LSM-based Secure System Monitoring Using Kernel Protection Schemes

Takamasa Isohara, Keisuke Takemori, Yutaka Miyake

KDDI R&D Laboratories
Saitama, Japan

{ta-isohara, takemori, miyake} @kddilabs.jp

Abstract—Monitoring a process and its file I/O behaviors
is important for security inspection for a data center server
against intrusions, malware infection and information leakage.
In the case of the Linux kernel 2.6, a set of hook functions
called the Linux Security Module (LSM) has been implemented
in order to monitor and control the system calls. By using
the LSM we can inspect the activity of unknown malicious
processes. However, a sophisticated attacker could breach the
kernel configurations using the rootkits. Furthermore since
the monitoring results of the malicious process activity are
stored as a file on Hard Disk Drive (HDD), it will be easily
manipulated by the attacker. In this paper, we propose a
secure monitoring scheme that addresses the attacks against
the monitoring module and its result for security inspection of
the data center server. The monitoring module is implemented
as a LSM-based function and protected by the kernel protection
technique. The integrity of the monitoring result is guaranteed
by using a Mandatory Access Control (MAC) of the Linux
kernel and a mechanism of the trusted process invocation. This
mechanism can serve as an infrastrucuture of secure inspection
platform for data center server because the integrity of the
monitoring module and its result is guaranteed.

Keywords-Secure system monitoring; Linux Security Mod-
ule; Lifetime kernel code integrity; Mandatory Access Control;

I. INTRODUCTION

Monitoring process activity and its file I/O history is im-
portant for security inspection of a data center server against
intrusions, malware infection and information leakage [1],
[2], [3], [4], [5]. For example, a syslog is a well known
mechanism for system monitoring on the UNIX system. It
receives the monitoring information from a service process
that is compliant with the syslog mechanism. The syslog
mechanism is categorized as an application-level monitor-
ing because both syslog process and monitored process
runs as user space processes. However, this mechanism
can only monitor the behavior of the process that outputs
the syslog compatible message and it is required that a
system administrator configures the process to output the
monitoring results for syslog mechanism beforehand. Hence,
an unknown malicious process that is invoked by an attacker
cannot be monitored by this scheme. Generally, a kernel-
based monitoring scheme is preferred for monitoring the
activity of any unknown process. Because the kernel-based
monitoring can hook system calls, such as read(), write()

Ning Qu, Adrian Perrig
CyLab/CMU
Pittsburgh, PA, USA
{quning, perrig} @cmu.edu

and fork() functions, all of the processes can be monitored
on the server. In the case of the Linux kernel 2.6, a set
of hook functions called LSM [6] has been introduced for
developing an access control module inside the Linux kernel.
By using the LSM, we can easily implement a LSM-based
monitoring module that can track the process and file I/O
operations. However, when a sophisticated attacker gets the
root privilege and manipulates the system configurations as
well as the LSM-based monitoring modules, the result of
the monitoring module is not reliable. Thus, the runtime
integrity of the kernel including the LSM-based module
should be protected. Moreover, since the monitoring result
of a process activity is targeted by the attacker to manipulate
the evidence of malicious activities, the access control
scheme that prevents manipulations of the monitoring result
is important for a secure monitoring scheme.

In this paper, we propose a secure monitoring scheme
that prevents the manipulation attacks on both the system
monitor module inside the kernel and the monitoring result
on the HDD. The monitoring module is implemented as a
LSM-based function and protected by the SecVisor [7] that
guarantees the integrity of the runtime kernel. The integrity
of the monitoring result is guaranteed by using a LSM-based
Mandatory Access Control (MAC) and the DigSig [8] that
provides a secure invoking mechanism for a trusted user
application. As our scheme guarantees the integrity of the
monitoring module and its result, it can be applied for the
security inspection of data center server.

The remainder of this paper is organized as follows.
Section II discusses related works. Section III presents the
security threats and requirements for the secure monitoring
on the data center server. Section IV describes the design
and implementation of our proposal scheme. In Section V,
we evaluate the overhead of our scheme on an experimental
system. And finally, Section VI concludes this paper.

II. RELATED STUDIES

The guarantee for integrity of both the kernel and appli-
cations is important for secure system monitoring on the
server. This section explains related research in this area.

A. LSM (Linux Security Module)

In order to develop a system monitoring module, logging
function should be inserted at the point of interested system
call execution.

In the case of the Linux kernel 2.4, modifying a system
call table that contains the address of system calls in the
kernel memory is widely applied to insert the logging
function into any interested system call. However, it means
that the function of system call can be modified, so the code
of system call is easily replaced to malicious code. In other
words, modifying the system call table is vulnerable to the
rootkit infection.

On the other hand, a scheme for an access control module
called LSM [6] is introduced to the Linux kernel 2.6. The
LSM inserts calls to hook functions at original system call to
strictly check the permission of operation which is executed
on the operating system such as process creation, file I/O.
A number of security sensitive systems are implemented by
using LSM [9], [10]. LSM also inserts logging function at
the entry point of each system call. Thus LSM can be also
used to develop a system monitoring module.

Figure 1 shows a comparison between the scheme of
modifying system call table and the LSM schemes. As
shown in Figure 1, the LSM does not require modification
of system call procedure. Thus, the LSM can achieve better
secure guarantees of the system call monitoring module.

system call handler

system call handler

system call table system call table regular procedure

« regular procedure system call () / LSM check point

system call () 4 system call ()
hooked procedure
0

system call system call ()

system call ()

hooked procedure

(b) LSM

(a) sys_call_table export

Figure 1. Comparison of system call hook method.

B. Process Authentication

The DigSig [8] provides a trusted invoking mechanism
for a user application shown in Figure 2. All applications
on the server are attached with code signatures that are used
for authentication and verification of the code integrity.

When the sys_execve is called in the user space,
do_execve, search_binary_handler, load_elf binary, and
do_mmap are called one after another in the kernel nspace.
Finally, the file_mmap is called which is one of the check

points of the LSM. Both the code image and the code sig-
nature of the user application are loaded into the file_mmap.
A verifier hooks the file_mmap and checks the integrity of
the user application by comparing its code image with its
code signature. Only after the code is authenticated and the
integrity of the code is verified, the trusted user application
is invoked.

Sys_execve

User Space
! Kernel Space
‘ do_execve ‘
‘ search_binary_handler ‘
‘ load_elf_binary ‘ Code Image CodeSignature

|

‘ do_nmap ‘

I

‘ file_nmap

Verifier

LSM: Check Point

Figure 2. Integrity Check of Execution Code.

C. Lifetime Kernel Code Integrity

SecVisor [7] is a tiny hyper visor providing lifetime kernel
code integrity by two steps: trusted boot and runtime kernel
memory protection mechanisms.

The trusted boot mechanism achieves a chain of trust as
follows: SecVisor runtime — Linux kernel. First, SecVisor
loader starts SecVisor runtime by calling SKINIT, which
performs the following steps: 1) initializes the CPU into
some known states, 2) protects the target memory used by
SecVisor runtime, 3) measures SecVisor runtime automati-
cally and extends the measurement result into TPM, 4) and
finally transfers control to SecVisor runtime. Then SecVisor
runtime will further protect the target memory used as the
Linux kernel, measure the Linux kernel, and extend the
result into the TPM. When the integrity of the Linux kernel
is verified, SecVisor runtime transfers control to the Linux
kernel.

The non-manipulated kernel (called trusted kernel) gets
control after being verified. The memory protection mech-
anism protects the kernel memory space from rootkits and
direct memory access (DMA) attacks based on the support
of AMD Secure Virtual Machine (SVM) technologies[11].
Figure 3 shows the memory permission mapping in user and
kernel modes enforced by SecVisor. In kernel mode, only the
memory containing the approved kernel code is executable,
while in user mode, only application memory is executable.
And in both modes, the approved kernel code is always read-
only. Also, SecVisor sets up IOMMU to prevent any DMA
access to the approved kernel code.

R: Read
W: Write
RWX User Memory RW X: Execute
R Kernel Code RX
RW Kernel Data RW
User Mode Kernel Mode
Figure 3. Dynamic Permission Control for User and Kernel Memories.

III. SECURITY THREATS AND REQUIREMENTS

A. Assumption of Security Threats

In this paper, we consider the process and file I/O behavior
monitoring for a data center server that rarely ever shuts
down and is managed by a trustworthy operator named
administrator. In this model, the attacker is at a remote
site. We assume that only the operator of the data center
maintains the service processes and kernel configurations as
a trusted administrator.

Since the administrator cannot preliminarily list the tar-
geted malware process that is injected by the remote attacker,
the system monitoring module should monitor all processes
that run on the server.

In addition, when the attacker gains the root privilege on
the data center server, the attacker can run malware process,
modify the system configuration such as application and
kernel components, and manipulate the monitoring results.

B. Requirements

Based on the above discussion, the requirements of a
secure monitoring scheme for the data center server are listed
as follows:

(A) The monitoring module should monitor all pro-
cesses.

(B) The runtime integrity of the kernel including the
monitoring module is protected against the at-
tacker.

(C) The log file of the monitoring result recorded on a
server disk should be protected against manipula-
tion attack.

IV. DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of a secure monitoring scheme on the data center server.

A. System architecture

Figure 4 shows the system architecture of our proposed
monitoring scheme. Our scheme consists of two modules;
a system monitoring module and a protection module for
protecting the monitoring results. The monitoring module
which is implemented based on LSM is protected by the
SecVisor. The protection module is implemented with a
access control functions and the DigSig functions that only
invoke authorized applications on the server. In addition, the
access control and the DigSig functions are also protected
by the SecVisor.

. Log file
F’other Log File operation Process
rocess Process

access denied

User Space

Kernel Space

System Monitoring

DigSig Module

Protection Module

SecVisor

Figure 4. System architecture of proposed scheme.

B. Implementation of LSM-based system monitoring module

Considering the requirement (A), we implement the LSM-
based system monitoring module which monitors the activity
of all processes that run on the server. As the LSM provides
about 140 hook functions, we need to select hook functions
and pick out the information recorded into the system mon-
itoring to implement the useful system monitoring module.

1) System monitoring points: Table I shows hook func-
tions that have been implemented in the monitoring
module. In the case of the process operation, we use
bprm_set_security, task_create and task_wait hook functions
to detect process invocation and termination events. In the
case of the file I/O operation, because the addition/deletion
for files and directories on the server is reasonable for system
monitoring [12], we have selected hook functions suggested
in Table I for inspection of the data center server.

Table 1
LSM CHECK POINTS FOR SYSTEM MONITORING.

Category Detection event Name of LSM hook
task create bprm_set_security
Process task_create

task kill

task_wait

File 1/0

file addition

inode_create

directory creation

inode_mkdir

directory deletion

inode_rmdir

rename a file

inode_rename

file deletion

inode_unlink
inode_delete

2) Log format: Monitoring results are recorded as normal
text file on the HDD. Table II shows the events recorded into
the log file. In Table II, the common part is the information
that is always recorded for both the process and file I/O
log file. On the other hand, the original part is the recorded
information specific to either the process or file I/O log file,
respectively.

Figure 5 shows an example of log file. The underlined
part shows the common part described in Table II. Figure 5
a) is collected when the log in event via a SSH service is
occurred. Figure 5 b) indicates the rename operation of the
sample text file from /home/kddi/test I to /home/kddi/test_2.

Table 11
MONITORING EVENTS.

Information

- time of occurrence

- name of hook function

- process id that execute the events
- process ID of parent process

- user ID

- group ID

- execution command name

- name of binary file used for create
process

- process tree information from tar-
geted process to init process

- inode number

- path name

Part Category
Common

Original Process

File I/0

type=KERNEL OTHER msg=audit(1227652506.465:2085):
check_point: bprm_set security pid: 26543 parent: 1770 uid:
0 eudi: 0 gid: 0 egid: 0 cmd: sshd e_uid: 0 e_gid: 0

filename: /usr/sbin/sshd interp: /usr/sbin/sshd exec: sshd
pstree: sshd(1770)::init(1)

a) An example of process operation log

type=KERNEL OTHER msg=audit(1227640256.846:1218):
check point: inode rename pid: 22304 parent: 22269 uid:
500 eudi: 500 gid: 500 egid: 500 cmd: mv inode_num:
1016169 fowner: 500 fgrp: 500 path(to): /home/kddi/test_1
path(from): /home/kddi/test_2

b) An example of file I/0 log

Figure 5. An example of process and file I/O log.

C. Protection for Monitoring Module

By considering requirement (B), we take a countermea-
sure against kernel manipulation.

The attacks that breach kernel are categorized into two
cases: the static attack and the dynamic attack.

In the case of a static attack, the attacker attempts to
unload the system monitoring module.

Because of the countermeasure against static attack, the
system monitoring module is compiled as a static kernel
module to prevent the unload of module over the lifetime
of the data center server. By this action, the attacker has to
build a kernel and reboots the data center server to obtain the
kernel that does not include the system monitoring module.

In the case of a dynamic attack, the attacker attempts to
compromise the kernel space memory by using malicious
code injection and execution. Compromising the kernel gives
the attacker complete control over the system and malicious
code execution can intercept and manipulate a correct system
monitoring activity. According to [7], the malicious code
injection is categorized as following three ways; intentional
misuse of kernel modularization support, exploit software
vulnerabilities, and kernel memory corruption via DMA-
capable peripheral devices.

We apply SecVisor to prevent these attacks. The SecVisor
protects kernel memory space by transparently modifying
execution permission of user and kernel memory indepen-
dent of kernel page tables, and ensures that only approved
code can execute in kernel mode. In addition, SecVisor sets
up IOMMU to prevent any DMA access to the approved
kernel code.

D. Protection for Monitoring Result

By considering requirement (C), we propose the protec-
tion technique for the monitoring result stored in a HDD file
against the manipulation attack. The protection technique
combines with the MAC and the DigSig as shown in Figure
6.

The MAC controls file access permission of a dedicated
process . Using the MAC is a reasonable way to protect
the monitoring result and MAC function is easily achieved
by using LSM-based security focused operating system [9],
[10]. However, when the attacker obtains a security admin-
istrator account who can controls the MAC policy, attacker
can inject and invoke a malicious process which is permitted
to read/write a monitoring result on the data center server.
Thus the attacker also can obtain the read/write permission
through the malicious process. Hence, the mechanism which
prevents the execution of process that illegally obtains the
read/write permission of system monitoring results should be
implemented on the data center server. To achieve this kind
of function, the DigSig module is introduced since DigSig
invokes only authorized applications on the server.

As both the MAC and the DigSig are implemented as a
static kernel module , they are protected against the static
and dynamic attacks in the same manner as described in
section IV-C.

V. EVALUATION

In this section, we report the performance overhead of
our LSM-based system monitoring mechanism that includes
both MAC and DigSig.

domain_a | | domain_a | | type_a | | domain_b
A \ /" Log file _
.: Fake ' | operation Log File other
. Process Process
___________ Process
3

access denied
A

Block
execution of
fake process

Access Control Module

allow: domain_a type_a write
allow: domain_a type_a read

Figure 6. Architecture of protection technique for monitoring result.

A. Evaluation System

Our evaluation platform is implemented on a HP Compaq
dc 5750 Micro tower that has 2.2 GHz AMD Athlon64
(Dual-core CPU) with AMD SVM hardware virtualization
support and 2 GB RAM. The overhead is measured on the
Fedora Core 6 Linux distribution. Our monitoring mecha-
nism, DigSig and SecVisor are implemented on the Linux
kernel 2.6.20.14. Table III shows components of evaluation
systems.

Table IIT
MAJOR COMPONENTS OF EVALUATION SYSTEMS.

Evaluation System | Components
@) Linux kernel 2.6.20.14
(i1) Linux kernel 2.6.20.14
+ SecVisor
(ii1) Linux kernel 2.6.20.14
+ System monitoring mechanism
@iv) Linux kernel 2.6.20.14
+ SecVisor
+ System monitoring mechanism

B. Micro benchmark

Since we implement a set of hook functions for the
process and file I/O operation, we use a subset of process
and file system micro benchmarks from 1mbench [13] to
measure the overhead of operations for process and file.

Table IV shows the results of our experiments. Null
Call indicates the round trip time between user mode and
kernel mode. Both (ii) and (iv) shows dramatically increased
overhead which is incurred by SecVisor. For the benchmark
of Fork and Exec besides the overhead incurred by SecVisor,
our monitor mechanism also introduces a large overhead in
which is shown in (iii). The file create and delete micro
benchmark also shows a bigger overhead in (iii) than in
(ii) because of the file I/O hook functions for recording
the monitoring results. In our system monitoring module,
file create is checked by 1 hook function inode_create but

the file delete is checked by 2 hook functions inode_unlink
and inode_delete, so the file delete benchmark shows a
bigger overhead than the file create benchmark. For the
fork benchmark to the file delete benchmark, (iv) shows
the biggest overhead due to using both SecVisor and the
LSM-based system monitoring module.

Table IV
EXECUTION TIMES OF LMBENCH PROCESS AND FILE MICRO
BENCHMARKS. ALL TIMES ARE IN pS.

System | Null Call Process File
Fork | Exec | Create Delete
) 0.09 117 353 13.4 12.1
(ii) 4.84 1398 | 3434 | 215 16.9
(i) 0.13 584 1267 | 256.3 691.6
(iv) 4.81 4709 | 7771 | 4843 1280.4

C. Application benchmark

As the application benchmark, we choose the Linux kernel
compile. We compile the source code of kernel version
2.6.20.14 by executing “make” in the top-level source di-
rectory.

Our result is presented in Figure 7. The user CPU time
indicates the execution time consumed in user space, system
CPU time indicates the kernel mode execution time includ-
ing system call and other kernel operations.

In the case of (ii), the system CPU time increases a
lot because the SecVisor needs to switch memory access
permission frequently. In the case of (iii), the other CPU time
increases because the system monitoring module takes time
to record the monitoring results into the HDD. In the case of
(iv), the overhead comes from both the hook function of the
monitoring module that processes the file I/O operations and
the SecVisor that controls the execution permissions of user
and kernel memory. Since the kernel compile time of (iv) is
only 1.84 times as the regular Linux in (i), the overhead is
acceptable.

Ouser CPU time

system CPU time M other CPU time

iv 357.66 ‘ 172.524 -
844

i 299.235

34.254

1.17
i 360.693 ‘
87.207
0.944
i 300.607
22.361
0 100 200 300 400 500 600 700

runtime (sec)

Figure 7. Application performance comparison between regular kernel
and our scheme.

VI. CONCLUSION

This paper presents a secure system monitoring mech-
anism on a Linux 2.6. The system monitoring module
is implemented as a LSM-based module and is protected
by SecVisor. The protection scheme for the monitoring
results prevents malicious manipulation by combining the
function of the MAC and DigSig. Moreover, the MAC and
DigSig modules are also protected by the SecVisor. We have
implemented our proposed mechanism and evaluated the
performance overhead. The results show that the overhead of
the proposed mechanism is acceptable with the secure mon-
itoring. As our proposal mechanism guarantees the integrity
of the monitoring module and its result, it is expected to be
adopted for the security inspection of data center server.

REFERENCES

[1] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A
sense of self for unix processes,” in Security and Privacy,
1996. Proceedings., 1996 IEEE Symposium on, May 1996,
pp. 120-128.

[2] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion
detection using sequences of system calls,” J. Comput. Secur.,
vol. 6, no. 3, pp. 151-180, 1998.

[3] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast
automaton-based method for detecting anomalous program
behaviors,” in SP '01: Proceedings of the 2001 IEEE Sympo-
sium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2001, p. 144.

[4] E. Eskin, W. Lee, and S. J. Stolfo, “Modeling system calls
for intrusion detection with dynamic window sizes,” in In
Proceedings of DARPA Information Survivabilty Conference
and Exposition Il (DISCEX), 2001.

[5] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting
intrusions using system calls: Alternative data models,” in In
IEEE Symposium on Security and Privacy. 1EEE Computer
Society, 1999, pp. 133-145.

[6] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman, “Linux security modules: General security support
for the linux kernel,” in USENIX Security Symposium, August
2002, pp. 17-31.

[7] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes,” in ACM SOSP Symposium, October 2007.

[8] A. Apvrille, M. Pourzandi, D. Gordon, and V. Roy, “Stop
malicious code execution at kernel-level,” in Linux World,
vol. 2, January 2004.

[9] N.S. Agency, “Security-enhanced linux,” http://www.nsa.gov/
research/selinux/.

[10] “Tomoyo linux project,” http:/tomoyo.sourceforge.jp/index.
html.en.

[11] “AMD virtualization,” http://www.amd.com/us-en/0,3715_
15781,00.html?redir={ SQOP08}.

[12] “Tripwire,” http://www.tripwire.com/.

[13] L. McVoy and C. Staelin, “lmbench: portable tools for per-
formance analysis,” in ATEC ’96: Proceedings of the 1996
annual conference on USENIX Annual Technical Conference.
Berkeley, CA, USA: USENIX Association, 1996, pp. 23-23.

