Concurrency Issues

Motivation, Problems, Directions

Dennis Kafura - CS 5204 - Operating Systems 1

H
I Concurrency Issues

Reasons for Concurrency

coordination

parallelism

performance

Virginia Dennis Kafura - CS 5204 - Operating Systems 2

"

O =M bHod -1 0w
T T T T T

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

Fig. £ MNumber of components per Integrated

function for minimuam coat per co

extrapolated va time,

Gordon E. Moore,
Co-founder,
Intel Corporation.

mponent

Moore’s Law

Concurrency Issues

“Transistor density on integrated
circuits doubles about every two years.”

transistors
10,000,000,000
Depal-Lore ™ | taniom® 2 l'mssl.'-;.
R S— y o 1,000,000,000
nigin® 2 Proecessor
H uu RE'S qu Il fardur™ Processor
hitel Pentium®4 Processor 100,000,000
Intel Peaturn™ B P oCes sor
Intel® Tentium*® |l Prooessor 10,000,000
rtel" Pentivm® Procsssos
Iftel 436" Processor }
. 1,000,000
Inke! 386" H'u-:n:swj_..--'f
28R _ 7
f.r" 100,000
m:-_.f
e
~EDED 10,000
Wt-&a_,_.-r
4004 J
1,000
1570 1975 1980 1385 1990 1995 2000 2005 2010

=T

Dennis Kafura - CS 5204 - Operating Systems

Hitting the wall...

Concurrency Issues

Intel Processor Clock Speed (MHz)
10000 -
Pentium4 Prescott
Core 2 Extreme
1000
Pentium Il L]
Celeron Multicore Crisis
- isHere!
Pentium
100
80486
80386
_. 80286
8080
1 T 1 - - -
1968 1973 1979 1984 1990 1995 2001 2006
0.1
Virginia Dennis Kafura - CS 5204 - Operating Systems

Tech

N
I Concurrency Issues

Thermal Density

CPU Power Consumption 1993 - 2005

ARD and Intel

10,000

1,000

Power Density 4o
(Wicma2)

Pentium®
Processors

Source. Patrick Gelsinger, /ntel Developer’s Forum, Intel Corporation, 2004.

2005 (cooler alone)
1993 (CPU and cooler)

Virgin Dennis Kafura - CS 5204 - Operating Systems 5

Concurrency Issues

Rise of Multi-/Many- Core Technologies

Computer

AL TICORE

In the future, exponential growth
in CPU performance will primarily
be obtainable from more hardware
threads and cores.

Sun: 8 core chip

Niagara2 Chip Overview

* 8 Sparc cores, 8

threads each
Shared 4MB L2,
8-banks, 16-way
associative

* Four dual-channel

FBDIMM memory
controllers

=l « Two 10/1 Gb Enet

ports

. |+ One PCI-Express

x8 1.0A port

* 342 mm*2 die

size in 65 nm

+ 711 signal /O,

1831 total

Intel: Quad Core

Intel: 80 core
experimental
system

Dennis Kafura - CS 5204 - Operating Systems

H
I Concurrency Issues

Context

Support for concurrent and parallel programming

- conform to application semantics functionality
S
- respect priorities of applications
>
O .
c no unnecessary blocking
— \O
O \O
= fast context switch
T for
. e erformance
o high processor utilization P
relative importance
Virgin Dennis Kafura - CS 5204 - Operating Systems

H
I Concurrency Issues

“Heavyweight” Process Model

user | |
kernel l

* simple, uni-threaded model

e security provided by address space boundaries
* high cost for context switch

e coarse granularity limits degree of concurrency

Virgin Dennis Kafura - CS 5204 - Operating Systems

N
Concurrency Issues

“Lightweight” (User-level) Threads

%
P

* thread semantics defined by application

« fast context switch time (within an order of magnitude of
procedure call time)

« system scheduler unaware of user thread priorities

 unnecessary blocking (1/0O, page faults, etc.)

e processor under-utilization

user

kernel

Virgin Dennis Kafura - CS 5204 - Operating Systems

N
I Concurrency Issues

Kernel-level Threads

user ;:é\ \

kernel / l !

* thread semantics defined by system

 overhead incurred due to overly general implementation and cost of
kernel traps for thread operations

o context switch time better than process switch time by an order of
magnitude, but an order of magnitude worse than user-level threads

» system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization

V%Tech Dennis Kafura - CS 5204 - Operating Systems 10

I.I_ Concurrency Issues

Threads are Bad

m Difficult to program
O Synchronizing access to shared state
0O Deadlock
0O Hard to debug (race conditions, repeatability)

m Break abstractions
O Modules must be designed “thread safe”

m Difficult to achieve good performance
O simple locking lowers concurrency
O context switching costs

m OS support inconsistent
O semantics and tools vary across platforms/systems

= May not be right model

O Window events do not map to threads but to events

Virgin Dennis Kafura - CS 5204 - Operating Systems 11

I.I_ Concurrency Issues

Lee’s Crticisms of Threads

The Problem with Threads

m Threads are not composable
: O Inteference via shared resources
£ R m Difficult to reason about threads
e O Everything can change between steps

m Threads are “wildly nondeterministic”
O Requires careful “pruning” by programmer

m In practice, difficult to program correctly
0O EXperience and examples

Virginia 'mT och Dennis Kafura - CS 5204 - Operating Systems 2

Concurrency Issues

Ousterhout’s conclusions

Why Threads Are A Bad Idea
(for most purposes)

John Ousterhout

Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Conclusions

v

v

v

u

v

Why Threads Are A Bad Idea September 28, 1993, slide 15

Concurrency is fundamentally hard; avoid whenever
possible.

Threads more powerful than events, but power is
rarely needed.

Threads much harder to program than events; for
experts only.

Use events as primary development tool (both GUIs
and distributed systems).

Use threads only for performance-critical kernels.

Virginia

Dennis Kafura - CS 5204 - Operating Systems

13

I.I_ Concurrency Issues

Resilience of Threads

m Widely supported in mainstream operating systems
O even If semantics differ

m Direct kernel/hardware support

O via kernel threads and multi-core
0 shared address spaces

m Ability to pass complex data structures efficiently
via pointers in shared memory

m Programmability
O standard interfaces defined (e.g., POSIX)
O construct in some languages (e.g., Java)
O widely delolyed/understood (even if misused)

V%Tedl Dennis Kafura - CS 5204 - Operating Systems 14

| A

Concurrency Errors in Practice

m Characterization study

0 Four large, mature, open-source systems

0 105 randomly selected currency errors
0O Examined bug report, code, corrections

Concurrency Issues

O Classified bug patterns, manifestation, fix strategy

. o # of Bug Samples
Application Description NonDeadlo cgk Bea Tock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Browser Suite 41 16
OpenOffice Office Suite 6 2
Total 74 31

=T

Dennis Kafura - CS 5204

- Operating Systems

15

A

Concurrency Error Patterns

Concurrency Issues

Finding (1): Most (72 out of 74) of the examined non-deadlock concurrency
bugs are covered by two simple patters: atomicity-violation and order-violation.

Application Total Atomicity | Order | Other
MySQL 14 12 1 1
Apache 13 7 6 0
Mozilla 41 29 15 0
OpenOffice 6 3 2 1
Overall 74 51 24 2

atomicity-violation: interference with a

sequence of steps intended to be
performed as a unit

a

B

order-violation: failure to perform steps in
the intended order

V%Tech Dennis Kafura -

CS 5204 - Operating Systems 16

N
I Concurrency Issues

Concurrency Bug Manifestations

Finding (3): The manifestation of most (101 out of 105) examined concurrency
bugs involves no more than two threads.

Non-deadlock concurrency bugs
Application || Total || Env. | >2 threads | 2 threads | 1 thread

MySQL 14 1 1 12 0
Apache 13 0 0 13 0
Mozilla 41 1 0 40 0
OpenOffice 6 0 0 6 0

0

Overall 14 2 1 71

Deadlock concurrency bugs
Application || Total || Env. | >2 threads | 2 threads | I thread

MySQL 9 0 0 5 4
Apache 4 0 0 4 0
Mozilla 16 0 1 14 1
OpenOffice 2 0 0 0 2
Overall 31 0 1 23 7

Other findings: most (66%) non-deadlock concurrency bugs involved only one
variable and most (97%) of deadlock concurrency bugs involves at most two
resources..

V%Tech Dennis Kafura - CS 5204 - Operating Systems 17

N
I Concurrency Issues

Concurrency Bug Fix Strategies

Finding (9): Adding or changing locks is not the major fix strategy.

Application || Total || COND | Switch | Design | Lock | Other
MySQL 14 2 0 5 4 3
Apache 13 4 2 3 4 0
Mozilla 41 13 8 9 9 2
OpenOffice || 6 0 0 2 3 1
Overall 74 19 10 19 20 6

Switch: Code switch
Lock: add or change lock

COND: Condition check
Design: algorithm change

Another finding: transactional memory (TM) can help avoid many
(41 or 105) concurrency bugs.

Dennis Kafura - CS 5204 - Operating Systems 18

=T

I.I_ Concurrency Issues

Solutions to thread problems

m New models of concurrent computation
O MapReduce

m Large-scale data

= Highly distributed, massively parallel environment
0 Concurrent Collections (CnC)

m General concurrent programming vehicle
= Multicore architectures

m Thread-per-process models
O Communicating Sequential Processes
0O Grace
O Sammati

V%Tedl Dennis Kafura - CS 5204 - Operating Systems

19

	Concurrency Issues
	Reasons for Concurrency
	Moore’s Law
	Hitting the wall…
	Thermal Density
	Rise of Multi-/Many- Core Technologies
	Context
	“Heavyweight” Process Model
	“Lightweight” (User-level) Threads
	Kernel-level Threads
	Threads are Bad
	Lee’s Crticisms of Threads
	Ousterhout’s conclusions
	Resilience of Threads
	Concurrency Errors in Practice
	Concurrency Error Patterns
	Concurrency Bug Manifestations
	Concurrency Bug Fix Strategies
	Solutions to thread problems

