
BigTable

Distributed storage for structured 
data

1Dennis Kafura – CS5204 – Operating Systems



BigTable

Overview

 Goals
 scalability

 petabytes of data
 thousands of machines

 applicability
 to Google applications

 Google Analytics
 Google Earth
 …

 not a general storage model
 high performance
 high availability

 Structure
 uses GFS for storage
 uses Chubby for coordination

Dennis Kafura – CS5204 – Operating Systems 2

Note: figure from presentation 
by Jeff Dean (Google)



BigTable

Data Model

Dennis Kafura – CS5204 – Operating Systems 3

(row: string, column: string, timestamp: int64)  string

 Row keys
 up to 64K, 10-100 bytes typical
 lexicographically ordered
 reading adjacent row ranges efficient
 organized into tablets: row ranges

 Column keys
 grouped into column families - family:qualifier
 column family is basis for access control



BigTable

Data Model

Dennis Kafura – CS5204 – Operating Systems 4

(row: string, column: string, timestamp: int64)  string

 Timestamps
 automatically assigned (real-time) or application defined
 used in garbage collection (last n, n most recent, since time)

 Transactions
 iterator-style interface for read operation
 atomic single-row updates
 no support for multi-row updates
 no general relational model



BigTable

Table implementation

 a table is divided into a set of tablets, each storing a set of consecutive rows
 tablets typically 100-200MB

Dennis Kafura – CS5204 – Operating Systems 5

a
...
f
g
...
k
...
v
...
z

a
...
f

g
...
k

v
...
z

table

tablet

tablet

tablet



BigTable

Table implementation

Dennis Kafura – CS5204 – Operating Systems 6

g
...
k

SSTableSSTable SSTable. . .

64K
Block

64K
Block

64K
Block

...
index

SSTable

tablet

 a tablet is stored as a set of 
SSTables

 an SSTable has a set of 64K 
blocks and an index

 each SSTable is a GFS file 



BigTable

Locating a tablet

 metadata table stores location information for user table
 metadata table index by row key: (table id, end row)
 root tablet of metadata table stores location of other metadata tablets
 location of root tablet stored as a Chubby file
 metadata consists of

 list of SSTables
 redo points in commit logs

Dennis Kafura – CS5204 – Operating Systems 7

metadata table



BigTable

Master/Servers

 Multiple tablet servers
 Performs read/write operations on set of tables assigned 

by the master
 Each creates, acquires lock on uniquely named file in a 

specific (Chubby) directory
 Server is alive as long as it holds lock
 Server aborts if file ceases to exist

 Single master
 Assigns tablets to servers
 Maintains awareness (liveness) of servers

 List of servers in specific (servers) directory
 Periodically queries liveness of table server

 If unable to verify liveness of server, master attempts to 
acquire lock on server’s file

 If successful, delete server’s file

Dennis Kafura – CS5204 – Operating Systems 8



BigTable

Tablet operations

 Updates are written in a memory table after being recorded in a log
 Reads combine information in the memtable with that in the SSTables

Dennis Kafura – CS5204 – Operating Systems 9

SSTable SSTable SSTabletablet (commit) log

Read OpmemtableWrite Op

GFS
Memory



BigTable

Minor compaction

 Triggered when memtable reaches a threshold
 Reduces memory footprint 
 Reduces data read from commit log on recovery from failure
 Read/write operations continue during compaction

Dennis Kafura – CS5204 – Operating Systems 10

SSTable SSTable SSTabletablet (commit) log

old
memtable

GFS

SSTable

new
memtable

Memory



BigTable

Merging compaction

 Compacts existing memtable and some number of SSTables into a single new SSTable
 Used to control number of SSTables that must be scanned to perform operations
 Old memtable and SSTables are discarded at end of compaction

Dennis Kafura – CS5204 – Operating Systems 11

SSTableSSTabletablet (commit) log

old
memtable

GFS

new
memtable

Memory

SSTable SSTable SSTable



BigTable

Major compaction

 Compacts existing memtable and all SSTables into a single SSTable

Dennis Kafura – CS5204 – Operating Systems 12

SSTabletablet (commit) log

old
memtable

GFS

new
memtable

Memory

SSTableSSTableSSTableSSTable



BigTable

Refinements
 Locality groups

 Client defines group as one or more column families
 Separate SSTable created for group
 Anticipates locality of reading with a group and less across groups

 Compression 
 Optionally applied to locality group
 Fast: 100-200MB/s (encode), 400-1000MB/s (decode)
 Effective: 10-1 reduction in space

 Caching
 Scan Cache: 

 key-value pairs held by tablet server
 Improves re-reading of data

 Block Cache: 
 SSTable blocks read from GFS
 Improves reading of “nearby” data

 Bloom filters
 Determines if an SSTable might contain relevant data

Dennis Kafura – CS5204 – Operating Systems 13



BigTable

Performance

 Random reads slow because tablet server channel to GFS saturated
 Random reads (mem) is fast because only memtable involved
 Random & sequential writes > sequential reads because only log and memtable

involved
 Sequential read > random read because of block caching
 Scans even faster because tablet server can return more data per RPC

Dennis Kafura – CS5204 – Operating Systems 14



BigTable

Performance

 Scalability of operations markedly different
 Random reads (mem) had increase of ~300x for an increase of 500x in tablet 

servers
 Random reads has poor scalability

Dennis Kafura – CS5204 – Operating Systems 15



BigTable

Lessons Learned

 Large, distributed systems are subject to many 
types of failures
 Expected: network partition, fail-stop
 Also: memory/network corruption, large clock skew, 

hung machines, extended and asymmetric network 
partitions, bugs in other systems (e.g., Chubby), 
overflow of GFS quotas, planned/unplanned 
hardware maintenance

 System monitoring important
 Allowed a number of problems to be detected and 

fixed

Dennis Kafura – CS5204 – Operating Systems 16



BigTable

Lessons Learned

 Delay adding features unless there is a good sense 
of their being needed
 No general transaction support, not needed
 Additional capability provided by specialized rather 

than general purpose mechanisms

 Simple designs valuable
 Abandoned complex protocol in favor of simpler 

protocol depending on widely-used features

Dennis Kafura – CS5204 – Operating Systems 17


	BigTable
	Overview
	Data Model
	Data Model
	Table implementation
	Table implementation
	Locating a tablet
	Master/Servers
	Tablet operations
	Minor compaction
	Merging compaction
	Major compaction
	Refinements
	Performance
	Performance
	Lessons Learned
	Lessons Learned

