BigTable

Distributed storage for structured
data

Dennis Kafura — CS5204 — Operating Systems 1

|

Overview

m Goals
O scalability
m petabytes of data
m thousands of machines
O applicability

m to Google applications

o Google Analytics
o Google Earth

o ...

m not a general storage model

0 high performance | i l s
O high availability Rie TA & e

m Structure
0 uses GFS for storage

O uses Chubby for coordination Note: figure from presentation

by Jeff Dean (Google)

V%Tech Dennis Kafura — CS5204 — Operating Systems 2

|

BigTable
Data Model
(row: string, column: string, timestamp: int64) - string
"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
R IR oo
: <ht |||)..."*_ t | I l
‘com.cnn.www" —= shimbsat "CNN" (=t CNN.com" |- tg
L e S S S I
| | | |
m Row keys
O up to 64K, 10-100 bytes typical
0 lexicographically ordered
O reading adjacent row ranges efficient
0 organized into tablets: row ranges
m Column keys
0O grouped into column families - family:qualifier
O column family is basis for access control
Virginia Dennis Kafura — CS5204 — Operating Systems 3

|

Data Model

(row: string, column: string, timestamp: int64) - string

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"
1 1 1 { ' ‘ ‘ 1
IR | o IR
e, : —
"com.cnnwww" — ettt 0 | "ONNT = g CNN.com" = tg
L e " | N
| <IIrn= ‘-__JIG_____I ______________________]
| | | |
| | | |

m Timestamps
0O automatically assigned (real-time) or application defined
O used in garbage collection (last n, n most recent, since time)

m Transactions
O iterator-style interface for read operation
O atomic single-row updates
O no support for multi-row updates
0O no general relational model

Virgin Dennis Kafura — CS5204 — Operating Systems 4

A

Table implementation

-
g
" table
fa tablet
_J g
- tablet
B tablet

m atable is divided into a set of tablets, each storing a set of consecutive rows
m tablets typically 100-200MB

V%Tech Dennis Kafura — CS5204 — Operating Systems 5

BigTable

Table implementation

) T

SSTable| |SSTable .- - |SSTable

tablet

m atabletis stored as a set of

SSTable SSTables
E?Iz)chk BGIz)chk E?Iz)chk | m an SSTable has a set of 64K
index blocks and an index
m each SSTable is a GFS file
Virgin Dennis Kafura — CS5204 — Operating Systems 6

BigTable

Locating a tablet

5 - UserTablet
/\// Other ™ FTosIoIIoIiIs
metadata table | METADATA /;;;;;;;;;;;;;
aplels

: ::::::::::::::/' _____________

| |

: Root tablet SEEEEEEEEEEEE :

Chubby file l (1st METADATA tablet) y:::::::::

: | EZzz--zzz---zb : UserTableN
: ______ o : | ZooooZIzZzzz:s
| . [T T

| |

| \::::::::::::: |

e I

| |
\ / C--o-oooooIoo
\\ // _____________

P E————

metadata table stores location information for user table

metadata table index by row key: (table id, end row)

root tablet of metadata table stores location of other metadata tablets
location of root tablet stored as a Chubby file

metadata consists of
O list of SSTables
O redo points in commit logs

V%Tech Dennis Kafura — CS5204 — Operating Systems 7

A

Master/Servers

m Multiple tablet servers

O Performs read/write operations on set of tables assigned
by the master

O Each creates, acquires lock on uniquely named file in a
specific (Chubby) directory

O Server is alive as long as it holds lock
0 Server aborts if file ceases to exist

m Single master

O Assigns tablets to servers
O Maintains awareness (liveness) of servers
m List of servers in specific (servers) directory

m Periodically queries liveness of table server

o If unable to verify liveness of server, master attempts to
acquire lock on server’s file

O If successful, delete server’s file

Virgin Dennis Kafura — CS5204 — Operating Systems 8

|~

Tablet operations

[Write Op } memtable

BigTable

ﬁ{ Read Op }

/\ -

tablet (commit) log

/

N GFS

SSTable

SSTable SSTable

m Updates are written in a memory table after being recorded in a log
m Reads combine information in the memtable with that in the SSTables

V%Tech Dennis Kafura — CS5204 — Operating Systems 9

|

Minor compaction

i |
| |
new | old |
memtable | memtable |
o |
} Memory
| GFS
o
| |
tablet (commit) log | SSTable i SSTable SSTable SSTable
' |
- 4

Triggered when memtable reaches a threshold

Reduces memory footprint

Reduces data read from commit log on recovery from failure
Read/write operations continue during compaction

V%Tech Dennis Kafura — CS5204 — Operating Systems 10

|

—

BigTable
Merging compaction
'// :_ __________ : \\I
new L old I |

memtable | | | memtable | |
L | !
| | |
! l Memory
i | GFS
| |
' |
|

tablet (commit) log ! SSTable SSTable SSTable i SSTable SSTable

| I

|

m Compacts existing memtable and some number of SSTables into a single new SSTable
m Used to control number of SSTables that must be scanned to perform operations

m Old memtable and SSTables are discarded at end of compaction

=T

Dennis Kafura — CS5204 — Operating Systems

11

" A

m Compacts existing memtable and all SSTables into a single SSTable

—

BigTable
Major compaction
'// :_ __________ : \\I
new L old I |

memtable | | | memtable | |
| | !
| | |
| | Memory
| | GFS
' |
' |
|

tablet (commit) log | | SSTable || SSTable SSTable || SSTable i SSTable

!]

|

=T

Dennis Kafura — CS5204 — Operating Systems

12

|

Refinements
m Locality groups

O Client defines group as one or more column families
0 Separate SSTable created for group
O Anticipates locality of reading with a group and less across groups

m Compression

O Optionally applied to locality group
0O Fast: 100-200MB/s (encode), 400-1000MB/s (decode)
O Effective: 10-1 reduction in space

m Caching
0 Scan Cache:
m key-value pairs held by tablet server

= Improves re-reading of data
0O Block Cache:

m SSTable blocks read from GFS
= Improves reading of “nearby” data

m Bloom filters

0O Determines if an SSTable might contain relevant data

V%Tech Dennis Kafura — CS5204 — Operating Systems 13

A
Performance
of Tablet Servers
Experiment 1 50 250 500
random reads 1212 593 479 241
random reads (mem) | 10811 8511 | 8000 | 6250
random writes 8850 3745 | 3425 | 2000
sequential reads 4425 2463 | 2625 | 2469
sequential writes 8547 3623 | 2451 | 1905
scans 15385 | 10526 | 9524 | 7843

m Random reads slow because tablet server channel to GFS saturated
m Random reads (mem) is fast because only memtable involved
m Random & sequential writes > sequential reads because only log and memtable

involved

m Sequential read > random read because of block caching
m Scans even faster because tablet server can return more data per RPC

BigTable

V%Tech Dennis Kafura — CS5204 — Operating Systems

14

|

Performance

=
=

—®— scans
— @— random reads (mem)
—— random writes

— -A— sequential reads
—— sequential writes
— —=+— random reads

L
=

=

z

100 200 300 400 500
Number of tablet servers

Values read/written per second
-
=<

Scalability of operations markedly different

Random reads (mem) had increase of ~300x for an increase of 500x in tablet
Servers

Random reads has poor scalability

Dennis Kafura — CS5204 — Operating Systems 15

|-|_

Lessons Learned

m Large, distributed systems are subject to many

types of failures

0 Expected: network partition, fail-stop

O Also: memory/network corruption, large clock skew,
hung machines, extended and asymmetric network
partitions, bugs in other systems (e.g., Chubby),
overflow of GFS quotas, planned/unplanned
hardware maintenance

m System monitoring important

O Allowed a number of problems to be detected and
fixed

Virgin Dennis Kafura — CS5204 — Operating Systems 16

|-|_

Lessons Learned

m Delay adding features unless there Is a good sense

of their being needed

O No general transaction support, not needed

O Additional capability provided by specialized rather
than general purpose mechanisms

m Simple designs valuable

0O Abandoned complex protocol in favor of simpler
protocol depending on widely-used features

Virgin Dennis Kafura — CS5204 — Operating Systems 17

	BigTable
	Overview
	Data Model
	Data Model
	Table implementation
	Table implementation
	Locating a tablet
	Master/Servers
	Tablet operations
	Minor compaction
	Merging compaction
	Major compaction
	Refinements
	Performance
	Performance
	Lessons Learned
	Lessons Learned

