

Rollback-Recovery
Protocols I

Message Passing Systems

Nabil S. Al Ramli

Rollback-Recovery I

CS 5204 – Fall, 2009

Messages

• Message Passing System
– Messages
– Processes

• Outside world
– Input messages
– Output messages

Rollback-Recovery I

CS 5204 – Fall, 2009

Outside World Process (OWP)

• A special process
– Used to model how rollback recovery interacts

with the outside world
• Through messages

• Requirements
– Cannot fail
– Cannot maintain state
– Cannot participate in recovery
– Cannot roll back

Rollback-Recovery I

CS 5204 – Fall, 2009

Messages to OWP

• OWP must perceive a consistent behavior of the
system despite failures

– Input messages from OWP may not be
reproducible during recovery

– Output messages cannot be reverted
• State that sent message to OWP must be

recoverable
• Save each input message on stable storage before

allowing the application program to process it

Rollback-Recovery I

CS 5204 – Fall, 2009

Checkpoints

Rollback-Recovery I

CS 5204 – Fall, 2009

Stable Storage

• must store recovery data through failures
– Checkpoints, event logs, other recovery info

• Implementation options
– A system that tolerates only a single failure

• Volatile memory
– A system that tolerates transient failures

• Local disk in each host
– A system that tolerates non-transient failures

• A replicated file system

Rollback-Recovery I

CS 5204 – Fall, 2009

Garbage Collection

• Checkpoints and event logs consume storage
• Some information may become useless
• Identify most recent consistent set of checkpoints

– Recovery line
• Discard information before recovery line

Rollback-Recovery I

CS 5204 – Fall, 2009

Consistent System States

• Lost Messages
– Sent but never received - OK

• "Orphan Messages"
– Received but never sent - bad

Rollback-Recovery I

CS 5204 – Fall, 2009

Maximum Recoverable State

Rollback-Recovery I

CS 5204 – Fall, 2009

The Domino Effect

11

Rollback-Recovery I

CS 5204 – Fall, 2009

Taxonomy

Rollback-Recovery

checkpointing logging

uncoordinated coordinated communication
-induced

pessimistic optimistic causal

blocking non-blocking index-basedmodel-based

Rollback-Recovery I

CS 5204 – Fall, 2009

Checkpoint-Based Rollback Recovery

• restores the system state to the recovery line
• Does not rely on the PWD assumption
• less restrictive and simpler to implement
• Does not guarantee that prefailure execution can

be deterministically regenerated after a rollback
• Not suited for interactions with the outside world
• Categories

– Uncoordinated checkpointing
– Coordinated checkpointing
– Communication-induced checkpointing

Rollback-Recovery I

CS 5204 – Fall, 2009

Uncoordinated Checkpointing

• Each process takes checkpoints independently
• Recovery line must be calculated after failure
• Disadvantages

– susceptible to domino effect
– can generate useless checkpoints
– complicates storage/GC
– not suitable for frequent output commits

Rollback-Recovery I

CS 5204 – Fall, 2009

Uncoordinated Checkpointing

Rollback-Recovery I

CS 5204 – Fall, 2009

Coordinated Checkpointing

• Checkpoints are orchestrated between processes
• Triggered by application decision
• Simplifies recovery
• Not susceptible to the domino effect
• Only one checkpoint per process on stable

storage
• Garbage collection not necessary
• Large latency

Rollback-Recovery I

CS 5204 – Fall, 2009

Coordinated Checkpointing / Blocking

• No messages can be in transit during
checkpointing

• Large overhead

Rollback-Recovery I

CS 5204 – Fall, 2009

Two-Phase Checkpointing Protocol

• A coordinator takes a checkpoint
• Broadcasts a checkpoint request to all processes
• When a process receives this message, it stops its

execution, takes a tentative checkpoint
• Send an acknowledgment back to coordinator
• Coordinator broadcasts a commit message
• Each process removes the old checkpoint and

makes the tentative checkpoint permanent

18

Rollback-Recovery I

CS 5204 – Fall, 2009

Coordinated/Blocking Notation

Each node maintains:
• a monotonically increasing counter with which each message from that node is labeled.
• records of the last message from/to and the first message to all other nodes.

X

Y

last_label_rcvdX[Y]
last_label_sentX[Y]

first_label_sentY[X]

m.l (a message m and its label l)

Note: “sl” denotes a “smallest label” that is < any other label and
 “ll” denotes a “largest label” that is > any other label

19

Rollback-Recovery I

CS 5204 – Fall, 2009

Coordinated/Blocking Algorithm

(1) When must I take a checkpoint?
(2) Who else has to take a checkpoint when I do?

(1) When I (Y) have sent a message to the checkpointing process, X, since my last
 checkpoint:
 last_label_rcvdX[Y] >= first_label_sentY[X] > sl
(2) Any other process from whom I have received messages since my last checkpoint.

ckpt_cohortX = {Y | last_label_rcvdX[Y] > sl}

tentative checkpoint
X

Z

Y
my1 y2

x1 x2

z1 z2

20

Rollback-Recovery I

CS 5204 – Fall, 2009

Coordinated/Blocking Algorithm
(1) When must I rollback?
(2) Who else might have to rollback when I do?

(1) When I ,Y, have received a message from the restarting process,X,
 since X's last checkpoint.

last_label_rcvdY(X) > last_label_sentX(Y)
(2) Any other process to whom I can send messages.
 roll_cohort Y = {Z | Y can send message to Z}

X

Z

Y
y1 y2

x1 x2

z1 z2

Rollback-Recovery I

CS 5204 – Fall, 2009

Coordinated Checkpointing / Non-Blocking

Rollback-Recovery I

CS 5204 – Fall, 2009

Questions

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Coordinated/Blocking Notation
	Coordinated/Blocking Algorithm
	Slide 20
	Slide 21
	Slide 22

