
BigTable

Distributed storage for structured
data

1Dennis Kafura – CS5204 – Operating Systems

BigTable

Overview

 Goals
 scalability

 petabytes of data
 thousands of machines

 applicability
 to Google applications

 Google Analytics
 Google Earth
 …

 not a general storage model
 high performance
 high availability

 Structure
 uses GFS for storage
 uses Chubby for coordination

Dennis Kafura – CS5204 – Operating Systems 2

Note: figure from presentation
by Jeff Dean (Google)

BigTable

Data Model

Dennis Kafura – CS5204 – Operating Systems 3

(row: string, column: string, timestamp: int64) string

 Row keys
 up to 64K, 10-100 bytes typical
 lexicographically ordered
 reading adjacent row ranges efficient
 organized into tablets: row ranges

 Column keys
 grouped into column families - family:qualifier
 column family is basis for access control

BigTable

Data Model

Dennis Kafura – CS5204 – Operating Systems 4

(row: string, column: string, timestamp: int64) string

 Timestamps
 automatically assigned (real-time) or application defined
 used in garbage collection (last n, n most recent, since time)

 Transactions
 iterator-style interface for read operation
 atomic single-row updates
 no support for multi-row updates
 no general relational model

BigTable

Table implementation

 a table is divided into a set of tablets, each storing a set of consecutive rows
 tablets typically 100-200MB

Dennis Kafura – CS5204 – Operating Systems 5

a
...
f
g
...
k
...
v
...
z

a
...
f

g
...
k

v
...
z

table

tablet

tablet

tablet

BigTable

Table implementation

Dennis Kafura – CS5204 – Operating Systems 6

g
...
k

SSTableSSTable SSTable. . .

64K
Block

64K
Block

64K
Block

...
index

SSTable

tablet

 a tablet is stored as a set of
SSTables

 an SSTable has a set of 64K
blocks and an index

 each SSTable is a GFS file

BigTable

Locating a tablet

 metadata table stores location information for user table
 metadata table index by row key: (table id, end row)
 root tablet of metadata table stores location of other metadata tablets
 location of root tablet stored as a Chubby file
 metadata consists of

 list of SSTables
 redo points in commit logs

Dennis Kafura – CS5204 – Operating Systems 7

metadata table

BigTable

Master/Servers

 Multiple tablet servers
 Performs read/write operations on set of tables assigned

by the master
 Each creates, acquires lock on uniquely named file in a

specific (Chubby) directory
 Server is alive as long as it holds lock
 Server aborts if file ceases to exist

 Single master
 Assigns tablets to servers
 Maintains awareness (liveness) of servers

 List of servers in specific (servers) directory
 Periodically queries liveness of table server

 If unable to verify liveness of server, master attempts to
acquire lock on server’s file

 If successful, delete server’s file

Dennis Kafura – CS5204 – Operating Systems 8

BigTable

Tablet operations

 Updates are written in a memory table after being recorded in a log
 Reads combine information in the memtable with that in the SSTables

Dennis Kafura – CS5204 – Operating Systems 9

SSTable SSTable SSTabletablet (commit) log

Read OpmemtableWrite Op

GFS
Memory

BigTable

Minor compaction

 Triggered when memtable reaches a threshold
 Reduces memory footprint
 Reduces data read from commit log on recovery from failure
 Read/write operations continue during compaction

Dennis Kafura – CS5204 – Operating Systems 10

SSTable SSTable SSTabletablet (commit) log

old
memtable

GFS

SSTable

new
memtable

Memory

BigTable

Merging compaction

 Compacts existing memtable and some number of SSTables into a single new SSTable
 Used to control number of SSTables that must be scanned to perform operations
 Old memtable and SSTables are discarded at end of compaction

Dennis Kafura – CS5204 – Operating Systems 11

SSTableSSTabletablet (commit) log

old
memtable

GFS

new
memtable

Memory

SSTable SSTable SSTable

BigTable

Major compaction

 Compacts existing memtable and all SSTables into a single SSTable

Dennis Kafura – CS5204 – Operating Systems 12

SSTabletablet (commit) log

old
memtable

GFS

new
memtable

Memory

SSTableSSTableSSTableSSTable

BigTable

Refinements
 Locality groups

 Client defines group as one or more column families
 Separate SSTable created for group
 Anticipates locality of reading with a group and less across groups

 Compression
 Optionally applied to locality group
 Fast: 100-200MB/s (encode), 400-1000MB/s (decode)
 Effective: 10-1 reduction in space

 Caching
 Scan Cache:

 key-value pairs held by tablet server
 Improves re-reading of data

 Block Cache:
 SSTable blocks read from GFS
 Improves reading of “nearby” data

 Bloom filters
 Determines if an SSTable might contain relevant data

Dennis Kafura – CS5204 – Operating Systems 13

BigTable

Performance

 Random reads slow because tablet server channel to GFS saturated
 Random reads (mem) is fast because only memtable involved
 Random & sequential writes > sequential reads because only log and memtable

involved
 Sequential read > random read because of block caching
 Scans even faster because tablet server can return more data per RPC

Dennis Kafura – CS5204 – Operating Systems 14

BigTable

Performance

 Scalability of operations markedly different
 Random reads (mem) had increase of ~300x for an increase of 500x in tablet

servers
 Random reads has poor scalability

Dennis Kafura – CS5204 – Operating Systems 15

BigTable

Lessons Learned

 Large, distributed systems are subject to many
types of failures
 Expected: network partition, fail-stop
 Also: memory/network corruption, large clock skew,

hung machines, extended and asymmetric network
partitions, bugs in other systems (e.g., Chubby),
overflow of GFS quotas, planned/unplanned
hardware maintenance

 System monitoring important
 Allowed a number of problems to be detected and

fixed

Dennis Kafura – CS5204 – Operating Systems 16

BigTable

Lessons Learned

 Delay adding features unless there is a good sense
of their being needed
 No general transaction support, not needed
 Additional capability provided by specialized rather

than general purpose mechanisms

 Simple designs valuable
 Abandoned complex protocol in favor of simpler

protocol depending on widely-used features

Dennis Kafura – CS5204 – Operating Systems 17

	BigTable
	Overview
	Data Model
	Data Model
	Table implementation
	Table implementation
	Locating a tablet
	Master/Servers
	Tablet operations
	Minor compaction
	Merging compaction
	Major compaction
	Refinements
	Performance
	Performance
	Lessons Learned
	Lessons Learned

