
Event Ordering

Greg Bilodeau
CS 5204

November 3, 2009



Event Ordering

Fault Tolerance

How do we prepare for rollback and recovery in a 
distributed system?

How do we ensure the proper processing order of 
communications between distributed processes?

CS 5204 – Fall, 2009



Event Ordering

Time

No shared clock

All specifications of a system must be given in 
terms of events observable within that system

Can we construct a concept of “time” that would 
be useful from events of a distributed system?

CS 5204 – Fall, 2009



Event Ordering

Events

An event is just an event of interest – example: a 
communication between processes

Single process defined as totally ordered sequence 
of events

CS 5204 – Fall, 2009



Event Ordering

Events

“Happened before”
relation :

If a and b from same 
process and a comes 
before b
a is a send and b a 
receive from different 
processes
If a b and b c, then 
a c
Events a and b 
concurrent if !a b and 
!b a

CS 5204 – Fall, 2009



Event Ordering

Events

CS 5204 – Fall, 2009

Another definition: events causally affect each 
other

a b means it is possible for a to causally affect 
b

a and b are concurrent if they cannot causally 
affect each other



Event Ordering

Logical Clocks

Assigns a number to an 
event
Simple counter
Clock Condition:

For a, b: if a b 
then C(a) < C(b)
C(p1) < C(p2)
C(p1) < C(q2)
C1: Line between 
local events
C2: Line between 
send and receive

CS 5204 – Fall, 2009



Event Ordering

Logical Clocks

How we meet these conditions:
C1:

Each process increments its clock between 
successive events

C2:
Requires each message to include a timestamp 
equal to time the message was sent
Receiver sets its own clock to a value greater than 
or equal to its own value and greater than the 
timestamp from the message – cannot move its 
clock backward

CS 5204 – Fall, 2009



Event Ordering

CS 5204 – Operating Systems 9

Example of Lamport’s Algorithm

P1

P2

P3

1

21

1

2

3

4

5

4

3

6

7 85 6 9

10



Event Ordering

Lamport’s Approach

Just order events according to “times” at which 
they occur
If “times” are equal, choose one to proceed
Example: mutual exclusion problem

Assume all messages received in order
Assume all messages eventually received
Each process has own request queue
Conditions we must achieve:

Process with resource must release before used by 
others
Requests must be granted in order made
Every request must eventually be granted

CS 5204 – Fall, 2009



Event Ordering

Lamport’s Mutual Exclusion Example

Process Pi sends Tm:Pi message to all others, adds 
message to own request queue
Process Pj adds resource request to its queue, sends a 
time stamped acknowledgement
When finished, Pi removes the message from its 
queue, sends a time stamped removal to all others
Process Pj removes the resource request from the 
queue
Pi can use the resource when:

It’s own request is ordered before any others in its 
queue
It has received a message from all others stamped 
later than Tm

CS 5204 – Fall, 2009



Event Ordering

Limits of Lamport

Clock times cannot guarantee causal relationship
We can say if a b then C(a) < C(b)
CANNOT say if C(a) < C(b) then a b
Concept of “time” is exclusive to each process, i.e. 
causality only in same process

We can provides this through:
Using physical clocks 
Using vector clocks

CS 5204 – Fall, 2009



Event Ordering

Vector Time

The vector time for pi, VT(pi):
Length n, where n is number of processes in group
Initialized to all zeros
pi increments VT(pi)[i] when sending m
Each message sent in time-stamped with VT(pi)
Receiving processes in the group modify their 
vector clock:

Vector time-stamp of m counts the number of 
messages that causally precede m on a per-sender 
basis

CS 5204 – Fall, 2009



Event Ordering

CS 5204 – Operating Systems 14

Vector Clocks

P2

P1

(1,0,0)

(0,1,0)

(3,4,1)(2,0,0)

(2,4,1)(2,2,0)

(2,3,1)

P3
(0,0,2)(0,0,1)



Event Ordering

Birman-Schiper-Stephenson

ISIS toolkit – tools for building software in 
loosely coupled distributed environments
CBCAST – multicast primitive

Fault-tolerant, causally ordered message delivery
Asynchronous

ABCAST
Extension allowing total ordering
Synchronous

Group communication
Imposes overhead proportional to group size

CS 5204 – Fall, 2009



Event Ordering

Birman-Schiper-Stephenson

Cooperative processes form groups
Processes multicast to all members of their 
group(s)
Delivery times are uncertain…possible to receive 
messages out of causal sequence
Message processing mechanism must provide 
lossless, uncorrupted and sequenced delivery
Distinction between “receiving” and “delivering”

Allows delay of delivery until some condition 
satisfied – i.e. causal order maintained

CS 5204 – Fall, 2009



Event Ordering

CS 5204 – Operating Systems 17

Causal Ordering of Messages

P2

P1

Send(M1)

Send(M2)

P3

Sp
ac

e

Time



Event Ordering

Vector Clocks in BSS

Values in vector clock indicate how many 
multicasts preceded message by each process; 
must process same number from each before same 
state is reached
Recipient will delay delivery of the message 
using a delay queue until corresponding number 
of messages have been received

CS 5204 – Fall, 2009



Event Ordering

Conclusions

Causal relationships between events of processes 
in a distributed environment are critical when 
discussing fault-tolerance and rollback/recovery
Achieving total ordering of events is difficult in 
the absence of a shared clock
Mechanisms to provide shared logical clocks use 
simple counters but can enforce causal orderings

CS 5204 – Fall, 2009



Event Ordering

Questions?

CS 5204 – Fall, 2009


