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Concurrent Collections

Overview

 Ideas
 Separate if an operation is executed from when that 

operation is executed
 Focus on ordering constraints dictated by semantics of 

application
 Programming languages usually bind these together

 Overburdens development effort
 Limits implementation alternatives

 Dynamic single assignment
 Use write-once values rather than variables (locations)
 Avoids issues of synchronization, overwriting, etc.
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Concurrent Collections

Overview

 Representations
 Diagram (“whiteboard”) version and text formats
 Relationships between high level operations (steps)

 Data dependencies (producer-consumer relationship)
 Control dependencies (controller-controllee relationship)

 High level operations (steps) 
 Purely functional
 Implemented in conventional programming language
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Note: figure from presentation by Kathleen Knobe (Intel) and Vivek Sarkar (Rice)



Concurrent Collections

Overview

 Advantages
 Allows roles and expertise of domain expert and 

tuning expert to be differentiated and combined by 
allowing each to focus on the aspects of the 
computation related to their expertise.
 Domain expert need not 

know about parallelism
 Tuning expert need not 

know about domain
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Note: figure from presentation by Kathleen Knobe (Intel) and Vivek Sarkar (Rice)



Concurrent Collections

Overview

 Advantages (cont.)
 Avoids specifying/reasoning/deducing which 

operations can execute in parallel
 This is difficult to do
 Depends on architecture

 Allows run-time support to be tailored for different 
architectures

 Creates portability across different architectures
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Concurrent Collections

Basic Structures

Element CnC name Graphical form Textual form

computation step (foo)

data item [x]

control tag <T>

environment env
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foo

T

x



Concurrent Collections

Simple Example
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“aaaffqqqmmmmmmm”

“aaa”

“ff”
“qqq”

“mmmmmmm”

“aaa”

“qqq”

“mmmmmmm”

Produce odd length sequences of consecutive identical characters

span

string



Concurrent Collections

Relations
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span

string

producer 
consumer

prescriptive 



Concurrent Collections

Item Collections
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[“aaaffqqqmmmmmmm” : 1]

span

string

 Multiple item instances correspond to different values of the item kind
 Each instance is distinguished by a user-defined instance tag

[“aaa” :1,1]

[“qqq” : 1,3]

[“mmmmmmm” : 1,4]

input

[“aaa” :1,1]

[“ff” : 1,2]
[“qqq” : 1,3]

[“mmmmmmm” : 1,4]

span
results



Concurrent Collections

Step Collections
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span

string

 Multiple steps instances correspond to different instantiations of the code 
implementing the step

 Each instance is distinguished by a user-defined instance tag

(createSpan : 1)

createSpan

(processSpan :1,1)
(processSpan : 1,2)

(processSpan : 1,3)

(processSpan : 1,4)

processSpan



Concurrent Collections

Tag Collections
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span

string

 Tag collections are sets of tags of the same type/structure as the step with 
which they are associated

<1>

<1,1>

<1,2><1,3>
<1,4>

spanTags

stringTags



Concurrent Collections

Execution Semantics
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[“qqq” : 1,3]

span

(processSpan : 1,3)

processSpan

<1,3>

spanTags

A step instance with a given tag will execute when

• a matching tag instance is present, and

• the step instances matching inputs are
available



Concurrent Collections

Semantics

 When (S : t1) executes, if it produces [I, t2], then [I, t2] becomes available.
 When (S : t1) executes, if it produces <T: t2>, then <T, t2> becomes available.
 If <T> prescribes (S), when <T : t> is available then (S : t) becomes prescribed.
 If forall {I, t1] such that (S: t2) gets [I, t1]

[I,t1] is available // if all inputs of (S: t2) are available
then (S: t2) is inputs-available.

 If (S: t) is both inputs-available and prescribed then is its enabled.
Any enabled step is ready to execute.
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Concurrent Collections

Semantics

 Execution frontier: the set of instances that have any 
attributes and are not dead.

 Program termination: no step is currently executing and no 
unexecuted step is currently enabled.

 Valid program termination: a program terminates and all 
prescribed steps have executed.

 Instances that are dead may be garbage collected.
 Note: parallel execution is possible but not mandated; thus 

testing/debugging on a sequential machine is possible.
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Concurrent Collections

Sources of Parallelism
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[“aaaffqqqmmmmmmm” : 1]

[“bbbxxxxxxffxxxxxyy” : 2]

span

string

(processSpan :1,1)

input

[“aaa” :1,1]
[“ff” : 1,2]

[“qqq” : 1,3]

[“ff” : 2,3]

span executing

[“bbb” : 2,1]

[“mmmmmmm” : 1,4]

[“xxxxxx” : 2, 2]

(processSpan :1,3)

(processSpan :2,2)

(processSpan : 2,3)

(createSpan : 2)



Concurrent Collections

Textual Representation
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<stringTags: int stringID>;
<spanTags:   int stringID, int spanID>;

[input:      int stringID];
[span:       int stringID, int spanID];
[results:    int stringID, int spanID];

env -> [input], <stringTags>;
[results], <spanTags> -> env;

span

string



Concurrent Collections

Textual Representation
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<stringTags> :: (createSpan);
<spanTags>   :: (processSpan);

[input: stringID]               -> (createSpan: stringID);
(createSpan: stringID)          -> <spanTags: stringID, spanID>;
(createSpan: stringID)          -> [span: stringID, spanID];
[span: stringID, spanID]        -> (processSpan: stringID, spanID);
(processSpan: stringID, spanID) -> [results: stringID, spanID];

span

string



Concurrent Collections

Mechanics

Dennis Kafura – CS5204 – Operating Systems 19

Note: graphics from Kathleen Knobe (Intel), Vivek Sarkar (Rice), PLDI Tuturial, 2009



Concurrent Collections

A coded step
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int createSpan::execute(const int & t, partStr_context & c) const
{ string in;
c.input.get(t, in);

if(! in.empty()) {
char ch – in[0];
int len = 0;
unsigned int i=0;
unsigned int j = 0;
while (i < in.length()) {

if (in[j] == ch) {
i++; len++;

} else {
c.span.put(t, j, in.substr(j, len));
c.spanTags.put (t,j);
ch = in[i];
len = 0; j = i;

}
}

c.span.put(t, j, in.substr(j.len);
c.spanTags,put(t, j);
}
return CnC::CNC_Success;

}               



Concurrent Collections

Another Example
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Concurrent Collections

Patterns – steps in different collections
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Concurrent Collections

Patterns – steps in same collection
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Concurrent Collections

Performance
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Concurrent Collections

Performance
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TBB implementation, 8-way Intel dual Xeon Harpertown SMP system.



Concurrent Collections

Performance
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Habenero-Java implementation, 8-way Intel dual Xeon Harpertown SMP system.



Concurrent Collections

Performance
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Concurrent Collections

Performance
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Input stream compression 
using “deduplication”



Concurrent Collections

Memory management

 Problem
 the lifetime of a produced (data) item is not clear
 the (data) item may be used by multiple steps
 some step using a (data) item may not exist yet
 Serious problem for long-running computations

 Solution
 Declarative annotations (slicing annotations) added 

to step implementations
 Indicates which (data) items will be read by the 

step
 Converted into reference counting procedures
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Concurrent Collections

Memory states

 5 memory states
 Note: no transition from 

FREE to ITEM
 Assumes step 

implementation 
manages local stack and 
local heap correctly
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Concurrent Collections

Annotations
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General form:
(S: I) is in readers( [C: T]), constraints(I,T)



Concurrent Collections

Conditions for removing an item
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Concurrent Collections

Performance

 Memory usage did not vary with number of cores
 Optimal (running time) tile size was 125 (for above case)
 Memory savings a factor of 7 
 In other cases, memory savings a factor of 14
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