Event Ordering

Greg Bilodeau
CS 5204
November 3, 2009

o

Fault Tolerance

m How do we prepare for rollback and recovery in a
distributed system?

m How do we ensure the proper processing order of
communications between distributed processes?

Vﬂ@nﬂw.rech CS 5204 — Fall, 2009

Time

m No shared clock

m All specifications of a system must be given in
terms of events observable within that system

m Can we construct a concept of “time” that would
be useful from events of a distributed system?

vmw&ch CS 5204 — Fall, 2009

Events

m An event Is just an event of interest — example: a
communication between processes

m Single process defined as totally ordered sequence
of events

V@H@Teeh CS 5204 — Fall, 2009

Events
m “Happened before”
relation -))
O If a and b from same
process and a comes : . :

before b

Jails asend and b a
receive from different
processes

Olfa—-> bandb -2 c, then
a—->cC

OEvents aandb

concurrent if 'la - b and
b 2 a

V@%ﬁ.ﬁh CS 5204 — Fall, 2009

Events

m Another definition: events causally affect each
other

m a 2> b means It Is possible for a to causally affect
b

m a and b are concurrent If they cannot causally
affect each other

V@%ﬁ.ﬁh CS 5204 — Fall, 2009

Logical Clocks

m Assigns a number to an
event A o -
= Simple counter : g :

m Clock Condition:
OFora,b:ifa—=>>b
then C(a) < C(b)

0 C(py) < C(P)

0C(p1) < C(qy)

1 C1: Line between
local events

1 C2: Line between
send and receive

V@%ﬁ.ﬁh CS 5204 — Fall, 2009

Logical Clocks

m How we meet these conditions:
m Cl:

0O Each process increments its clock between
successive events

m C2:

O Requires each message to include a timestamp
equal to time the message was sent

0 Receliver sets its own clock to a value greater than
or equal to its own value and greater than the
timestamp from the message - cannot move its

clock backward

VH@H@TE&I CS 5204 — Fall, 2009

Example of Lamport’s Algorithm

[N
N

3 10
Pl o @
1 4 6
5
P, —&—@ oo o o
1 2 3 4 5 6 7 8 9

mTech CS 5204 — Operating Systems

Lamport’s Approach

m Just order events according to “times” at which
they occur

m |f “times” are equal, choose one to proceed

m Example: mutual exclusion problem

0O Assume all messages received in order

0O Assume all messages eventually received
0 Each process has own request queue

O Conditions we must achieve:

m Process with resource must release before used by
others

= Requests must be granted in order made
= Every request must eventually be granted

V@M@Tedl CS 5204 — Fall, 2009

Lamport’s Mutual Exclusion Example

m Process P; sends T.:P; message to all others, adds
message to own request queue

m Process P; adds resource request to its queue, sends a
time stamped acknowledgement

m When finished, P; removes the message from its
gueue, sends a time stamped removal to all others

m Process P; removes the resource request from the
queue

m P, can use the resource when:

O It’s own request is ordered before any others in its
gueue

O It has received a message from all others stamped
later than T,

vm@iredx CS 5204 — Fall, 2009

Limits of Lamport

m Clock times cannot guarantee causal relationship

0 We can say if a 2 b then C(a) < C(b)
0 CANNOT say ifC(a) < C(b) thena > b

0O Concept of “time” is exclusive to each process, i.e.
causality only in same process

m \We can provides this through:

O Using physical clocks
O Using vector clocks

Vﬂ@nﬂw.rech CS 5204 — Fall, 2009

Vector Time

m The vector time for p;, VT(p:):

O Length n, where n is number of processes in group
O Initialized to all zeros

O p; iIncrements VT(p;)[i] when sending m

O Each message sent in time-stamped with VT(p,)

0 Recelving processes in the group modify their
vector clock:

vhkel- n:VT(p,)|k] = max(VT(p,)[k], VT(m)[k]).

O Vector time-stamp of m counts the number of
messages that causally precede m on a per-sender
basis

Virginia CS 5204 — Fall, 2009

mTed'I

Vector Clocks

(1,0,0) (2,0,0) (3:4,1)
P,—e® ® *—
\ (2,3,1) /
P, o) o
(0,1,0) (2,2,0) (2,4,1)
P, o o
(0,0,1) (0,0,2)

Vm@&m CS 5204 — Operating Systems 14

Birman-Schiper-Stephenson

m |SIS toolkit — tools for building software In
loosely coupled distributed environments

m CBCAST — multicast primitive

O Fault-tolerant, causally ordered message delivery
0O Asynchronous

m ABCAST

O Extension allowing total ordering
O Synchronous

m Group communication
m Imposes overhead proportional to group size

V@M@Tedl CS 5204 — Fall, 2009

Birman-Schiper-Stephenson

m Cooperative processes form groups

m Processes multicast to all members of their
group(s)

m Delivery times are uncertain...possible to receive
messages out of causal sequence

m Message processing mechanism must provide
lossless, uncorrupted and sequenced delivery

m Distinction between “receiving” and “delivering”

O Allows delay of delivery until some condition
satisfied - i.e. causal order maintained

vm@iredx CS 5204 — Fall, 2009

Causal Ordering of Messages

Send(M,)

b
Q
S Send(M,)
n

-U
N
o
v

-
w
* @

> Time

Vm@&m CS 5204 — Operating Systems 17

Vector Clocks in BSS

m Values In vector clock indicate how many
multicasts preceded message by each process;
must process same number from each before same
state Is reached

m Recipient will delay delivery of the message
using a delay queue until corresponding number
of messages have been received

VI (m)[k] = VT(p)[k] +1 ifk=i

kil
I vT(m)[k] < VT(p,)[] otherwise

Virginia CS 5204 — Fall, 2009

wT&h

Conclusions

m Causal relationships between events of processes
In a distributed environment are critical when
discussing fault-tolerance and rollback/recovery

m Achieving total ordering of events is difficult in
the absence of a shared clock

m Mechanisms to provide shared logical clocks use
simple counters but can enforce causal orderings

V@M@Tedl CS 5204 — Fall, 2009

Questions?

V%Tech CS 5204 — Fall, 2009

