Cryptographic Security

Sec urity Considerations

Factors:

- reliance on unknown, vulnerable intermediaries (e.g., Internet routers)
- parties may have no personal or organizational relationship (e.g., e-commerce)
- use of automated surrogates (e.g., agents)

Goals:

- privacy/confidentiality - information not disclosed to unauthorized entities
- integrity - information not altered deliberately or accidentally
- authentication - validation of identity of source of information
- non-repudiation - source of information can be objectively established

Threats:

- replay of messages
- interference (inserting bogus messages)
- corrupting messages

Cryptography

Forms of attack: ciphertext-only known-plaintext chosen-plaintext

Forms of Cryptosystems

- Private Key (symmetric) :

A single key is used for both encryption and decryption.
Key distribution problem - a secure channel is needed to transmit the key before secure communication can take place over an unsecure channel.

- Public Key (asymmetric):

The encryption procedure (key) is public while the decryption procedure (key) is private.

Requirements:

1. For every message $M, D(E(M))=M$
2. E and D can be efficiently applied to M
3. It is impractical to derive D from E .

Combining Public/Private Key Systems

Public key encryption is more expensive than symmetric key encryption For efficiency, combine the two approaches

(1) Use public key encryption for authentication; once authenticated, transfer a shared secret symmetric key
(2) Use symmetric key for encrypting subsequent data transmissions

Secure Communication - Public Key System

Rivest-Shamir-Adelman (RSA) Method

Encryption Key for user Y
Decryption Key for user Y

RSA Method

1. Choose two large (100 digit) prime numbers, p and q , and set $\mathrm{n}=\mathrm{p} \times \mathrm{q}$
2. Choose any large integer, d , so that: $\mathrm{GCD}(\mathrm{d},((\mathrm{p}-1) \mathrm{x}(\mathrm{q}-1))=1$
3. Find e so that: e $x d=1$ (modulo $(p-1) x(q-1))$

Example:

1. $\mathrm{p}=5, \mathrm{q}=11$ and $\mathrm{n}=55$.

$$
(p-1) \times(q-1)=4 \times 10=40
$$

2. A valid d is 23 since $\operatorname{GCD}(40,23)=1$
3. Then $\mathrm{e}=7$ since:

$$
23 \times 7=161 \text { modulo } 40=1
$$

(Large) Doc ument Integrity

Digest properties:

- fixed-length, condensation of the source
- efficient to compute
- irreversible - computationally infeasible for the original source to be reconstructed from the digest
- unique - difficult to find two different sources that map to the same digest (collision resistance)

Also know as: fingerprint

Examples: MD5 (128 bits), SHA-1 (160 bits)

(Large)Doc ument Integrity

Guaranteeing Integrity

Digital Signatures (Public Key)

Requirements:

unforgable and unique receiver: knows that a message came from the sender (authenticity) sender: cannot deny authorship(non-repudiation)
message integrity
sender \& receiver: message contents preserved (integrity)
(e.g., cannot cut-and-paste a signature into a message)

Public Key System:

sender, A : $\left(\mathrm{E}_{\mathrm{A}}\right.$: public, D_{A} : private)
receiver, B : $\left(\mathrm{E}_{\mathrm{B}}\right.$: public, D_{B} : private)
sender(A) ---- C= $E_{B}\left(D_{A}(M)\right)$---> receiver(B)
receiver(B) -- M = $E_{A}\left(D_{B}(C)\right)--->M$

Secure Communication (Public Key)

Handshaking

$\mathrm{I}_{\mathrm{A}}, \mathrm{I}_{\mathrm{B}}$ are "nonces"
nonces can be included in each subsequent message
PKB: public key of B; PKA: public key of A;

