block may be
written more than once to
Insure consistency

Vi
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@ Journaling

. Journal | (A, X) | B, V)

memory

disk

TN
S

A, X)| (B,Y)

~
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Journaling

m Process:

O record changes to cached metadata blocks in
journal

O periodically write the journal to disk

O on-disk journal records changes in metadata blocks
that have not yet themselves been written to disk

m Recovery:

O apply to disk changes recorded in on-disk journal
O resume use of file system

m On-disk journal

O maintained on same file system as metadata
O stored on separate, stand-alone file system
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Journaling Transaction Structure

m A journal transaction

0O consists of all metadata updates related to a single operation
O transaction order must obey constraints implied by operations
O the memory journal is a single, merged transaction

m Examples
O Creating a file
m creating a directory entry (modifying a directory block),
m allocating an inode (modifying the inode bitmap),
m initializing the inode (modifying an inode block)
O Writing to a file
m updating the file’s write timestamp ( modifying an inode block)

m Mmay also cause changes to inode mapping information and block bitmap if
new data blocks are allocated

Virgin Dennis Kafura — CS5204 — Operating Systems 25
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Journaling in Linux (ext2fs)

m Close the (merged) transaction

m Start flushing the transaction to disk
O Full metadata block is written to journal

O Descriptor blocks are written that give the home disk
location for each metadata block

m \Wait for all outstanding filesystem operations in this
transaction to complete

m Wait for all outstanding transaction updates to be completely
m Update the journal header blocks to record the new head/tail

m When all metadata blocks have been written to their home
disk location, write a new set of journal header blocks to free
the journal space occupied by the (now completed) transaction
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Configurations & Features

File Systems

File System Configurations

Feature

File Systems

log writes are asynchronous

FFS Standard FFS Meta-data updates are synchronous ﬁS,

FFS-async FFS mounted with the async option T < 1 EPE F;w(zlits-[lﬂsync
— . - fa- 1e tes are as i ; at

Soft-Updates FFS mounted with Soft Updates cla-data tipdales ate asylicironous L%FS-EI ; &

LFFS-file FFS augmented with a file log

LFFS-wafs-[12]async

LFFS-wafs-1sync

FFS augmented with a WAFS log
log writes are synchronous

Meta-data updates are atomic.

LFFS-file
LFFS-wafs-[12]*

LFFS-wafs-lasync

FFS augmented with a WAFS log
log writes are asynchronous

LFFS-wafs-2sync

FFS augmented with a WAFS log
log is on separate disk
log writes are synchronous

LFFS-wafs-2async

FFS augmented with a WAFS log
log 1s on a separate disk
log writes are asynchronous

File data blocks are freed in back- Soft Updates
ground

New data blocks are written before  |Soft Updates
modes

Recovery requires full file system FFS

scan

Recovery requires log replay LFFS-*

Recovery 1s non-deterministic and
may be impossible

FFS-async

Virginia
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Benchmark study

File Systems

Unpack | Config

Absolute Time (in seconds)

Build

Total

FFS-async 1.02 10.38 42.60 53.99

Performance Relative to FFS-async
FFS 0.14 0.66 0.85 0.73
Soft-Updates 0.99 0.98 1.01 1.01
LFFS-file 0.72 1.08 0.95 0.96
LFFS-wafs-1syne 0.15 1.01 0.88 0.82
LFFS-wafs-lasync 0.90 0.94 1.00 0.99
LFFS-wafs-2sync 0.20 0.85 0.93 0.86
LFFS-wafs-2async 0.90 1.05 0.98 0.99

SSH Benchmark

Virginia
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