Concurrent Collections
(CnC)

A programming model for
parallel programming

Dennis Kafura — CS5204 — Operating Systems 1

Kathleen Knobe
Intel

CnC

Concurrent Collections

Ease of Use with Concurrent Collections (CnC)

Kathleen Knobe
Intel

Abstract

Parallel programming is hard We present a new approach called Concwrrent Collections (CnC). This paper briefly
explains why writing a parallel program is hard in the curent environmenst and introduces our new approach based
on this perspective. In particular, a CoC program doesn 't explicitly express the parallelism. It expresses the con-

saints on ism Thase ¢ ints remain valid

of the

1. Why is parallel programming hard?
Many parallel languages embed parallel language con-
structs within the text of the serial code. Examples in-
cluds MPI, OpenMP, PThreads, Ct etc. This embedding
iz the source of some unnecessary difficaldes:

+ Serial code requires serial ardering. If there
is o semantically required ordering among some
blocks of code, an arbitrery ordering must be speci-
fied.'

Serial code modifies and rafers 1o variables
(locations), not values. Variables can be overwritten.
This overwriting over-consirains the possible orderings.

+ Serial code tightly couples the question of if
we will exacute code from when we will exacute it
Amiving at some point in the control flow indicates
‘both that, yes, we will execute this code and alse that
we will execute it now. This is true for loop iterations,
recursive calls and invecations of other subroutinas.
These also constinite arbitrary ordering.

Converting serial code to parallel code involves uncor-
ering alternate valid executions either by manually or
automatically. In the presance of arbitrery orderinz, this
process raquires a complex analysis (Rumsn or ma-
ching). Embedding parallel langmags constructs or
pragmas in the midst of this problem agsin raquires
uncovering alternate valid executions. This is difficalt
to get right ix the frst place and to modify larer. Ia
addition, of course, the parallelism constructs might

be fora constrained class or architectures (say,
shared memory)

+ focus on a limited type of parallelism (say.
data parallelism)
5o when the architecrare changes, so st the code.
For these reasons, embedding parallelism in serial code

" It not hard to find an ordering but it caz be complicated for a
program or a compiler to undo the ordering.

£et architecture.

can limit both the langnage’s effectivaness snd its ease
ofuse. In additicn, these constraints might assume arbi-
trary constraints such as barriers afer each loop or sin-
gle-program-multiple-data (SPA{D). Althouzh this is
at the focus of this paper, aotice that fhese assump-
tions can also inhibit performance.

2. The essence of parallel execution

What does a runtime system need to know in order to
EXNeCUte & program in parallel” We are not yet asking
how to specify the parallelism. how to optimize for any
specific targer, etc. We are just asking: What are the
inputs to this decision?

We need o identify the semantically required schedul-
ing comstaints. These are:

» Data dependences (produces/consumer rela-
tions): One computstion produces dats consumed by
snother. Data is explicitly produced by a producer com-
putation and explicitly consumed by {possibly multiple)
consumer compurations.

» Conmol dependences {conmolles/'controllee re-
lations): Ope computation determines if another will
execute. To eliminate the fight coupling of the jfand
when contrel flow questions, control fags will be ex-
plicitly produced by a conmroller computation and will
conirel the exscution of a conmrellee computation. This
puts the control and date dependences on the seme level
as in intermediate forms such as program dependence
graphs [5].

The types of objects that need o be identified ara:

+ The computations, ie., the high-level opera-
tions, in the application.

s The data stractures that participate i data de-
pendences among these high-level operations.

s The commol tags that participate in contral de-
pendences among these high-level operations.

vaedl Dennis Kafura — CS5204 — Operating Systems

Overview

m |deas

O Separate /fan operation is executed from when that
operation is executed

= Focus on ordering constraints dictated by semantics of
application

= Programming languages usually bind these together
0 Overburdens development effort
0 Limits implementation alternatives

O Dynamic single assignment
= Use write-once values rather than variables (locations)
= Avoids issues of synchronization, overwriting, etc.

Virgin Dennis Kafura — CS5204 — Operating Systems 3

Overview

m Representations

O Diagram (“whiteboard”) version and text formats

O Relationships between high level operations (steps)
m Data dependencies (producer-consumer relationship)
m Control dependencies (controller-controllee relationship)
O High level operations (steps)
= Purely functional
= Implemented in conventional programming language

Producer - consumer Controller - controllee

/ b
(step1) — [item] — (step2) (step1) (step2)

Note: figure from presentation by Kathleen Knobe (Intel) and Vivek Sarkar (Rice)

V%Tech Dennis Kafura — CS5204 — Operating Systems 4

Overview

m Advantages

O Allows roles and expertise of domain expert and
tuning expert to be differentiated and combined by
allowing each to focus on the aspects of the
computation related to their expertise.

= Domain expert need not The application problem
know about parallelism ! Semanti comecmess]
. = Constraints required by the application
u Tunlng expert need nOt Concurrent Collections Spec
know about domain e N
: :::(t::::e;taurrjlelism
= Locality
« Overhead

= Load balancing
Distribution among processors
\\ Scheduling within a processor //

Mapping to target platform

Note: figure from presentation by Kathleen Knobe (Intel) and Vivek Sarkar (Rice)

V%Tech Dennis Kafura — CS5204 — Operating Systems 5

Overview

m Advantages (cont.)

O Avoids specifying/reasoning/deducing which
operations can execute in parallel

m This is difficult to do

= Depends on architecture

O Allows run-time support to be tailored for different
architectures

O Creates portability across different architectures

Virgin Dennis Kafura — CS5204 — Operating Systems 6

Concurrent Collections

Basic Structures

Graphical form | _ Textual form

computation step (foo)

data Iitem X [X]
control tag /I'\ <T>
environment > env
Virgin Dennis Kafura — CS5204 — Operating Systems 7

Simple Example

Produce odd length sequences of consecutive identical characters

/e input

—»@roceésSparD—- results s

aaa w

aaa
“aaaffgggmmmmmmm” “ff” W
111 " qqq
qdqg
. i ‘mmmmmmm”
mmmmmmm
Virgin Dennis Kafura — CS5204 — Operating Systems 8

Concurrent Collections

Relations

prescriptive

I\

»\/\ string

N/ input T»@reateSpran —»@roceésSpa@T results -

producery%
consumer

Virgin Dennis Kafura — CS5204 — Operating Systems 9

Item Collections

m Multiple item instances correspond to different values of the item kind
m Each instance is distinguished by a user-defined instance tag

/e input

results -

|
|
fqqq”:13] |
|
[“mmmmmmm” : 1,4] |

|

——————————————————————————— ! [*mmmmmmm” : 1,4] !
input 0 TTTTTTTTTTTTTTIITo ’
results
Span
Dennis Kafura — CS5204 — Operating Systems

Step Collections

m Multiple steps instances correspond to different instantiations of the code
implementing the step

m Each instance is distinguished by a user-defined instance tag

/7w input results |~
T T T TS ~._processSpan

T - /// (processSpan :1,1) \\

e N / . \

((createSpan:1)) ,/ (processSpan : 1,2) \

N // | !

N _- . 1

. _ \\\ (processSpan : 1,3))

CreateSpan M (processSpan:1,4)

Virgin Dennis Kafura — CS5204 — Operating Systems 11

Tag Collections

m Tag collections are sets of tags of the same type/structure as the step with
which they are associated

,

7\
\
/_spanTags
/ \
. A / \
stringTags /. ____ S <1,1>\\\
/ \ - \
// _ _____ ‘// ///<1,2> <1,3>\
/ \\ / \
// <1> \\ ’ \ // <1’4> \\
[__ \ / \ (o _____\
/ \
// \\
// \\

—»@roceésSparD—- results s

e input
Virgin . . 12
Dennis Kafura — CS5204 — Operating Systems

Execution Semantics

A step instance with a given tag will execute when

e a matching tag instance is present, and
spanTags

* the step instances matching inputs are

avallable
[‘qaq” : 1,3] (processSpan : 1,3)
span
processSpan
Virgin Dennis Kafura — CS5204 — Operating Systems 13

Concurrent Collections

Semantics

| Step attributes)

i
|
___""‘-rh/;rescribea\ I
i
! ,_enabled}—b(executed |
|/ inputs ™ I
T available :
) |
|

When (S : t1) executes, if it produces [I, t2], then [I, t2] becomes available.
When (S : t1) executes, if it produces <T: t2>, then <T, t2> becomes available.
If <T> prescribes (S), when <T : t> is available then (S : t) becomes prescribed.

If forall {I, t1] such that (S: t2) gets [I, t1]
[I,t1] is available // if all inputs of (S: t2) are available
then (S: t2) is inputs-available.

m If (S:t) is both inputs-available and prescribed then is its enabled.
Any enabled step is ready to execute.

V%Tech Dennis Kafura — CS5204 — Operating Systems 14

Semantics

m Execution frontier: the set of instances that have any
attributes and are not dead.

m Program termination: no step is currently executing and no
unexecuted step is currently enabled.

m Valid program termination: a program terminates and all
prescribed steps have executed.

m Instances that are dead may be garbage collected.

m Note: parallel execution is possible but not mandated; thus
testing/debugging on a sequential machine is possible.

Virgin Dennis Kafura — CS5204 — Operating Systems 15

Sources of Parallelism

/e input results -

[faaa” :1,1]

————————————————————— P 1.2] (processSpan :1,1)

["aaq”™ : 1,3]

|

|

:

[“aaaffqggmmmmmmm” : 1] |
i

:

[*mmmmmmm” : 1,4] |
|

|

|

|

|

|

|

|

|

|

(processSpan :1,3)
[“DbbXXXXXXfIXXXXXYY” : 2]

(processSpan :2,2)

["bbb™ : 2,1] (processSpan : 2,3)
“XXXXXX” : 2, 2]
[“ff" : 2,3] (createSpan : 2)
________________________ [- ___.
span executing
Virgin Dennis Kafura — CS5204 — Operating Systems 16

Textual Representation

Span
Tags

span —»@roceésSpa@—- results |~

/e input

<stringTags: iInt stringlD>;

<spanTags: int stringlD, int spanlD>;
[input: int stringlD];

[span: int stringlD, int spaniD];
[results: int stringlD, int spaniD];

env -> [i1nput], <stringTags>;
[results], <spanTags> -> env;

V%Tech Dennis Kafura — CS5204 — Operating Systems 17

Textual Representation

\/»/ string
Tags

/e input createSpan

—»@roceésSpa@—- results s

<stringTags> :: (createSpan);

<spanTags> - - (processSpan);

[input: stringlD] -> (createSpan: stringlD);
(createSpan: stringlD) -> <gpanTags: stringlD, spanlD>;
(createSpan: stringlD) -> [span: stringlD, spanlD];

[span: stringlD, spanliD] -> (processSpan: stringlD, spaniD);

(processSpan: stringlD, spanlD) -> [results: stringlD, spaniD];

V%Tech Dennis Kafura — CS5204 — Operating Systems 18

Concurrent Collections

Mechanics
CnC Graph (Textual form)
= Harness & Sequential
CnC translator Steps in C++

a a

C++ compiler

Intel TBB Library Key: ::T:dh:s:mkeﬂlegraph
Windows/Linux I e e —
Multicore IA CnC system
Standard
AN
Concurrent
Collections
Library

Application

- User specified

I:l Concurrent Collections components

Note: graphics from Kathleen Knobe (Intel), Vivek Sarkar (Rice), PLDI Tuturial, 2009

Virginia W Toch Dennis Kafura — CS5204 — Operating Systems o

[~ S

A coded step

Concurrent Collections

Int createSpan::execute(const int & t, partStr_context & c) const

{ string in;
c.input.get(t, in);

1T in.empty()) {
char ch — 1n[0];
int len = O;
unsigned Int 1=0;
unsigned Int j = 0;
whille (1 < in.lengthQ)) {
1T (in[j] == ch) {
i++; len++;
} else {

c.span.put(t, j, in.substr(g,

c.spanTags.put (t,j);
ch = in[i];
len = 0; jJ = 1;
+
+

c.span.put(t, jJ, in.substr(j.len);

c.spanTags,put(t, j);
}

return CnC::CNC_Success;

len));

Vi
Tech

Dennis Kafura — CS5204 — Operating Systems

20

Another Example

<T1: image#, window#>

<|lmage: image#=>

Image - <T2: image#, window#>

...Mmaybe more:
classifiers...

<Tn: image#, window#>

Virginia Dennis Kafura — CS5204 — Operating Systems 21

mTech

Patterns - steps in different collections

I: A B: No

Distinct Producer/Consumer Producer/Consumer
collections

1:
Controller/Controllee

2: No l
controller/Controllee !

OO | ® @

Virgin Dennis Kafura — CS5204 — Operating Systems 22

Patterns - steps in same collection

II: A: B: No

Same collection Producer/Consumer Producer/Consumer

1:

Controller/Controllee

2: No
Controller/Controllee

Virgin Dennis Kafura — CS5204 — Operating Systems 23

Concurrent Collections

Performance

Cholesky performance:

Intel 2-socket x 4-core Harpertown @ 2 GHz + Intel MKL 10.1

90
—5— Baseline
—& - ScalAPACK+MPICH2/nemesis
80 — - <=+ OpenMP+MKL(seq)
- = Cilk++ rec+MKL(seq)
—0— MEKL({multithreaded BLAS)
70 1 SREELEE CnC+MKL{seq)
Theoretical peak GFlop/s 5
Q
- 100 a
(=4
S DGEMM peak ._§
T R o
0] e A - 80
}1-; ® -y _Q_,,--'_‘o__()f 8
5] SO =
5 o 5
L et o
E g ® o
=} QO - o
‘c / -
L c
7 - AT el -4 5
5 ﬂ_,___.4%___,.:e----x-—-x - TRe=-X o
20 —----- } ““f‘.h‘*-'._;"f“‘ ""“"“'“"'*"'*"'*'.".‘_*_'_"_;';_':'.'-‘-I'—'—'—‘—':—F"“
o » %X JUEL bbbt i
PP STEES Th s
a7, - 20
g——0—08—0——6—0—0—0—0——0
0

1 I I I [I [T I T
1000 5000 3000 4009 5000 gogg 7000 gogp 9000 10000
e Matrix Size
Acknowledgements: Aparna Chandramolishwaran, Rich Vuduc (Georgia Tech)

Virginia 'mT och Dennis Kafura — CS5204 — Operating Systems 24

" A

Speedup

Concurrent Collections

Cholesky Speedup (n = 2000)
—®— b =2000
—_—— b= 1000
— —m—— b=500
10 ——=-—— b=250
........ P b =125
—-—e—— b=50
—_——f — = b =25
B -
__,..-'-
e
.~ A
6 o st
T
T @
'__,r am® #.._,.__;d-"'
-~ =T
4 . ——
e
iff.'.‘:
.'|''‘‘"vI'"I--_""'.-"'.""'::--Fi-dr
2ETT g e ———— — — =
2 - Ay -
D T T T T
0 2 4 6 a8 10

Mo of threads

TBB implementation, 8-way Intel dual Xeon Harpertown SMP system.

=T

Dennis Kafura — CS5204 — Operating Systems

25

"

Performance

Cholesky Speedup (n = 2000)

Concurrent Collections

8 —_— b =2000
—_—— — b =1000
— —=—— b=500
—— e b =250
eeenenlheernen b =125
6 ——e—— b=50
=8 o
—
e e
o " - . — -
) —
-'.--#.-.:--F
Y S
T o b
] e E T =
= - . .
gt ; o
— e ————
[l I I I I
0 2 4 G & 10

Mo of threads

Habenero-Java implementation, 8-way Intel dual Xeon Harpertown SMP system.

V%Tech Dennis Kafura — CS5204 — Operating Systems 26

Performance

Eigensolver performance (dsygvx)
Intel Harpertown (2x4 = 8 core)

a8
~&— Baseline
~& - MKL(multithreaded BLAS)

7 ~- CnC+MKL(seq)

5_
)
g
5 "
— -

o.--' e
B o P D
E /
/
s |/
/

o @

2_

D____D_G___D——-ﬂ——'o_o_o___a_-o
1-
0

|] 1] | | | | |]
1000 500p 3000 4000 9000 goog 7000 goog 200040000
Matrix Size

Acknowledgements: Aparna Chandramolishwaran, Rich Vuduc (Georgia Tech)

Virginia 'WT och Dennis Kafura — CS5204 — Operating Systems 27

A

Performance

320
BO
70
60
s 5o
g 10
30
20
10

Dedup timing on Linux (8 cores)

Concurrent Collections

\ ene
\l\\ :Ptnhre:d
‘\.x_}:\\ —
I—
Dedup scaling on Linux (8 cores)
2 4 6 8 10 35 .
Threads 3
25 /_____
:E 1: _;’/;// :;r;lfsad
L/
Input stream compression
using “deduplication” KT

=T

Dennis Kafura — CS5204 — Operating Systems

28

Memory management

m Problem

O the lifetime of a produced (data) item is not clear
O the (data) item may be used by multiple steps

0 some step using a (data) item may not exist yet
O Serious problem for long-running computations

m Solution

O Declarative annotations (s/icing annotations) added
to step implementations

O Indicates which (data) items will be read by the
step

0 Converted into reference counting procedures

Virgin Dennis Kafura — CS5204 — Operating Systems 29

Memory states

= 5 memory states

m Note: no transition from 2)
FREE to ITEM — 2

m Assumes step ¢

Implementation
manages local stack and (e

local heap correctly

LOCAL
HEMAF

Virgin Dennis Kafura — CS5204 — Operating Systems 30

Annotations

General form:
(S: 1) is in readers([C: T]), constraints(l,T)

get52A: (s2) gets [L:j, k, k]

utS2A: (s2) puts [L:j, k, k+1)].

getS2A: (s2) gets [L: k, k, k+1]

gerS2A: (s2: k,j) C readers([Lijk - t1,t2,t3]) , t2=t3 n t3=k N tl=3
gerS2B: (s2: k,j) C readers([Lijk : t1,t2,t3]) , tl=2 A 2=k N 3=k +1

Virginia 'mT och Dennis Kafura — CS5204 — Operating Systems 3t

Conditions for removing an item

[I:i].dead =
/7 indicates when an 1tem
/7 will not be used in the future
for each (S) s.t. [I] -> (8)
for each s in readers((S8), [I])
(S:s).complete

(S5:s).complete =
/7 indicates when i1t i1s knouwn that the
/7 step will not execute in the future
(S:8) .executed
or (<T=:: (8) and !'<T:s>.available)

1<T:t>.available =
/7 indicates when known that the tag will never
// be avarlable. This atiribute can be put by
/7 a step directly and 15 also propagated
not (<T:t>.available) and
for each (S) s.t. (S) -> <T>
for each s in writers((S),<T>)
(S:s8).complete

Virginia Dennis Kafura — CS5204 — Operating Systems 32

Iaﬂﬂhth

Performance

Cholesky Factorization (N = 1000)

Te+7

—e— No Memory Management
v— Memory Management using slicing annotation

Ge+7

S5e+7 4

4e+7

Bytes

3e+7

2e+/

1e+7 4

ve v v

T T T T T
0 200 400 600 800 1000

Block Size
Memory usage did not vary with number of cores
Optimal (running time) tile size was 125 (for above case)
Memory savings a factor of 7

In other cases, memory savings a factor of 14

Virgin Dennis Kafura — CS5204 — Operating Systems 33

	Concurrent Collections (CnC)
	CnC
	Overview
	Overview
	Overview
	Overview
	Basic Structures
	Simple Example
	Relations
	Item Collections
	Step Collections
	Tag Collections
	Execution Semantics
	Semantics
	Semantics
	Sources of Parallelism
	Textual Representation
	Textual Representation
	Mechanics
	A coded step
	Another Example
	Patterns – steps in different collections
	Patterns – steps in same collection
	Performance
	Performance
	Performance
	Performance
	Performance
	Memory management
	Memory states
	Annotations
	Conditions for removing an item
	Performance

