Distributed Transactions

Presented By:
Mahmoud ElIGammal

r—
CS 5204 — Fall, 2009 %Tech

What i1s a Transaction?

m An execution of a program that accesses a shared
database.

m Consists of an ordered set of operations that must
be executed In sequence.

m Has to be executed atomically:
0 Each transaction accesses shared data without
iInterfering with other transactions.

O If a transaction terminates normally, then all of its
effects are made permanent; otherwise it has no

effect at all.

Virginia CS 5204 — Fall, 2009

ch{h

The Problem

m Due to their being non-atomic by nature,
concurrent execution of transactions can cause
Interference.

m Interference can lead to inconsistency, rendering
the DBMS unreliable for data storage!

m Solution: Concurrency control.

O The activity of coordinating the actions of
processes that operate in parallel, access shared
data, and therefore potentially interfere with each
other.

V@M@Tedl CS 5204 — Fall, 2009

The Goal of Concurrency Control

Maximizing throughput without compromising
consistency.

m Unsupervised concurrency achieves high throughput, but also
causes high contention - Consistency is lost.

m Absence of concurrency achieves consistency, but also
eliminates sharing = Worst throughput.

m We need to find a point in-between where we can achieve:

0 Concurrent execution.
O Final effect same as some sequential execution.

Virginia CS 5204 — Fall, 2009

ch{h

Serializability

m The DBMS interleaves the execution of operations from
different transactions.

m It doesn’t (and needn’t) make any promises about the order in
which different transactions will execute relative to each other.

m \We can broaden the class of allowable executions to include
executions that have the same effect as a serial ones.

m Such executions are called serializable.

m Since they have the same effect as serial executions,
serializable executions are correct.

V@M@Tedl CS 5204 — Fall, 2009

I.I_ Distributed Transactions

Serializability

T,: 0000 ~
T,:O0O0O = concurrent execution

T,: AAAA _ Il S
log: $00AAOOOCAQOA §:>

DB is consistent if it is guaranteed to have resulted from any
one of:

=
w

N
=
w

=
w
N

w
=

—
—
— — -

w
N

V%Tech CS 5204 — Fall, 2009 6

Serializability

Consider these two transactions:
Ty Ry(Z) W, (Y) W, (X) T2: W,y (Y) W,(2) Ry(X)
Is this execution log serializable?

L: R (Z) W (Y) W,(Y) W,(Z) R,(X) W, (X)

V%Tech CS 5204 — Fall, 2009

I.I_ Distributed Transactions

Serializability

R

S1t Ry(Z) Wi(Y) W (X) W,(Y) Wy(Z) Ry(X)

read source conflict

L: Ry(Z) W, (Y) W,(Y) Wy(Z) Ry(X) W,(X)

last write conflict

Syt WH(Y) Wy(Z) Ry(X) Ry(Z) Wi (Y) W, (X)

v@ﬁ'}“ech CS 5204 — Fall, 2009

I.I_ Distributed Transactions

Scheduling

m The DBMS’s scheduler restricts the order in which
transactional operations are executed.

m The goal is to order these operations so that the resulting
execution is serializable.

m Each data item has a lock associated with It.

m The scheduler utilizes a protocol for executing, rejecting, or
delaying an operation according to lock states.

Current lock state
Lock Request Not locked READ locked | WRITE locked
READ OK OK DENY (=defer)
WRITE OK DENY (=defer) | DENY (=defer)

T

CS 5204 - Fall, 2009

I.I_ Distributed Transactions

Two Phase Locking (2PL)

m 2PL is a locking protocol that guarantees serializability.
m Consists of three rules:

0O On receiving a conflicting operation, delay the requesting transaction until
the requested lock is released then assign the lock to it.

0O A lock is never released until its associated operation is processed.

O Once the scheduler has released a lock for a transaction, it may not
subsequently obtain any more locks for that transaction (on any data

item).
locking phase release phase
1) 4 N
/ /7 time
no locks released no new locks requested

vmw&ch CS 5204 — Fall, 2009

I.I_ Distributed Transactions

Two Phase Locking (2PL)

m Rule (1) prevents two transactions from concurrently accessing a data item
In conflicting modes.

m Rule (2) ensures that the DM processes operations on a data item in the
order that the scheduler submits them.

m Rule (3) guarantees that all pairs of conflicting operations of two
transactions are scheduled in the same order.

T,:r[x] 2wly] 2¢, Tl Wyo[X] 2 w,ly] 2 ¢,

Ly vl X o [X] ru X wi[X] wo [X] wio[yT w,[y] wu, [X] wu[y] ¢, wihi[y] wi [y] wuy[y] ¢,

~ S ~_ 7

T,2>T, T,2T,

Lo rl [X] vy [X] wly[y] wy[y] cq rug [X] wuy [y] wi,[X] w,[XT Wi, [y] w,[y] ¢, wu,[X] wu,[y]

V%Tech CS 5204 — Fall, 2009

I.I_ Distributed Transactions

Two Phase Locking (2PL)

m Deadlocks still can happen:

Tow[X] 2wly] 2¢ T,o Woly] 2 wy[X] 2 ¢,

Ly: wily[X] wy[X] wi,[y] woly] .7

m The scheduler constructs a waits-for graph (WFG), where deadlocks appear

as cycles.
m To resolve a deadlock, a victim transaction is selected and is forced to
abort.
Viginia CS 5204 — Fall, 2009

mTed'I

I.I_ Distributed Transactions

Distributed DBMS Model

transactions data manager
&D T T g -
X
N 1y,
™
T
™ |:
T ~ ™~ T
1 TM
_— <>
T ﬁ Yo
Z,
transaction manager
DM KN <>
X3

V%Tech CS 5204 — Fall, 2009 13

Serialization of Distributed Logs

m Two operations P;(A,) and Q;(By) conflict if all of the
following apply:

O P and Q are not both READ (concurrent READs never conflict)
O A =B (both access the same record)

O 1!'=] (they belong to different transactions)

O X =Y (both appear in the same log)

m Theorem: Distributed logs are serializable if there
exists a total ordering of the transactions such that
for conflicting operations P; and Q; a log shows P; 2
Qionlyif T; 2T,

V@M@Tedl CS 5204 — Fall, 2009

Transactions:
T,: WRITE(V);
T, READ(X); WRITE(Z);
T, : READ(W); WRITE(V); READ(Z);
T,: READ(V); READ(Z);

Logs:

Ll: R4(V1) W3(V1) RZ(XI) Wl(vl)
LZ: R3(W2) WB(VZ) Rl(WZ) Wl(ZZ) Wl(VZ) WZ(ZZ)
Lyt Ry(Z) Wa(Vy) Ry (Vo) Ry(Zy) W, (V,) W,(Z,)

Distributed Transactions

Distributed Transaction Processing

DM,

DM,

DM,

Are these logs equivalent to some serial execution of the

transactions?

V%Tech CS 5204 — Fall, 2009

15

Serialization of Distributed Logs

Conflict: P;(Ay) and Q;(By) conflict if

(1) P and Q are not both READ, and
(2) A=B, and

(3) 1#],and

(4) X=Y

ad
D Ry(V) W5(V)) Ry(Xy) Wi (V)
w

e

D R3(Wp) W3(V,) Ri(Wp) Wi(Z;) Wi(V,) WiH(Zy)

—
-

I_
N

f
h
I Ra(Z5) Wi5(V3) Ri(V3) Ry(Z3) Wi (Vg) WH(Zy)

D

I_
w

V@B@Tech CS 5204 — Fall, 2009 16

Serializability Graph

a) Ry(Vy) = W3(Vy) [T, — T3]
b) Ry(Vy) = Wi(Vy) [T, — T4]
c) W3(Vy) = Wy (Vy) [Tz — Ty
d) W3(Vy) = W (Vy) [T — T,
e) W;(Zy) = Wy(Zy) [Ty = T,
) Ra(Z3) = Wy(Z3) [Tz — T,]
9) W3(V3) = Ry(V,) [T — T4]
hy W3(V3) = W,(V,) [T — T4]

D Ru(Z3) 2 W,(Zy) [T, — T,] Graph is cycle free - Serializable

Viginia CS 5204 — Fall, 2009

mTed'I

