
CS5204-Operating Systems

Transactional Memory

Part 1: Concepts and Hardware-
Based Approaches

CS 5204 – Operating Systems

Transactional Memory

2

Introduction

Provide support for concurrent activity using transaction-
style semantics without explicit locking
Avoids problems with explicit locking

Software engineering problems
Priority inversion
Convoying
Deadlock

Approaches
Hardware (faster, size-limitations, platform dependent)
Software (slower, unlimited size, platform independent)

Word-based (fine-grain, complex data structures)
Object-based (course-grain, higher-level structures)

CS 5204 – Operating Systems

Transactional Memory

3

History

D.B. Lomet, “Process structuring, synchronization, and recovery using atomic actions,”
In Proc. ACM Conf. on Language Design for Reliable Software, Raleigh, NC, 1977,
pp. 128–137.

Lomet* proposed the construct:

<identifier>: action(<parameter-list>);
<statement-list>
end;

where the statement-list is executed as an atomic action. The statement-list
can include:

await <test> then <statement-list>;

so that execution of the process/thread does not proceed until test is true.

*

CS 5204 – Operating Systems

Transactional Memory

4

Transaction Pattern

repeat {

BeginTransaction(); /* initialize transaction */
<read input values>
success = Validate(); /* test if inputs consistent */
if (success) {

<generate updates>
success = Commit(); /* attempt permanent update */
if (!success)

Abort(); /* terminate if unable to commit */
}
EndTransaction(); /* close transaction */

} until (success);

CS 5204 – Operating Systems

Transactional Memory

5

Guarantees

Wait-freedom
All processes make progress in a finite number of their individual
steps
Avoid deadlocks and starvation
Strongest guarantee but difficult to provide in practice

Lock-freedom
At least one process makes progress in a finite number of steps
Avoids deadlock but not starvation

Obstruction-freedom
At least one process makes progress in a finite number of its
own steps in the absence of contention
Avoids deadlock but not livelock
Livelock controlled by:

Exponential back-off
Contention management

CS 5204 – Operating Systems

Transactional Memory

6

Hardware Instructions

Compare-and-Swap (CAS):

Usage: a spin-lock inuse = false;

…

while (CAS(&inuse, false, true);

Examples: CMPXCHNG instruction on the x86 and Itaninium architectures

word CAS (word* addr, word test, word new) {
atomic {

if (*addr == test) {
*addr = new;
return test;

}
else return *addr;

}
}

CS 5204 – Operating Systems

Transactional Memory

7

Hardware Instructions

ldl_l/stl_c and ldq_l/stq_c (Alpha), lwarx/stwcx (PowerPC),
ll/sc (MIPS), and ldrex/strex (ARM version 6 and above).

LL/SC: load-linked/store-conditional

Examples:

word LL(word* address) {
return *address;

}

boolean SC(word* address, word value){
atomic { if (address updated since LL)

return false;
else { address = value;

return true;
}

}
}

Usage: repeat { while (LL(inuse));
done = SC(inuse, 1);

} until (done);

CS 5204 – Operating Systems

Transactional Memory

8

Hardware-based Approach
Replace short critical sections
Instructions

Memory
Load-transactional (LT)
Load-transactional-exclusive (LTX)
Store-transactional (ST)

Transaction state
Commit
Abort
Validate

Usage pattern
Use LT or LTX to read from a set of locations
Use Validate to ensure consistency of read values
Use ST to update memory locations
Use Commit to make changes permanent

Definitions
Read set: locations read by LT
Write set: locations accessed by LTX or ST
Data set: union of Read set and Write set

CS 5204 – Operating Systems

Transactional Memory

9

Example
typedef struct list_elem { struct list_elem *next; /* next to dequeue */

struct list_elem *prev; /* previously enqueued */

int value; } entry;

shared entry *Head, *Tail;

void list_enq(entry* new) {

entry *old_tail;

unsigned backoff = BACKOFF_MIN;

unsigned wait;

new->next = new->prev = NULL;

while (TRUE) {

old_tail = (entry*) LTX(&Tail);

if (VALIDATE()) {

ST(&new->prev, old_tail);

if (old_tail == NULL) {ST(&Head, new); }

else {ST(&old_tail->next, new); }

ST(&Tail, new);

if (COMMIT()) return;

}

wait = random() % (01 << backoff); /* exponential backoff */

while (wait--);

if (backoff < BACKOFF_MAX) backoff++;

}

}

CS 5204 – Operating Systems

Transactional Memory

10

Hardware-based Approach

CS 5204 – Operating Systems

Transactional Memory

11

Cache Implementation

Processor caches and shared memory connected via shared bus.
Caches and shared memory “snoop” on the bus and react (by updating their contents) based
on observed bus traffic.
Each cache contains an (address, value) pair and a state; transactional memory adds a tag.
Cache coherence: the (address, value) pairs must be consistent across the set of caches.
Basic idea: “any protocol capable of detecting accessibility conflicts can also detect
transaction conflict at no extra cost.”

Shared Memory

Bus

address value state tag cache. . .

CS 5204 – Operating Systems

Transactional Memory

12

Line States

Shared Memory

Bus

address value state tags cache. . .

Name Access Shared? Modified?
invalid none --- ---
valid R yes no
dirty R, W no yes
reserved R, W no no

CS 5204 – Operating Systems

Transactional Memory

13

Transactional Tags

Shared Memory

Bus

address value state tags cache. . .

Name Meaning
EMPTY contains no data
NORMAL contains committed data
XCOMMIT discard on commit
XABORT discard on abort

CS 5204 – Operating Systems

Transactional Memory

14

Bus cycles

Shared Memory

Bus

address value state tags cache. . .

Name Kind Meaning New access

READ regular read value shared

RFO regular read value exclusive

WRITE both write back exclusive

T_READ transaction read value shared

T_WRITE transaction read value exclusive

BUSY transaction refuse access unchanged

CS 5204 – Operating Systems

Transactional Memory

15

Scenarios

LT instruction
If XABORT entry in transactional cache: return value
If NORMAL entry

Change NORMAL to XABORT
Allocate second entry with XCOMMIT (same data)
Return value

Otherwise
Issue T_READ bus cycle

Successful: set up XABORT/XCOMMIT entries
BUSY: abort transaction

LTX instruction
Same as LT instruction except that T_RFO bus cycle is
used instead and cache line state is RESERVED

ST instruction
Same as LTX except that the XABORT value is updated

CS 5204 – Operating Systems

Transactional Memory

16

Performance Simulations

comparison methods
•TTS – test/test-and-set

(to implement a spin lock)

•LL/SC – load-linked/store-conditional
(to implement a spin lock)

•MCS – software queueing

•QOSB – hardware queueing

•Transactional Memory

QOSB

TTS

MCS

LL/SC

TM

	Transactional Memory
	Introduction
	History
	Transaction Pattern
	Guarantees
	Hardware Instructions
	Hardware Instructions
	Hardware-based Approach
	Example
	Hardware-based Approach
	Cache Implementation
	Line States
	Transactional Tags
	Bus cycles
	Scenarios
	Performance Simulations

