
Concurrency Issues

Motivation, Problems, Directions

Dennis Kafura - CS 5204 - Operating Systems 1

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems 2

Reasons for Concurrency

multitasking
parallelism

performance

coordination

Concurrency Issues

Moore’s Law

Dennis Kafura - CS 5204 - Operating Systems 3

Gordon E. Moore,
Co-founder,
Intel Corporation.

“Transistor density on integrated
circuits doubles about every two years.”

Concurrency Issues

Hitting the wall…

Dennis Kafura - CS 5204 - Operating Systems 4

Concurrency Issues

Thermal Density

Dennis Kafura - CS 5204 - Operating Systems 5

2005 (cooler alone)
1993 (CPU and cooler)

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems 6

Rise of Multi-/Many- Core Technologies

Intel: 80 core
experimental
system

Sun: 8 core chip

Intel: Quad Core

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems 7

Context

Support for concurrent and parallel programming

conform to application semantics

respect priorities of applications

no unnecessary blocking

fast context switch

high processor utilization

co
nc

ur
re

nt
pa

ra
lle

l

functionality

performance

relative importance

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems 8

“Heavyweight” Process Model

. . .
user

kernel

• simple, uni-threaded model
• security provided by address space boundaries
• high cost for context switch
• coarse granularity limits degree of concurrency

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems 9

“Lightweight” (User-level) Threads

. . .
user

kernel

• thread semantics defined by application
• fast context switch time (within an order of magnitude of

procedure call time)
• system scheduler unaware of user thread priorities
• unnecessary blocking (I/O, page faults, etc.)
• processor under-utilization

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems 10

Kernel-level Threads

• thread semantics defined by system
• overhead incurred due to overly general implementation and cost of
kernel traps for thread operations

• context switch time better than process switch time by an order of
magnitude, but an order of magnitude worse than user-level threads

• system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization

. . .
user

kernel

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems

Threads are Bad

 Difficult to program
 Synchronizing access to shared state
 Deadlock
 Hard to debug (race conditions, repeatability)

 Break abstractions
 Modules must be designed “thread safe”

 Difficult to achieve good performance
 simple locking lowers concurrency
 context switching costs

 OS support inconsistent
 semantics and tools vary across platforms/systems

 May not be right model
 Window events do not map to threads but to events

11

Concurrency Issues

Lee’s Crticisms of Threads

Dennis Kafura - CS 5204 - Operating Systems 12

 Threads are not composable
 Inteference via shared resources

 Difficult to reason about threads
 Everything can change between steps

 Threads are “wildly nondeterministic”
 Requires careful “pruning” by programmer

 In practice, difficult to program correctly
 Experience and examples

Concurrency Issues

Dennis Kafura - CS 5204 - Operating Systems

Ousterhout’s conclusions

13

Concurrency Issues

Resilience of Threads

 Widely supported in mainstream operating systems
 even if semantics differ

 Direct kernel/hardware support
 via kernel threads and multi-core
 shared address spaces

 Ability to pass complex data structures efficiently
via pointers in shared memory

 Programmability
 standard interfaces defined (e.g., POSIX)
 construct in some languages (e.g., Java)
 widely delolyed/understood (even if misused)

Dennis Kafura - CS 5204 - Operating Systems 14

Concurrency Issues

Concurrency Errors in Practice

 Characterization study
 Four large, mature, open-source systems
 105 randomly selected currency errors
 Examined bug report, code, corrections
 Classified bug patterns, manifestation, fix strategy

Dennis Kafura - CS 5204 - Operating Systems 15

Concurrency Issues

Concurrency Error Patterns

Dennis Kafura - CS 5204 - Operating Systems 16

Finding (1): Most (72 out of 74) of the examined non-deadlock concurrency
bugs are covered by two simple patters: atomicity-violation and order-violation.

atomicity-violation: interference with a
sequence of steps intended to be
performed as a unit

A

B

order-violation: failure to perform steps in
the intended order

Concurrency Issues

Concurrency Bug Manifestations

Dennis Kafura - CS 5204 - Operating Systems 17

Finding (3): The manifestation of most (101 out of 105) examined concurrency
bugs involves no more than two threads.

Other findings: most (66%) non-deadlock concurrency bugs involved only one
variable and most (97%) of deadlock concurrency bugs involves at most two
resources..

Concurrency Issues

Concurrency Bug Fix Strategies

Dennis Kafura - CS 5204 - Operating Systems 18

Finding (9): Adding or changing locks is not the major fix strategy.

COND: Condition check Switch: Code switch
Design: algorithm change Lock: add or change lock

Another finding: transactional memory (TM) can help avoid many
(41 or 105) concurrency bugs.

Concurrency Issues

Solutions to thread problems

 New models of concurrent computation
 MapReduce

 Large-scale data
 Highly distributed, massively parallel environment

 Concurrent Collections (CnC)
 General concurrent programming vehicle
 Multicore architectures

 Thread-per-process models
 Communicating Sequential Processes
 Grace
 Sammati

Dennis Kafura - CS 5204 - Operating Systems 19

	Concurrency Issues
	Reasons for Concurrency
	Moore’s Law
	Hitting the wall…
	Thermal Density
	Rise of Multi-/Many- Core Technologies
	Context
	“Heavyweight” Process Model
	“Lightweight” (User-level) Threads
	Kernel-level Threads
	Threads are Bad
	Lee’s Crticisms of Threads
	Ousterhout’s conclusions
	Resilience of Threads
	Concurrency Errors in Practice
	Concurrency Error Patterns
	Concurrency Bug Manifestations
	Concurrency Bug Fix Strategies
	Solutions to thread problems

