Virtualization

Xen
What is Xen?

- Xen is a virtual machine monitor (VMM) that allows multiple guest operating systems to run on the same computer hardware.

- Allows for the increase of server utilization and consolidation.
 - More processes can be run on less hardware.
Design Principles

- Support for unmodified application binaries
 - Allows user-level applications to be run without being modified
- Support for multiple full multi-application OS
 - Each guest can contain a complex sever configuration
- Use paravirtualization
 - Needed to obtain performance and resource isolation on architectures that do not facilitate virtualization (ie x86)
- Hide effects of virtualization from guests
 - Each guest OS does not know about other guests
Paravirtualization

- Interface presented to a guest OS is not identical to underlying hardware
 - Allows VMM to correctly handle instructions in architectures that do not support full virtualization (such as x86)

- In some cases it is beneficial for the host to see real and virtual resources
 - Providing real and virtual time can allow a guest OS to handle time sensitive tasks more efficiently

- Drawback: guest OS must be modified
Structure of a Xen system

- The Xen hypervisor provides an abstraction layer that sits between system hardware and one or more guest operating systems.
- Each guest OS is executed within its own virtual machine, called a domain.
 - Domain0: has special management privileges and is used to create the other domains.
 - DomainU: contains one guest OS.
Xen Hierarchy

- Levels of a Xen system

Figure 1: The structure of a machine running the Xen hypervisor, hosting a number of different guest operating systems, including Domain0 running control software in a XenoLinux environment.
The Virtual Machine Interface: Memory

- New page tables are allocated from a guest OS memory reservation and registers it with Xen.

- All subsequent writes to the page table are validated by Xen.
 - This ensures that a guest OS only writes to tables it owns, and is isolated from other guests.
The Virtual Machine Interface: CPU

- An operating system is typically the most privileged entity of a system
- With Xen, the hypervisor sits between a guest OS and the CPU
- The hypervisor is the most privileged entity in a Xen system
- Xen uses protection rings to allow the hypervisor to be more privileged than a guest OS
The Virtual Machine Interface: CPU

- x86 privilege rings

- Typical:
 - OS runs in ring 0
 - Applications run in ring 3
 - Rings 1 and 2 unused

- Xen:
 - Hypervisor runs in ring 0
 - Guest OS runs in ring 1
The Virtual Machine Interface: I/O

- Xen provides simple device abstractions
 - This helps realize goal of protection and isolation
- Data sent to and from each domain through the hypervisor
- I/O descriptor rings are used for asynchronous data transfer
I/O Descriptor Rings

Figure 2: The structure of asynchronous I/O rings, which are used for data transfer between Xen and guest OSes.
Performance

- In summary, Xen performs well
 - Multiple domains can be hosted without any noticeable loss of performance by end user

- *Xen and the Art of Virtualization* identifies a scalability goal of 100 domains on modern (c. 2003) server-class hardware
 - Tests demonstrate that 128 domains can be run with only 7.5% loss of throughput relative to stand-alone Linux
Performance

![Graph showing relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).]

Figure 3: Relative performance of native Linux (L), XenoLinux (X), VMware workstation 3.2 (V) and User-Mode Linux (U).
Running multiple web servers:

Figure 4: SPEC WEB99 for 1, 2, 4, 8 and 16 concurrent Apache servers: higher values are better.
Demonstration

- Xen is an open source product that is easy to install and configure on Linux
 - Requires a modified Linux kernel
- Xen provides a live CD which can be used to try the hypervisor without installing any software
Questions?