
Virtualization

Concepts

CS5204 – Operating Systems

Virtualization

2

Concepts

James Smith, Ravi Nair, “The Architectures of Virtual Machines,” IEEE Computer, May 2005, pp. 32-38.
Mendel Rosenblum, Tal Garfinkel, “Virtual Machine Monitors: Current Technology and Future Trends,” IEEE Computer, May 2005, pp. 39-47.
L.H. Seawright, R.A. MacKinnon, “VM/370 – a study of multiplicity and usefulness,” IBM Systems Journal, vol. 18, no. 1, 1979, pp. 4-17.
S.T. King, G.W. Dunlap, P.M. Chen, “Operating System Support for Virtual Machines,” Proceedings of the 2003 USENIX Technical Conference,
June 9-14, 2003, San Antonio TX, pp. 71-84.
A. Whitaker, R.S. Cox, M. Shaw, S.D. Gribble, “Rethinking the Design of Virtual Machine Monitors,” IEEE Computer, May 2005, pp. 57-62.
G.J. Popek, and R.P. Goldberg, “Formal requirements for virtualizable third generation architectures,” CACM, vol. 17 no. 7, 1974, pp. 412-421.

References and Sources

CS5204 – Operating Systems

Virtualization

3

Definitions
Virtualization

A layer mapping its visible interface and resources onto the
interface and resources of the underlying layer or system on
which it is implemented
Purposes

Abstraction – to simplify the use of the underlying resource (e.g., by
removing details of the resource’s structure)
Replication – to create multiple instances of the resource (e.g., to simplify
management or allocation)
Isolation – to separate the uses which clients make of the underlying
resources (e.g., to improve security)

Virtual Machine Monitor (VMM)
A virtualization system that partitions a single physical
“machine” into multiple virtual machines.
Terminology

Host – the machine and/or software on which the VMM is implemented
Guest – the OS which executes under the control of the VMM

CS5204 – Operating Systems

Virtualization

4

Origins - Principles

Efficiency
Innocuous instructions should
execute directly on the hardware

Resource control
Executed programs may not affect
the system resources

Equivalence
The behavior of a program executing
under the VMM should be the same as
if the program were executed directly
on the hardware (except possibly for
timing and resource availability) Communications of the ACM, vol 17, no 7, 1974, pp.412-421

“an efficient, isolated duplicate of the real machine”

CS5204 – Operating Systems

Virtualization

5

Origins - Principles

Instruction types

Privileged
an instruction traps in unprivileged (user) mode but not in privileged (supervisor) mode.

Sensitive
Control sensitive –

attempts to change the memory allocation or privilege mode
Behavior sensitive

Location sensitive – execution behavior depends on location in memory
Mode sensitive – execution behavior depends on the privilege mode

Innocuous – an instruction that is not sensitive

Theorem
For any conventional third generation computer, a virtual machine monitor may be constructed if
the set of sensitive instructions for that computer is a subset of the set of privileged instructions.

Signficance
The IA-32/x86 architecture is not virtualizable.

CS5204 – Operating Systems

Virtualization

6

Origins - Technology

Concurrent execution of multiple production operating systems
Testing and development of experimental systems
Adoption of new systems with continued use of legacy systems
Ability to accommodate applications requiring special-purpose OS
Introduced notions of “handshake” and “virtual-equals-real mode” to allow
sharing of resource control information with CP
Leveraged ability to co-design hardware, VMM, and guestOS

IBM Systems Journal, vol. 18, no. 1, 1979, pp. 4-17.

CS5204 – Operating Systems

Virtualization

7

VMMs Rediscovered

Server/workload consolidation (reduces “server sprawl”)
Compatible with evolving multi-core architectures
Simplifies software distributions for complex environments
“Whole system” (workload) migration
Improved data-center management and efficiency
Additional services (workload isolation) added “underneath” the OS

security (intrusion detection, sandboxing,…)
fault-tolerance (checkpointing, roll-back/recovery)

VMM

Virtual Virtual
MachineMachine

Guest OS

Application

Virtual Virtual
MachineMachine

Guest OS

Application

Virtual Virtual
MachineMachine

Guest OS

Application

Real
Machine

CS5204 – Operating Systems

Virtualization

8

Architecture & Interfaces
Architecture: formal specification of a system’s interface and the logical
behavior of its visible resources.

Hardware

System ISA User ISA

Operating
System

System Calls
Libraries

Applications

ISA

ABI

API

API – application binary interface
ABI – application binary interface
ISA – instruction set architecture

CS5204 – Operating Systems

Virtualization

9

VMM Types

System

Process
Provdes API interface
Easier installation
Leverage OS services (e.g.,
device drivers)
Execution overhead
(possibly mitigated by just-
in-time compilation)

Provides ABI interface
Efficient execution
Can add OS-independent
services (e.g., migration,
intrustion detection)

CS5204 – Operating Systems

Virtualization

10

System-level Design Approaches

Full virtualization (direct execution)
Exact hardware exposed to OS
Efficient execution
OS runs unchanged
Requires a “virtualizable” architecture
Example: VMWare

Paravirtualization
OS modified to execute under VMM
Requires porting OS code
Execution overhead
Necessary for some (popular)
architectures (e.g., x86)
Examples: Xen, Denali

CS5204 – Operating Systems

Virtualization

11

Design Space (level vs. ISA)

Variety of techniques and approaches available
Critical technology space highlighted

API interface ABI interface

CS5204 – Operating Systems

Virtualization

12

System VMMs

Structure
Type 1: runs directly on host hardware
Type 2: runs on HostOS

Primary goals
Type 1: High performance
Type 2: Ease of
construction/installation/acceptability

Examples
Type 1: VMWare ESX Server, Xen, OS/370
Type 2: User-mode Linux

Type 1

Type 2

CS5204 – Operating Systems

Virtualization

13

Hosted VMMs

Structure
Hybrid between Type1 and Type2
Core VMM executes directly on hardware
I/O services provided by code running on HostOS

Goals
Improve performance overall
leverages I/O device support on the HostOS

Disadvantages
Incurs overhead on I/O operations
Lacks performance isolation and performance
guarantees

Example: VMWare (Workstation)

CS5204 – Operating Systems

Virtualization

14

Whole-system VMMs

Challenge: GuestOS ISA differs
from HostOS ISA
Requires full emulation of
GuestOS and its applications
Example: VirtualPC

CS5204 – Operating Systems

Virtualization

15

Strategies

De-privileging
VMM emulates the effect on system/hardware
resources of privileged instructions whose
execution traps into the VMM
aka trap-and-emulate
Typically achieved by running GuestOS at a lower
hardware priority level than the VMM
Problematic on some architectures where
privileged instructions do not trap when executed
at deprivileged priority

Primary/shadow structures
VMM maintains “shadow” copies of critical
structures whose “primary” versions are
manipulated by the GuestOS
e.g., page tables
Primary copies needed to insure correct
environment visible to GuestOS

Memory traces
Controlling access to memory so that the shadow
and primary structure remain coherent
Common strategy: write-protect primary copies
so that update operations cause page faults
which can be caught, interpreted, and emulated.

resource

vmm

privileged
instruction

trap

GuestOS

resource

emulate change

change

CS5204 – Operating Systems

Virtualization

16

Virtualizing the IA-32 (x86) architecture

Architecture has protection rings 0..3 with OS normally in ring 0 and
applications in ring 3…

…and VMM must run in ring 0 to maintain its integrity and control

…but GuestOS not running in ring 0 is problematic:

Some privileged instructions execute only in ring 0 but do not fault when
executed outside ring 0 (remember privileged vs. sensitive?)
instructions for low latency system calls (SYSENTER/SYSEXIT) always
transition to ring 0 forcing the VMM into unwanted emulation or overhead
For the Itanium architecture, interrupt registers only accessible in ring 0;
forcing VMM to intercept each device driver access to these registers has
severe performance consequences
Masking interrupts can only be done in ring 0
Ring compression: paging does not distinguish privilege levels 0-2,
GuestOS must run in ring 3 but is then not protected from its applications
also running in ring 3
Cannot be used for 64-bit guests on IA-32
The fact that it is not running in ring 0 can be detected (is this important?)

CS5204 – Operating Systems

Virtualization

17

Memory Management

Isolation/protection of
Guest OS address spaces
Efficient MM address
translation

VMM
machine

VMM GuestOS

“shadow” page tables page tables

process
virtual

OS
physical

entity
address space

	 Virtualization
	Concepts
	Definitions
	Origins - Principles
	Origins - Principles
	Origins - Technology
	VMMs Rediscovered
	Architecture & Interfaces
	VMM Types
	System-level Design Approaches
	Design Space (level vs. ISA)
	System VMMs
	Hosted VMMs
	Whole-system VMMs
	Strategies
	Virtualizing the IA-32 (x86) architecture
	Memory Management

