
Checkpointing-Recovery

CS5204 – Operating Systems 1

Checkpointing

CS 5204 – Operating Systems 2

Fault Tolerance

erroneous state error

valid state
failure

causes
fault

leads to

recovery

An error is a manifestation of a fault that can lead to a failure.

Failure Recovery:
• backward recovery

• operation-based (do-undo-redo logs)
• state-based (checkpointing/logging)

• forward recovery

Checkpointing

CS 5204 – Operating Systems 3

System Model

Basic approaches
• checkpointing : copying/restoring the state of a process
• logging : recording/replaying messages

Checkpointing

CS 5204 – Operating Systems 4

Orphan Message

X
m

x1

Y
y1

Checkpointing

CS 5204 – Operating Systems 5

Lost Messages

Y

X
m

y1

x1

Regenerating lost messages on recovery:
• if implemented on unreliable communication channels, the application is
responsible

• if impelmented on reliable communication channels, the recovery
algorithm is responsible

Checkpointing

CS 5204 – Operating Systems 6

Domino Effect

Cases:
• X fails after x3
• Y fails after sending message m
• Z fails after sending message n

x2 x3

X

n

my2

x1

z2z1

Z

Y
y1

Checkpointing

CS 5204 – Operating Systems 7

Other Issues

 Output commit
 the state from which messages are sent to the “outside

world” can be recovered
 affects latency of message delivery to “outside world” and

overhead of checkpoint/logging

 Stable storage
 survives process failures
 contains checkpoint/logging information

 Garbage collection
 removal of checkpoints/logs no longer needed

Checkpointing

CS 5204 – Operating Systems 8

Logging Protocols

Elements
• Piecewise deterministic (PWD) assumption – the system state can be

recovered by replaying message receptions
• Determinant – record of information needed to recover receipt of message

Determinants for m5 and m6 not logged

Checkpointing

CS 5204 – Operating Systems 9

Taxonomy

Rollback-Recovery

checkpointing logging

uncoordinated coordinated communication
-induced

pessimistic optimistic causal

blocking non-blocking index-basedmodel-based

Checkpointing

CS 5204 – Operating Systems 10

Uncoordinated Checkpointing

Rollback-Recovery

checkpointing

uncoordinated
• susceptible to domino effect
• can generate useless checkpoints
• complicates storage/GC
• not suitable for frequent output commits

Checkpointing

CS 5204 – Operating Systems 11

Cordinated/Blocking Protocols

Rollback-Recovery

checkpointing

coordinated

blocking

X

Z

Y
my1 y2

x1 x2

z1 z2

• no messages can be in transit during checkpointing
• {x1, y1, z1} forms “recovery line”

Checkpointing

CS 5204 – Operating Systems 12

Coordinated/Blocking Notation

Each node maintains:
• a monotonically increasing counter with which each message from that node is labeled.
• records of the last message from/to and the first message to all other nodes.

X

Y

last_label_rcvdX[Y]
last_label_sentX[Y]

first_label_sentY[X]

m.l (a message m and its label l)

Note: “sl” denotes a “smallest label” that is < any other label and
“ll” denotes a “largest label” that is > any other label

Checkpointing

CS 5204 – Operating Systems 13

Coordinated/Blocking Algorithm

(1) When must I take a checkpoint?
(2) Who else has to take a checkpoint when I do?

(1) When I (Y) have sent a message to the checkpointing process, X, since my last
checkpoint:

last_label_rcvdX[Y] >= first_label_sentY[X] > sl
(2) Any other process from whom I have received messages since my last checkpoint.

ckpt_cohortX = {Y | last_label_rcvdX[Y] > sl}

tentative checkpoint
X

Z

Y
my1 y2

x1 x2

z1 z2

Checkpointing

CS 5204 – Operating Systems 14

Coordinated/Blocking Algorithm
(1) When must I rollback?
(2) Who else might have to rollback when I do?

(1) When I ,Y, have received a message from the restarting process,X,
since X's last checkpoint.

last_label_rcvdY(X) > last_label_sentX(Y)
(2) Any other process to whom I can send messages.

roll_cohort Y = {Z | Y can send message to Z}

X

Z

Y
y1 y2

x1 x2

z1 z2

Checkpointing

CS 5204 – Operating Systems 15

Taxonomy

Rollback-Recovery

checkpointing

coordinated

non-blocking

Approach:
“tag” message to trigger checkpointing

Example:
global-state recording algorithm

Checkpointing

CS 5204 – Operating Systems 16

Communication-Induced Checkpointing

checkpointing

Z-path:[m1,m2] and [m3,m4]
Z-cycle: [m3,m4,m5]
Checkpoints (like c2,2) in a z-cycle are useless
Cause checkpoints to be taken to avoid z-cycles

Rollback-Recovery

communication
-induced

Checkpointing

CS 5204 – Operating Systems 17

Logging

Rollback-Recovery

logging

pessimistic optimistic causal

Orphan process: a non-failed process whose state depends on a
non-deterministic event that cannot be reproduced during
recovery.
Determinant: the information need to “replay” the occurrence
of a non-deterministic event (e.g., message reception).

Avoid orphan processes by guaranteeing:

For all e : not Stable(e) => Depend(e) < Log(e)

where: Depend(e) – set of processes affected by event e
Log(e) – set of processes with e logged on volatile memory
Stable(e) – set of processes with e logged on stable storage

Checkpointing

CS 5204 – Operating Systems 18

Pessimistic Logging

•Determinant is logged to stable storage before message is delivered
•Disadvantage: performance penalty for synchronous logging
•Advantages:

• immediate output commit
• restart from most recent checkpoint
• recovery limited to failed process(es)
• simple garbage collection

Checkpointing

CS 5204 – Operating Systems 19

Optimistic Logging

• determinants are logged asynchronously to stable storage
• consider: P2 fails before m5 is logged
• advantage: better performance in failure-free execution
• disadvantages:

• coordination required on output commit
• more complex garbage collection

Checkpointing

CS 5204 – Operating Systems 20

Causal logging

 combines advantages of optimistic and pessimistic logging
 based on the set of events that causally precede the state of a

process
 guarantees determinants of all causally preceding events are logged

to stable storage or are available locally at non-failed process
 non-failed process “guides” recovery of failed processes
 piggybacks on each message information about causally preceding

messages
 reduce cost of piggybacked information by send only difference

between current information and information on last message

	Checkpointing-Recovery
	Fault Tolerance
	System Model
	Orphan Message
	Slide Number 5
	Domino Effect
	Other Issues
	Logging Protocols
	Taxonomy
	Uncoordinated Checkpointing
	Cordinated/Blocking Protocols
	Coordinated/Blocking Notation
	Coordinated/Blocking Algorithm
	Coordinated/Blocking Algorithm
	Taxonomy
	Communication-Induced Checkpointing
	Logging
	Pessimistic Logging
	Optimistic Logging
	Causal logging

