
Concurrent Collections
(CnC)

A programming model for
parallel programming

1Dennis Kafura – CS5204 – Operating Systems

Concurrent Collections

CnC

Dennis Kafura – CS5204 – Operating Systems 2

Kathleen Knobe
Intel

Concurrent Collections

Overview

 Ideas
 Separate if an operation is executed from when that

operation is executed
 Focus on ordering constraints dictated by semantics of

application
 Programming languages usually bind these together

 Overburdens development effort
 Limits implementation alternatives

 Dynamic single assignment
 Use write-once values rather than variables (locations)
 Avoids issues of synchronization, overwriting, etc.

Dennis Kafura – CS5204 – Operating Systems 3

Concurrent Collections

Overview

 Representations
 Diagram (“whiteboard”) version and text formats
 Relationships between high level operations (steps)

 Data dependencies (producer-consumer relationship)
 Control dependencies (controller-controllee relationship)

 High level operations (steps)
 Purely functional
 Implemented in conventional programming language

Dennis Kafura – CS5204 – Operating Systems 4

Note: figure from presentation by Kathleen Knobe (Intel) and Vivek Sarkar (Rice)

Concurrent Collections

Overview

 Advantages
 Allows roles and expertise of domain expert and

tuning expert to be differentiated and combined by
allowing each to focus on the aspects of the
computation related to their expertise.
 Domain expert need not

know about parallelism
 Tuning expert need not

know about domain

Dennis Kafura – CS5204 – Operating Systems 5

Note: figure from presentation by Kathleen Knobe (Intel) and Vivek Sarkar (Rice)

Concurrent Collections

Overview

 Advantages (cont.)
 Avoids specifying/reasoning/deducing which

operations can execute in parallel
 This is difficult to do
 Depends on architecture

 Allows run-time support to be tailored for different
architectures

 Creates portability across different architectures

Dennis Kafura – CS5204 – Operating Systems 6

Concurrent Collections

Basic Structures

Element CnC name Graphical form Textual form

computation step (foo)

data item [x]

control tag <T>

environment env

Dennis Kafura – CS5204 – Operating Systems 7

foo

T

x

Concurrent Collections

Simple Example

Dennis Kafura – CS5204 – Operating Systems 8

“aaaffqqqmmmmmmm”

“aaa”

“ff”
“qqq”

“mmmmmmm”

“aaa”

“qqq”

“mmmmmmm”

Produce odd length sequences of consecutive identical characters

span

string

Concurrent Collections

Relations

Dennis Kafura – CS5204 – Operating Systems 9

span

string

producer
consumer

prescriptive

Concurrent Collections

Item Collections

Dennis Kafura – CS5204 – Operating Systems 10

[“aaaffqqqmmmmmmm” : 1]

span

string

 Multiple item instances correspond to different values of the item kind
 Each instance is distinguished by a user-defined instance tag

[“aaa” :1,1]

[“qqq” : 1,3]

[“mmmmmmm” : 1,4]

input

[“aaa” :1,1]

[“ff” : 1,2]
[“qqq” : 1,3]

[“mmmmmmm” : 1,4]

span
results

Concurrent Collections

Step Collections

Dennis Kafura – CS5204 – Operating Systems 11

span

string

 Multiple steps instances correspond to different instantiations of the code
implementing the step

 Each instance is distinguished by a user-defined instance tag

(createSpan : 1)

createSpan

(processSpan :1,1)
(processSpan : 1,2)

(processSpan : 1,3)

(processSpan : 1,4)

processSpan

Concurrent Collections

Tag Collections

Dennis Kafura – CS5204 – Operating Systems 12

span

string

 Tag collections are sets of tags of the same type/structure as the step with
which they are associated

<1>

<1,1>

<1,2><1,3>
<1,4>

spanTags

stringTags

Concurrent Collections

Execution Semantics

Dennis Kafura – CS5204 – Operating Systems 13

[“qqq” : 1,3]

span

(processSpan : 1,3)

processSpan

<1,3>

spanTags

A step instance with a given tag will execute when

• a matching tag instance is present, and

• the step instances matching inputs are
available

Concurrent Collections

Semantics

 When (S : t1) executes, if it produces [I, t2], then [I, t2] becomes available.
 When (S : t1) executes, if it produces <T: t2>, then <T, t2> becomes available.
 If <T> prescribes (S), when <T : t> is available then (S : t) becomes prescribed.
 If forall {I, t1] such that (S: t2) gets [I, t1]

[I,t1] is available // if all inputs of (S: t2) are available
then (S: t2) is inputs-available.

 If (S: t) is both inputs-available and prescribed then is its enabled.
Any enabled step is ready to execute.

Dennis Kafura – CS5204 – Operating Systems 14

Concurrent Collections

Semantics

 Execution frontier: the set of instances that have any
attributes and are not dead.

 Program termination: no step is currently executing and no
unexecuted step is currently enabled.

 Valid program termination: a program terminates and all
prescribed steps have executed.

 Instances that are dead may be garbage collected.
 Note: parallel execution is possible but not mandated; thus

testing/debugging on a sequential machine is possible.

Dennis Kafura – CS5204 – Operating Systems 15

Concurrent Collections

Sources of Parallelism

Dennis Kafura – CS5204 – Operating Systems 16

[“aaaffqqqmmmmmmm” : 1]

[“bbbxxxxxxffxxxxxyy” : 2]

span

string

(processSpan :1,1)

input

[“aaa” :1,1]
[“ff” : 1,2]

[“qqq” : 1,3]

[“ff” : 2,3]

span executing

[“bbb” : 2,1]

[“mmmmmmm” : 1,4]

[“xxxxxx” : 2, 2]

(processSpan :1,3)

(processSpan :2,2)

(processSpan : 2,3)

(createSpan : 2)

Concurrent Collections

Textual Representation

Dennis Kafura – CS5204 – Operating Systems 17

<stringTags: int stringID>;
<spanTags: int stringID, int spanID>;

[input: int stringID];
[span: int stringID, int spanID];
[results: int stringID, int spanID];

env -> [input], <stringTags>;
[results], <spanTags> -> env;

span

string

Concurrent Collections

Textual Representation

Dennis Kafura – CS5204 – Operating Systems 18

<stringTags> :: (createSpan);
<spanTags> :: (processSpan);

[input: stringID] -> (createSpan: stringID);
(createSpan: stringID) -> <spanTags: stringID, spanID>;
(createSpan: stringID) -> [span: stringID, spanID];
[span: stringID, spanID] -> (processSpan: stringID, spanID);
(processSpan: stringID, spanID) -> [results: stringID, spanID];

span

string

Concurrent Collections

Mechanics

Dennis Kafura – CS5204 – Operating Systems 19

Note: graphics from Kathleen Knobe (Intel), Vivek Sarkar (Rice), PLDI Tuturial, 2009

Concurrent Collections

A coded step

Dennis Kafura – CS5204 – Operating Systems 20

int createSpan::execute(const int & t, partStr_context & c) const
{ string in;
c.input.get(t, in);

if(! in.empty()) {
char ch – in[0];
int len = 0;
unsigned int i=0;
unsigned int j = 0;
while (i < in.length()) {

if (in[j] == ch) {
i++; len++;

} else {
c.span.put(t, j, in.substr(j, len));
c.spanTags.put (t,j);
ch = in[i];
len = 0; j = i;

}
}

c.span.put(t, j, in.substr(j.len);
c.spanTags,put(t, j);
}
return CnC::CNC_Success;

}

Concurrent Collections

Another Example

Dennis Kafura – CS5204 – Operating Systems 21

Concurrent Collections

Patterns – steps in different collections

Dennis Kafura – CS5204 – Operating Systems 22

Concurrent Collections

Patterns – steps in same collection

Dennis Kafura – CS5204 – Operating Systems 23

Concurrent Collections

Performance

Dennis Kafura – CS5204 – Operating Systems 24

Acknowledgements: Aparna Chandramolishwaran, Rich Vuduc (Georgia Tech)

Concurrent Collections

Performance

Dennis Kafura – CS5204 – Operating Systems 25

TBB implementation, 8-way Intel dual Xeon Harpertown SMP system.

Concurrent Collections

Performance

Dennis Kafura – CS5204 – Operating Systems 26

Habenero-Java implementation, 8-way Intel dual Xeon Harpertown SMP system.

Concurrent Collections

Performance

Dennis Kafura – CS5204 – Operating Systems 27

Acknowledgements: Aparna Chandramolishwaran, Rich Vuduc (Georgia Tech)

Concurrent Collections

Performance

Dennis Kafura – CS5204 – Operating Systems 28

Input stream compression
using “deduplication”

Concurrent Collections

Memory management

 Problem
 the lifetime of a produced (data) item is not clear
 the (data) item may be used by multiple steps
 some step using a (data) item may not exist yet
 Serious problem for long-running computations

 Solution
 Declarative annotations (slicing annotations) added

to step implementations
 Indicates which (data) items will be read by the

step
 Converted into reference counting procedures

Dennis Kafura – CS5204 – Operating Systems 29

Concurrent Collections

Memory states

 5 memory states
 Note: no transition from

FREE to ITEM
 Assumes step

implementation
manages local stack and
local heap correctly

Dennis Kafura – CS5204 – Operating Systems 30

Concurrent Collections

Annotations

Dennis Kafura – CS5204 – Operating Systems 31

General form:
(S: I) is in readers([C: T]), constraints(I,T)

Concurrent Collections

Conditions for removing an item

Dennis Kafura – CS5204 – Operating Systems 32

Concurrent Collections

Performance

 Memory usage did not vary with number of cores
 Optimal (running time) tile size was 125 (for above case)
 Memory savings a factor of 7
 In other cases, memory savings a factor of 14

Dennis Kafura – CS5204 – Operating Systems 33

	Concurrent Collections (CnC)
	CnC
	Overview
	Overview
	Overview
	Overview
	Basic Structures
	Simple Example
	Relations
	Item Collections
	Step Collections
	Tag Collections
	Execution Semantics
	Semantics
	Semantics
	Sources of Parallelism
	Textual Representation
	Textual Representation
	Mechanics
	A coded step
	Another Example
	Patterns – steps in different collections
	Patterns – steps in same collection
	Performance
	Performance
	Performance
	Performance
	Performance
	Memory management
	Memory states
	Annotations
	Conditions for removing an item
	Performance

