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Part 1. Concepts and Hardware-based Approaches

Introduction
m \What’s a transaction?

m Transaction: a finite sequence of machine
Instructions, executed by a single process, that

satisfies the following:

O Serializability/lsolation
O Atomicity

m Concept “borrowed” from databases..
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Introduction con’t

m S0 what’s transaction memory?

m Allows for concurrent, lock-free synchronization
of shared memory using transactions on a
multicore platform.

m Why lock-free?

O Priority inversion

0 Convoying

0 Deadlock

O Nasty programming!..
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Introduction con’t

m Approaches

O Hardware (faster, size-limitations, platform
dependent)

O Software (slower, unlimited size, platform
iIndependent)

O Hybrid (common cases resolved in hardware,
exceptions in software)

= Object-based (course-grained)
= Word-based (fine-grained)..
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Intended Use

m To replace short critical sections.

m [nstructions for accessing memory:
O LT (Load-transactional)
O LTX (Load-transactional-exclusive)
O ST (Store-transactional)

m [nstructions to manipulate transaction state:

O Commit
O Abort
O Validate
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Intended Use con’t

m Typical process:
O LT/ LTX to read from locations
O Validate
O ST to modify locations
O Commit
O If fail rinse and repeat

m When contention iIs high, use adaptive backoff
before retrying.
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Example

shared int counter;

volid process{int work)
int success = 0, backoff = BACKOFF MIN;
unsigned wait;

while (success < work)
ST {&kcounter, LTX(&counter) + 1) ;
if (coMMIT()) {
SuCCcesSsS++;
backoff = BACKOFF MIN;
}
else |
wait = random() % (01 <= backoff);
while (wait--);
if (backoff < BACKOFF MAX)
backoff++;

Figure 1: Counting Benchmark

V’@ﬁ,ﬁh CS 5204 — Fall, 2009



Cache Implementation

m What hardware are we working with?

m Two types of cache:

O Regular
O Transactional

address |value | state | tag s = = CaChe

Bus

Shared Memory
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Cache Implementation con’t

m Caches “snoop” on shared bus and react via cache
coherence protocol. Since already built in, allows
for free transaction conflict detection.

m Cache coherence keeps the an address/value pair
consistent across a set of caches.

m Cache lines can be In either regular or
transactional caches, both not both (same
processor)..
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Transactional

Memory
Line States
Name Access | Shared? | Modified?
invalid none
valid R yes no
dirty R, W no yes
reserved R, W no no
address |value Sta‘.:[e tags s = = CaChe

Shared Memory

Bus
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Transactional Tags

Name Meaning
EMPTY contains no data

NORMAL contains committed data

XCOMMIT | discard on commit

XABORT discard on abort

A 4

address |value | state | tags s = = CaChe

Bus

Shared Memory
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Transactional Memory

Bus Cycles

address |value | state | tags s = = CaChe
Bus
Shared Memory
Name Kind Meaning New access

READ regular read value shared

RFO regular read value exclusive

WRITE both write back exclusive

T READ transaction read value shared

T RFO transaction read value exclusive

BUSY transaction refuse access unchanged
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Processor Flags

m Processor maintains two flags:

O Transaction active (TACTIVE)
O Transaction status (TSTATUS)

m TSTATUS indicates whether the transaction Is
active (True)

m TACTIVE is set when first transactional
operation Is executed within transaction.

m Used directly by Commit, Abort, Validate
Instructions.
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Scenarios

m LT instruction
O If XABORT entry in transactional cache: return value
O If NORMAL entry

= Change NORMAL to XABORT
= Allocate second entry with XCOMMIT (same data)

m Return value
0 Otherwise

m Issue T_READ bus cycle
0 Successful: set up XABORT/XCOMMIT entries
0 BUSY: abort transaction

m LTX instruction

0 Same as LT instruction except that T_RFO bus cycle is
used instead and cache line state is RESERVED

m ST Instruction
0 Same as LTX except that the XABORT value is updated
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Scenarios & Transaction States

m Validate
0 Returns TSTATUS flag
m False: set TACTIVE to False
set TSTATUS to True
m Abort

O Sets TSTATUS to 7rue
0 Sets TACTIVE to False

m Commit
0 Returns TSTATUS
O Sets TSTATUS to 7True
0 sets TACTIVE to False
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Performance (Counting Benchmark)
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