
Communicating Sequential
Processes (CSP)

Ali Saoud

CSP

CS 5204 – Fall, 2009

Introduction

Traditional stored program digital computer has
been designed primarily for deterministic
execution of a single sequential program.
Desire for greater speed has led to the
introduction of parallelism.
Parallel computing => communication,
synchronization, reliability, expense.

CSP

Introduction

Solution:
Guarded command: sequential, non-determinism
control.
Parallel commands start simultaneously with

consistent sequential commands.
Simple input and output commands.
Sender and receiver name each other.
Input commands may appear in guards.
Repetitive commands may have input commands.

CS 5204 – Fall, 2009

CSP

Characteristics

Single thread of control
Autonomous
Static
Synchronous
Reliable
Point –to Point
Unidirectional

CS 5204 – Fall, 2009

CSP

Commands

Structured Command: Succeeds if all constituent
commands succeed. <SC>::=<PC>|<AC>|<RC>
Null command: Never fails.
Command list: Sequential commands.
Parallel Commands: Disjoint, concurrent process
execution.<PC>::=[<process>{||<process>}]
Assignment Command: insert(n):=has(n+1). Fail.
Input/Output command: Send: B!x. Receive: A?y.
Blocks if not ready. Variables must match.

CS 5204 – Fall, 2009

CSP

CS 5204 – Fall, 2009 6

Guarded Commands
Guarded Commands

<guard> <command list>

boolean expression

at most one ? , must be at end of
guard, considered true iff
message pendingExamples

n < 10 A!index(n); n := n + 1;
n < 10; A?index(n) next = MyArray(n);
(i:l..n)G CL stands for

G1 CLI[]G2 CL2[]...[]Gn CLn

CSP

CS 5204 – Fall, 2009 7

Alternative/Repetitive Commands
Alternative Command

[G1 S1 [] G2 S2 [] ... [] Gn Sn]

1. evaluate all guards
2. if more than on guard is true, nondeterministically select one.
3. if no guard is true, terminate.

Note: if all true guards end with an input command for which there is no
pending message, then delay the evaluation until a message arrives. If all
senders have terminated, then the alternative command terminates.

Repetitive Command
* [G1 S1 [] G2 S2 [] ... [] Gn Sn]

repeatedly execute the alternative command until it terminates
Examples:

[x >= y --> m := x [] y >= x --> m := y]
*[c: character; west?c --> east!c]

CSP

Coroutines

Coroutines are fundamental program structures.
Copy: X::*[c:character; west?c east!c]
Squash: Substitute Character in a messege
Disassemble: from card file to X=> extra space at
the end of card must be added.
Assemble: To print from X 125 char/line and
complete with spaces.
Reformat: Assemble and disassemble

CS 5204 – Fall, 2008

CSP

Subroutines

A corountine acting as a subroutine=>executed
concurrently with user process
Function: Division with remainder.

[Div::*[x,y:integer; X?(x,y) quot, rem: integer;
quote=0;rem:=x; *[rem>= y rem= rem-y;
quot:= quote+1];X!(quot,rem)]|| X::USER
Recursion: Factorial
Data Representation: small set of integers

CS 5204 – Fall, 2008

CSP

Monitors and scheduling

Dining philosophers:
Phil=*[…during ith lifetime… Think;

room!enter;
fork(i)!pickup();fork((i+1)mod 5)!pickup();
EAT;
fork(i)!pickup();fork((i+1)mod 5)!pickup();
Room!exit()]

Parallel components:
[room::ROOM||fork(i:0..4)::FORK||phil(i:0..4)::
PHIL]

CS 5204 – Fall, 2008

