
CS 5204 – Fall, 2009

Distributed Transactions

Presented By:
Mahmoud ElGammal

Distributed Transactions

CS 5204 – Fall, 2009

What is a Transaction?

An execution of a program that accesses a shared
database.
Consists of an ordered set of operations that must
be executed in sequence.
Has to be executed atomically:

Each transaction accesses shared data without
interfering with other transactions.
If a transaction terminates normally, then all of its
effects are made permanent; otherwise it has no
effect at all.

Distributed Transactions

CS 5204 – Fall, 2009

The Problem

Due to their being non-atomic by nature,
concurrent execution of transactions can cause
interference.
Interference can lead to inconsistency, rendering
the DBMS unreliable for data storage!
Solution: Concurrency control.

The activity of coordinating the actions of
processes that operate in parallel, access shared
data, and therefore potentially interfere with each
other.

Distributed Transactions

CS 5204 – Fall, 2009

The Goal of Concurrency Control

Maximizing throughput without compromising
consistency.

Unsupervised concurrency achieves high throughput, but also
causes high contention Consistency is lost.
Absence of concurrency achieves consistency, but also
eliminates sharing Worst throughput.
We need to find a point in-between where we can achieve:

Concurrent execution.
Final effect same as some sequential execution.

Distributed Transactions

CS 5204 – Fall, 2009

Serializability

The DBMS interleaves the execution of operations from
different transactions.
It doesn’t (and needn’t) make any promises about the order in
which different transactions will execute relative to each other.
We can broaden the class of allowable executions to include
executions that have the same effect as a serial ones.
Such executions are called serializable.
Since they have the same effect as serial executions,
serializable executions are correct.

Distributed Transactions

CS 5204 – Fall, 2009 6

Serializability

T1 :

T2 :

T3 :

concurrent execution

DBlog :
DB is consistent if it is guaranteed to have resulted from any
one of:

T1 T2 T3
T2 T1 T3
T2 T3 T1
T1 T3 T2
T3 T1 T2
T3 T2 T1

Distributed Transactions

CS 5204 – Fall, 2009

Serializability

Consider these two transactions:

T1: R1(Z) W1(Y) W1(X) T2: W2(Y) W2(Z) R2(X)

Is this execution log serializable?

L: R1(Z) W1(Y) W2(Y) W2(Z) R2(X) W1(X)

Distributed Transactions

CS 5204 – Fall, 2009

Serializability

S1: R1(Z) W1(Y) W1(X) W2(Y) W2(Z) R2(X)

L: R1(Z) W1(Y) W2(Y) W2(Z) R2(X) W1(X)

S2: W2(Y) W2(Z) R2(X) R1(Z) W1(Y) W1(X)

last write conflict

read source conflict

Distributed Transactions

CS 5204 – Fall, 2009

Scheduling

The DBMS’s scheduler restricts the order in which
transactional operations are executed.
The goal is to order these operations so that the resulting
execution is serializable.
Each data item has a lock associated with it.
The scheduler utilizes a protocol for executing, rejecting, or
delaying an operation according to lock states.

Current lock state
Lock Request Not locked READ locked WRITE locked

READ OK OK DENY (=defer)
WRITE OK DENY (=defer) DENY (=defer)

Distributed Transactions

CS 5204 – Fall, 2009

Two Phase Locking (2PL)

2PL is a locking protocol that guarantees serializability.
Consists of three rules:

On receiving a conflicting operation, delay the requesting transaction until
the requested lock is released then assign the lock to it.
A lock is never released until its associated operation is processed.
Once the scheduler has released a lock for a transaction, it may not
subsequently obtain any more locks for that transaction (on any data
item).

Ti
time

no locks released no new locks requested

locking phase release phase

Distributed Transactions

CS 5204 – Fall, 2009

Two Phase Locking (2PL)

Rule (1) prevents two transactions from concurrently accessing a data item
in conflicting modes.
Rule (2) ensures that the DM processes operations on a data item in the
order that the scheduler submits them.
Rule (3) guarantees that all pairs of conflicting operations of two
transactions are scheduled in the same order.

T1: r1[x] w1[y] c1 T2: w2[x] w2[y] c2

L1: rl1[x] r1[x] ru1[x] wl2[x] w2[x] wl2[y] w2[y] wu2[x] wu2[y] c2 wl1[y] w1[y] wu1[y] c1

L2: rl1[x] r1[x] wl1[y] w1[y] c1 ru1[x] wu1[y] wl2[x] w2[x] wl2[y] w2[y] c2 wu2[x] wu2[y]

T1 T2
T2 T1

Distributed Transactions

CS 5204 – Fall, 2009

Two Phase Locking (2PL)

Deadlocks still can happen:

T1: w1[x] w1[y] c1 T2: w2[y] w2[x] c2

L1: wl1[x] w1[x] wl2[y] w2[y] …?

The scheduler constructs a waits-for graph (WFG), where deadlocks appear
as cycles.
To resolve a deadlock, a victim transaction is selected and is forced to
abort.

T1 T2

Distributed Transactions

CS 5204 – Fall, 2009 13

Distributed DBMS Model

transaction manager

physical database

transactions

….
T T

…
.

T

T

data manager
…

.T

T

DM

DM

DM

network

TM

TM

TM

1

2

3

x1

y2

y1

x3

z2

z3

Distributed Transactions

CS 5204 – Fall, 2009

Serialization of Distributed Logs

Two operations Pj(Ax) and Qi(BY) conflict if all of the
following apply:

P and Q are not both READ (concurrent READs never conflict)
A = B (both access the same record)
i != j (they belong to different transactions)
X = Y (both appear in the same log)

Theorem: Distributed logs are serializable if there
exists a total ordering of the transactions such that
for conflicting operations Pj and Qi a log shows Pj
Qi only if Tj Ti

Distributed Transactions

CS 5204 – Fall, 2009 15

Distributed Transaction Processing

Are these logs equivalent to some serial execution of the
transactions?

Logs:
L1: R4(V1) W3(V1) R2(X1) W1(V1)
L2: R3(W2) W3(V2) R1(W2) W1(Z2) W1(V2) W2(Z2)
L3: R3(Z3) W3(V3) R1(V3) R4(Z3) W1(V3) W2(Z3)

T1 : WRITE(V);

T2 : READ(X); WRITE(Z);

T3 : READ(W); WRITE(V); READ(Z);

T4: READ(V); READ(Z);

V1
X1

DM1

W2
Z2V2

DM2

Z3
V3

DM3

Transactions:

Distributed Transactions

CS 5204 – Fall, 2009 16

Serialization of Distributed Logs
Conflict: Pj(AX) and Qi(BY) conflict if

(1) P and Q are not both READ, and
(2) A = B, and
(3) i ≠ j, and
(4) X = Y

L1: R4(V1) W3(V1) R2(X1) W1(V1)

L2: R3(W2) W3(V2) R1(W2) W1(Z2) W1(V2) W2(Z2)

L3: R3(Z3) W3(V3) R1(V3) R4(Z3) W1(V3) W2(Z3)

a
b

c
d e

h f

g i

Distributed Transactions

CS 5204 – Fall, 2009

Serializability Graph

a) R4(V1) → W3(V1) [T4 → T3]
b) R4(V1) → W1(V1) [T4 → T1]
c) W3(V1) → W1(V1) [T3 → T1]
d) W3(V2) → W1(V2) [T3 → T1]
e) W1(Z2) → W2(Z2) [T1 → T2]
f) R3(Z3) → W2(Z3) [T3 → T2]
g) W3(V3) → R1(V3) [T3 → T1]
h) W3(V3) → W1(V3) [T3 → T1]
i) R4(Z3) → W2(Z3) [T4 → T2]

T1

T2

T3

T4

Graph is cycle free Serializable

