Concurrency Issues

Motivation, Problems, Directions
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“Transistor density on integrated
circuits doubles about every two years.”
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Hitting the wall...

Concurrency Issues
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Thermal Density

CPU Power Consumption 1993 - 2005

ARD and Intel
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Rise of Multi-/Many- Core Technologies

Computer

AL TICORE

In the future, exponential growth
in CPU performance will primarily
be obtainable from more hardware
threads and cores.

Sun: 8 core chip

Niagara2 Chip Overview

* 8 Sparc cores, 8

threads each
Shared 4MB L2,
8-banks, 16-way
associative

* Four dual-channel

FBDIMM memory
controllers

=l « Two 10/1 Gb Enet

ports

. |+ One PCI-Express

x8 1.0A port

* 342 mm*2 die

size in 65 nm

+ 711 signal /O,

1831 total

Intel: Quad Core

Intel: 80 core
experimental
system
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Context

Support for concurrent and parallel programming

- conform to application semantics functionality
S
- respect priorities of applications
>
O .
c no unnecessary blocking
— \O
O \O
= fast context switch
T for
. e erformance
o high processor utilization P
relative importance
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“Heavyweight” Process Model

user | |
kernel l

* simple, uni-threaded model

e security provided by address space boundaries
* high cost for context switch

e coarse granularity limits degree of concurrency
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“Lightweight” (User-level) Threads

%
P

* thread semantics defined by application

« fast context switch time (within an order of magnitude of
procedure call time)

« system scheduler unaware of user thread priorities

 unnecessary blocking (1/0O, page faults, etc.)

e processor under-utilization

user

kernel
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Kernel-level Threads

user ;:é\ \

kernel / l !

* thread semantics defined by system

 overhead incurred due to overly general implementation and cost of
kernel traps for thread operations

o context switch time better than process switch time by an order of
magnitude, but an order of magnitude worse than user-level threads

» system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization
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Threads are Bad

m Difficult to program
O Synchronizing access to shared state
0O Deadlock
0O Hard to debug (race conditions, repeatability)

m Break abstractions
O Modules must be designed “thread safe”

m Difficult to achieve good performance
O simple locking lowers concurrency
O context switching costs

m  OS support inconsistent
O semantics and tools vary across platforms/systems

= May not be right model

O Window events do not map to threads but to events
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Lee’s Crticisms of Threads

The Problem with Threads

m Threads are not composable
: O Inteference via shared resources
£ R m Difficult to reason about threads
e O Everything can change between steps

m Threads are “wildly nondeterministic”
O Requires careful “pruning” by programmer

m In practice, difficult to program correctly
0O EXperience and examples
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Ousterhout’s conclusions

Why Threads Are A Bad Idea
(for most purposes)

John Ousterhout

Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Conclusions

v

v

v

u

v

Why Threads Are A Bad Idea September 28, 1993, slide 15

Concurrency is fundamentally hard; avoid whenever
possible.

Threads more powerful than events, but power is
rarely needed.

Threads much harder to program than events; for
experts only.

Use events as primary development tool (both GUIs
and distributed systems).

Use threads only for performance-critical kernels.

Virginia
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Resilience of Threads

m Widely supported in mainstream operating systems
O even If semantics differ

m Direct kernel/hardware support

O via kernel threads and multi-core
0 shared address spaces

m Ability to pass complex data structures efficiently
via pointers in shared memory

m Programmability
O standard interfaces defined (e.g., POSIX)
O construct in some languages (e.g., Java)
O widely delolyed/understood (even if misused)
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Concurrency Errors in Practice

m Characterization study

0 Four large, mature, open-source systems

0 105 randomly selected currency errors
0O Examined bug report, code, corrections

Concurrency Issues

O Classified bug patterns, manifestation, fix strategy

. o # of Bug Samples
Application Description NonDeadlo cgk Bea Tock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Browser Suite 41 16
OpenOffice Office Suite 6 2
Total 74 31

=T
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Concurrency Error Patterns

Concurrency Issues

Finding (1): Most (72 out of 74) of the examined non-deadlock concurrency
bugs are covered by two simple patters: atomicity-violation and order-violation.

Application Total Atomicity | Order | Other
MySQL 14 12 1 1
Apache 13 7 6 0
Mozilla 41 29 15 0
OpenOffice 6 3 2 1
Overall 74 51 24 2

atomicity-violation: interference with a

sequence of steps intended to be
performed as a unit

a

B

order-violation: failure to perform steps in
the intended order
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Concurrency Bug Manifestations

Finding (3): The manifestation of most (101 out of 105) examined concurrency
bugs involves no more than two threads.

Non-deadlock concurrency bugs
Application || Total || Env. | >2 threads | 2 threads | 1 thread

MySQL 14 1 1 12 0
Apache 13 0 0 13 0
Mozilla 41 1 0 40 0
OpenOffice 6 0 0 6 0

0

Overall 14 2 1 71

Deadlock concurrency bugs
Application || Total || Env. | >2 threads | 2 threads | I thread

MySQL 9 0 0 5 4
Apache 4 0 0 4 0
Mozilla 16 0 1 14 1
OpenOffice 2 0 0 0 2
Overall 31 0 1 23 7

Other findings: most (66%) non-deadlock concurrency bugs involved only one
variable and most (97%) of deadlock concurrency bugs involves at most two
resources..
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Concurrency Bug Fix Strategies

Finding (9): Adding or changing locks is not the major fix strategy.

Application || Total || COND | Switch | Design | Lock | Other
MySQL 14 2 0 5 4 3
Apache 13 4 2 3 4 0
Mozilla 41 13 8 9 9 2
OpenOffice || 6 0 0 2 3 1
Overall 74 19 10 19 20 6

Switch: Code switch
Lock: add or change lock

COND: Condition check
Design: algorithm change

Another finding: transactional memory (TM) can help avoid many
(41 or 105) concurrency bugs.
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Solutions to thread problems

m New models of concurrent computation
O MapReduce

m Large-scale data

= Highly distributed, massively parallel environment
0 Concurrent Collections (CnC)

m General concurrent programming vehicle
= Multicore architectures

m Thread-per-process models
O Communicating Sequential Processes
0O Grace
O Sammati
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