Transactional Memory:
Architectural Support for
Lock-Free Data Structures

Maurice Herlihy (DEC), J. Eliot &
B. Moss (UMass)

Presenter: Mariano Diaz

mTed'I

Part 1. Concepts and Hardware-based Approaches

Introduction
m \What’s a transaction?

m Transaction: a finite sequence of machine
Instructions, executed by a single process, that

satisfies the following:

O Serializability/lsolation
O Atomicity

m Concept “borrowed” from databases..

VH@H@TE&I CS 5204 — Fall, 2009

Introduction con’t

m S0 what’s transaction memory?

m Allows for concurrent, lock-free synchronization
of shared memory using transactions on a
multicore platform.

m Why lock-free?

O Priority inversion

0 Convoying

0 Deadlock

O Nasty programming!..

vmw&ch CS 5204 — Fall, 2009

Introduction con’t

m Approaches

O Hardware (faster, size-limitations, platform
dependent)

O Software (slower, unlimited size, platform
iIndependent)

O Hybrid (common cases resolved in hardware,
exceptions in software)

= Object-based (course-grained)
= Word-based (fine-grained)..

V@%ﬁ.ﬁh CS 5204 — Fall, 2009

Intended Use

m To replace short critical sections.

m [nstructions for accessing memory:
O LT (Load-transactional)
O LTX (Load-transactional-exclusive)
O ST (Store-transactional)

m [nstructions to manipulate transaction state:

O Commit
O Abort
O Validate

Vﬂ@nﬂw.rech CS 5204 — Fall, 2009

Intended Use con’t

m Typical process:
O LT/ LTX to read from locations
O Validate
O ST to modify locations
O Commit
O If fail rinse and repeat

m When contention iIs high, use adaptive backoff
before retrying.

V@H@Teeh CS 5204 — Fall, 2009

Example

shared int counter;

volid process{int work)
int success = 0, backoff = BACKOFF MIN;
unsigned wait;

while (success < work)
ST {&kcounter, LTX(&counter) + 1) ;
if (coMMIT()) {
SuCCcesSsS++;
backoff = BACKOFF MIN;
}
else |
wait = random() % (01 <= backoff);
while (wait--);
if (backoff < BACKOFF MAX)
backoff++;

Figure 1: Counting Benchmark

V’@ﬁ,ﬁh CS 5204 — Fall, 2009

Cache Implementation

m What hardware are we working with?

m Two types of cache:

O Regular
O Transactional

address |value | state | tag s = = CaChe

Bus

Shared Memory

V@H@Teeh CS 5204 — Fall, 2009

Cache Implementation con’t

m Caches “snoop” on shared bus and react via cache
coherence protocol. Since already built in, allows
for free transaction conflict detection.

m Cache coherence keeps the an address/value pair
consistent across a set of caches.

m Cache lines can be In either regular or
transactional caches, both not both (same
processor)..

V@M@Tedl CS 5204 — Fall, 2009

|

Transactional

Memory
Line States
Name Access | Shared? | Modified?
invalid none
valid R yes no
dirty R, W no yes
reserved R, W no no
address |value Sta‘.:[e tags s = = CaChe

Shared Memory

Bus

CS 5204 - Fall, 2009

mTed'I

Transactional Tags

Name Meaning
EMPTY contains no data

NORMAL contains committed data

XCOMMIT | discard on commit

XABORT discard on abort

A 4

address |value | state | tags s = = CaChe

Bus

Shared Memory

Viginia CS 5204 — Fall, 2009

mTed'I

|

Transactional Memory

Bus Cycles

address |value | state | tags s = = CaChe
Bus
Shared Memory
Name Kind Meaning New access

READ regular read value shared

RFO regular read value exclusive

WRITE both write back exclusive

T READ transaction read value shared

T RFO transaction read value exclusive

BUSY transaction refuse access unchanged

Vi
HEmIaTem CS 5204 — Fall, 2009

&

Processor Flags

m Processor maintains two flags:

O Transaction active (TACTIVE)
O Transaction status (TSTATUS)

m TSTATUS indicates whether the transaction Is
active (True)

m TACTIVE is set when first transactional
operation Is executed within transaction.

m Used directly by Commit, Abort, Validate
Instructions.

V@M@Tedl CS 5204 — Fall, 2009

Scenarios

m LT instruction
O If XABORT entry in transactional cache: return value
O If NORMAL entry

= Change NORMAL to XABORT
= Allocate second entry with XCOMMIT (same data)

m Return value
0 Otherwise

m Issue T_READ bus cycle
0 Successful: set up XABORT/XCOMMIT entries
0 BUSY: abort transaction

m LTX instruction

0 Same as LT instruction except that T_RFO bus cycle is
used instead and cache line state is RESERVED

m ST Instruction
0 Same as LTX except that the XABORT value is updated

Virginia CS 5204 — Operating Systems
mTech

Scenarios & Transaction States

m Validate
0 Returns TSTATUS flag
m False: set TACTIVE to False
set TSTATUS to True
m Abort

O Sets TSTATUS to 7rue
0 Sets TACTIVE to False

m Commit
0 Returns TSTATUS
O Sets TSTATUS to 7True
0 sets TACTIVE to False

V@H@Teeh CS 5204 — Fall, 2009

Performance (Counting Benchmark)

. 6300
8
=1 TTS Lock
iy
g
£ ol o
§ QOSA
i s Trans. Mem.
o e + LLISC Direct

il MCS Lock

2800 |-

Q0SB

2100

140:' B B i TM

L LL/SC Direct

0 l | |
o 10 20 2
Concasmency
Vit CS 5204 — Fall, 2009
Tech ,

&

