Event Ordering

Time and Ordering

The two critical differences between centralized and distributed systems are:

- absence of shared memory
- absence of a global clock

We will study:

- how programming mechanisms change as a result of these differences
- algorithms that operate in the absence of a global clock
- algorithms that create a sense of a shared, global time
- algorithms that capture a consistent state of a system in the absence of shared memory

Event Ordering

How can the events on P be related to the events on Q ?
Which events of P "happened before" which events of Q ?
Partial answer: events on P and Q are strictly ordered. So:

$$
P_{1}-->P_{2}-->P_{3}
$$

and

$$
\mathrm{Q}_{1}-->\mathrm{Q}_{2}-->\mathrm{Q}_{3}
$$

Event Ordering

Realization: the only events on P that can causally affect events on Q are those that involve communication between P and Q .

If P_{1} is a send event and Q_{2} is the corresponding receive event then it must be the case that:

$$
P_{1}-->Q_{2}
$$

Event Ordering

"Happened Before" relation:
If E_{i} and E_{j} are two events of the same process, then

$$
E_{i}-->E_{j} \text { if } i<j .
$$

If E_{i} and E_{j} are two events of different processes, then

$$
E_{i}-->E_{j}
$$

if E_{i} is a message send event and E_{j} is the corresponding message receive event.

The relation is transitive.

Lamport's Algorithm

Lamport's algorithm is based on two implementation rules that define how each process's local clock is incremented.

Notation:

- the processes are named P_{i},
- each process has a local clock, C_{i}
- the clock time for an event a on process P_{i} is denoted by $\mathrm{C}_{\mathrm{i}}(\mathrm{a})$.

Rule 1:
If a and b are two successive events in P_{i} and $\mathrm{a}-->\mathrm{b}$ then $\mathrm{C}_{\mathrm{i}}(\mathrm{b})=\mathrm{C}_{\mathrm{i}}(\mathrm{a})+\mathrm{d}$ where $\mathrm{d}>0$.

Rule 2:

If a is a message send event on P_{i} and b is the message receive event on P_{j} then:

- the message is assigned the timestamp $\mathrm{t}_{\mathrm{m}}=\mathrm{C}_{\mathrm{i}}(\mathrm{a})$
- $\mathrm{C}_{\mathrm{j}}(\mathrm{b})=\max \left(\mathrm{C}_{\mathrm{j}}, \mathrm{t}_{\mathrm{m}}+\mathrm{d}\right)$

Example of Lamport's Algorithm

Limitation of Lamport's Algorithm

In Lamport's algorithm two events that are causally related will be related through their clock times. That is:
If a - -> b then C(a) < C(b)

However, the clock times alone do not reveal which events are causally related. That is, if $\mathrm{C}(\mathrm{a})<\mathrm{C}(\mathrm{b})$ then it is not known if a -->b or not. All that is known is:

$$
\text { if } \mathrm{C}(\mathrm{a})<\mathrm{C}(\mathrm{~b}) \text { then } \mathrm{b}-/->\mathrm{a}
$$

It would be useful to have a stronger property - one that guarantees that

$$
\mathrm{a}-->\text { b iff } \mathrm{C}(\mathrm{a})<\mathrm{C}(\mathrm{~b})
$$

This property is guaranteed by Vector Clocks.

Vector Clock Rules

Each process P_{i} is equipped with a clock C_{i} which is an integer vector of length n.
$C_{i}(a)$ is referred to as the timestamp event a at P_{i}
$C_{i}[i]$, the i th entry of C_{i} corresponds to P_{i} 's on logical time.
$C_{i}[j], j \neq i$ is P_{i} 's best guess of the logical time at P_{j}

Implementation rules for vector clocks:

[IR1] Clock C_{i} is incremented between any two successive events in process P_{i}

$$
C_{i}[i]:=C_{i}[i]+d \quad(d>0)
$$

[IR2] If event a is the sending of the message m by process P_{i}, then message m is assigned a vector timestamp $t_{m}=C_{i}(a)$; on receiving the same message m by process P_{j}, C_{j} is updated as follows:

$$
\forall k, C_{j}[k]:=\max \left(C_{j}[k], t_{m}[k]\right)
$$

Vector Clocks

Causal Ordering of Messages

Birman-Schiper-Stephenson Protocol

1. Before broadcasting a message m, a process P_{i} increments the vector time $V T_{P i}[i]$ and timestamps m. Note that $\left(V T_{P i}[i]-1\right)$ indicates how many messages from P_{i} precede m.
2. A process $P_{j} \neq P_{i}$, upon receiving message m timestamped $V T_{m}$ from P_{i}, delays its delivery until both the following conditions are satisfied.
a. $V T_{P j}[i]=V T_{m}[i]-1$
b. $V T_{P j}[k] \geq V T_{m}[k] \forall k \in\{1,2, \ldots, n\}-\{i\}$
where n is the total number of processes.
Delayed messages are queued at each process in a queue that is sorted by vector time of the messages. Concurrent messages are ordered by the time of their receipt.
3. When a message is delivered at a process $P_{j}, V T_{P j}$ is updated according to the vector clocks rule [IR2]
