
1

Rollback-Recovery
Protocols II

Mahmoud ElGammal

Rollback-Recovery II

Taxonomy

CS 5204 – Fall, 2009 2

Rollback-Recovery II

Communication-Induced Checkpointing

  Avoid the domino effect without requiring all checkpoints to
be coordinated.

  Processes take two kinds of checkpoints: local and forced.
  Local checkpoints can be taken independently.
  Forced checkpoints must be taken to guarantee the eventual

progress of the recovery line.
  No special coordination messages are exchanged to determine

when forced checkpoints should be taken.
  Protocol-specific information is piggybacked on each

application message.
  The receiver uses this information to decide if it should take a

forced checkpoint.

CS 5204 – Fall, 2009 3

Rollback-Recovery II

Communication-Induced Checkpointing Notation

How does a receiver decide when to take a forced checkpoint?

  A checkpoint is useless if and only if it is part of a Z-cycle.
  The receiver should determine if past communication and

checkpoint patterns can lead to the creation of useless
checkpoints.

CS 5204 – Fall, 2009 4

Z-path Z-cycle

Rollback-Recovery II

Communication-Induced Checkpointing Notation

 Checkpoint c2,2 is useless under any failure scenario. P0 must
create a forced checkpoint before delivering m5 to break the
m3-m4-m5 Z-cycle.

CS 5204 – Fall, 2009 5

1

2

3

Rollback-Recovery II

Communication-Induced Checkpointing

  CIC protocols have been classified in two types:

  Model-based Protocols: Take more forced
checkpoints than is probably necessary, because
without explicit coordination, no process has
complete information about the global system state.

  Index-based protocols: Guarantee that checkpoints
having the same index at different processes form a
consistent state.

CS 5204 – Fall, 2009 6

Rollback-Recovery II

Taxonomy

CS 5204 – Fall, 2009 7

Rollback-Recovery II

Log-Based Rollback Recovery

  Process execution is modeled as a sequence of
deterministic state intervals, each starting with the
execution of a nondeterministic event.

  Non-deterministic event: the receipt of a message
or an internal event (something that affects the
process).

  Deterministic event: sending a message (an effect
caused by the process).

CS 5204 – Fall, 2009 8

Rollback-Recovery II

Log-Based Rollback Recovery

CS 5204 – Fall, 2009 9

1 2 3 4

Rollback-Recovery II

Log-Based Rollback Recovery

  All non-deterministic events can be identified and their
determinants are logged to stable storage.
  Determinant: the information need to “replay” the occurrence of a non-

deterministic event.

  During failure-free operation, each process logs the
determinants of all the non-deterministic events it observes
onto stable storage.

  Each process also takes checkpoints to reduce the extent of
rollback during recovery.

  After a failure occurs, the failed processes recover by using the
checkpoints and logged determinants to replay the
corresponding nondeterministic events precisely as they
occurred during the pre-failure execution.

CS 5204 – Fall, 2009 10

Rollback-Recovery II

Log-Based Rollback Recovery

  The pre-failure execution of a failed process can be
reconstructed during recovery up to the first nondeterministic
event whose determinant is not logged.

  Upon recovery of all failed processes, the system does not
contain any orphan process: a process whose state depends on
a nondeterministic event that cannot be reproduced during
recovery:

(The No-Orphans Consistency Condition)
  A process p becomes an orphan when p itself doesn’t fail and

p’s state depends on the execution of a nondeterministic event
e whose determinant cannot be recovered from stable storage
or from the volatile memory of a surviving process.

CS 5204 – Fall, 2009 11

€

∀e :¬Stable(e)⇒ Depend(e)⊆ Log(e)

Rollback-Recovery II

Log-Based Rollback Recovery

Key parameters:

  Failure-free performance overhead.
  Output-commit latency.
  Simplicity of recovery and garbage collection.
  Potential for rolling back correct processes.

CS 5204 – Fall, 2009 12

Rollback-Recovery II

Log-Based Rollback Recovery / Pessimistic Logging

  Assumes that a failure can occur after any
nondeterministic.

  The determinant of each nondeterministic event is
logged to stable storage before the event is
allowed to affect the computation.

  Employs synchronous logging (a strengthening of
the always-no-orphans condition):

CS 5204 – Fall, 2009 13 €

∀e :¬Stable(e)⇒ Depend(e) = 0

Rollback-Recovery II

Log-Based Rollback Recovery / Pessimistic Logging

CS 5204 – Fall, 2009 14

Rollback-Recovery II

Log-Based Rollback Recovery / Pessimistic Logging

  Advantages:
  Processes can send messages to the outside world

without running a special protocol.
  Processes restart from their most recent

checkpoint, limiting the extent of execution that
has to be replayed.

  Recovery is simplified because the effects of a
failure are confined only to the processes that fail.

  Garbage collection is simple.

  Disadvantages:
  Synchronous logging incurs a high performance

penalty during failure-free operation.

CS 5204 – Fall, 2009 15

Rollback-Recovery II

Log-Based Rollback Recovery / Optimistic Logging

  Determinants of non-deterministic events are
logged asynchronously: determinants are kept in a
volatile log which is periodically flushed to stable
storage.

  Assumes that logging will complete before a
failure occurs.

  Allows the temporary creation of orphan
processes, but none should exist by the time
recovery is complete.

CS 5204 – Fall, 2009 16

Rollback-Recovery II

Log-Based Rollback Recovery / Optimistic Logging

  If a process fails, the determinants in its volatile log will be lost, and the
state intervals that were started by such events cannot be recovered.

  If the failed process sent a message during any of these state intervals, the
receiver of such message becomes an orphan process and must rollback to
undo the effects of receiving the message.

  To perform these rollbacks correctly, causal dependencies must be tracked.

CS 5204 – Fall, 2009 17

m5 still in volatile
storage

Rollback-Recovery II

Log-Based Rollback Recovery / Optimistic Logging

  Advantages:
  Incurs little overhead during failure-free execution.

  Disadvantages:
  More complicated recovery and garbage collection

than pessimistic logging:
  Must track causal dependencies.
  May need to keep multiple checkpoints.
  Output commit requires multi-host coordination to

ensure that no failure scenario can revoke the output.

CS 5204 – Fall, 2009 18

Rollback-Recovery II

Log-Based Rollback Recovery / Causal Logging

  Has the failure-free performance advantages of optimistic
logging while retaining most of the advantages of optimistic
logging.

  Avoids synchronous access to stable storage except during
output commit.

  Similar to pessimistic logging in:
  Allows each process to commit output

independently.
  Never creates orphan processes.
  Limits the rollback of any failed process to the most

recent checkpoint.
  Cost: a more complex recovery protocol.

CS 5204 – Fall, 2009 19

Rollback-Recovery II

Log-Based Rollback Recovery / Causal Logging

  Ensures the always-no-orphans property by
ensuring that the determinant of each non-
deterministic event that causally precedes the state
of a process is either stable or it is available
locally to that process.

  Processes piggyback the non-stable determinants
in their volatile log on the messages they send to
other processes.

CS 5204 – Fall, 2009 20

Rollback-Recovery II

Log-Based Rollback Recovery / Causal Logging

CS 5204 – Fall, 2009 21

P0 will be able to “guide” the
recovery of P1 and P2 since it
knows the order in which P1
should replay messages m1
and m3 to reach the state from
which P1 sends m4. Similarly
for P2.

Rollback-Recovery II

CS 5204 – Fall, 2009 22

Rollback-Recovery II

Concluding Remarks

  Key properties: performance overhead, storage overhead, ease
of output commit, ease of garbage collection, ease of recovery,
freedom from domino effect, freedom from orphan processes,
and the extent of rollback.

  Coordinated checkpointing generally simplifies recovery and
garbage collection, and yields good performance in practice.

  the nondeterministic nature of communication-induced
checkpointing protocols complicates garbage collection and
degrades performance.

  Log-based rollback recovery is often a natural choice for
applications that frequently interact with the outside world.

CS 5204 – Fall, 2009 23

Rollback-Recovery II

Thanks!

Questions?

CS 5204 – Fall, 2009 24

