Threads vs. Events

5204 — Operating Systems

Forms of task management

serial preemptive cooperative

(interrupt) (yield)

vm@Tedl CS 5204 — Operating Systems

Programming Models

event handler
thread /_*g' x
% i blocking - * events
% operations
i run-time/kernel
Process address space

thread model event model

Vm@&m CS 5204 — Operating Systems

| —

Threads vs. Events

Stack (really state) Management

g

A
\ 4 _
()]
h (@))
° qv]
c
\ < » (O
¢ =
C . . %
/ (D)
stack frame ----------- N A
J
Run-time stack
automatic manual
VigLy CS 5204 — Operating Systems

Threads are Bad

m Difficult to program
O Synchronizing access to shared state
0O Deadlock
0 Hard to debug (race conditions, repeatability)

m Break abstractions
0 Modules must be designed “thread safe”

m Difficult to achieve good performance
0O simple locking lowers concurrency
0 context switching costs

m OS support inconsistent
0 semantics and tools vary across platforms/systems

= May not be right model

0O Window events do not map to threads but to events

Virginia CS 5204 — Operating Systems
mTech

Events are Bad- Threads are Good

m Thread advantages
0O Avoids “stack ripping” to maintain application context
O Exception handling simpler due to history recorded in stack
O Exploits available hardware concurrency

m Events and Threads are duals

O Performance of well designed thread system equivalent to well
designed event system (for high concurrency servers)

O Each can cater to the common control flow patterns (a _
call/return pattern is needed for the acknowledgement required
to build robust systems)

0 Each can accommodate cooperative multitasking

O Stack maintenance problems avoided in event systems and
can be mitigated in thread systems

Virginia CS 5204 — Operating Systems 6

mTech

Threads vs. Events

Stack Ripping

CAInfo GetCAInfoBlocking(CAID cald)
CAInfo calInfo = LookupHashTable(cald);
if (caInfo != NULL) {

// Found node in the hash table
return calnfo;
i
calInfo = new CAInfol);
/{ DiskRead blocks watting for
// the disk I'O to complete.
DiskRead(cald, calInfo);
InsertHashTable (calId, CalInfo);
return calnfo;

CAInfo GetCAInfoBlocking(CAID caIld) {
CAInfo caInfo = LookupHashTable (cald);
if (caInfo != NULL) {
// Found node i the hash table
return calnfo;

1

calInfo = new CRAInfol();

/{ DiskRead blocks waiting for

[/ the disk I'O to complete.

DiskERead({cald, caInfo):;

NAVAVA VA VAV VAV VYAV

YAVAVAVAVAVEVAVAVEAVAN

InsertHashTable (cald, CaInfto) ;
return calnfo;

mTech CS 5204 — Operating Systems 7

Threads vs. Events

Ripped Code

vold GetlAInfoHandlerl (CAID cald,

Continuation *callerlont)

// Return the result immediately if i cache

CAInfo #xcalInfo = LookupHashTabkle(caId);

if (caInfo != NULL) {
// Call ecaller’s continuation with result
(#callerCont—>function) (calInfao) ;
return;

[/ Make buffer space for disk read
calInfo = new CAInfol();
// Save return address & live variables

Continuation *cont = new
Continuation (&GetlAInfoHandler?2,
cald, calInfo, callerlont) ;
// Send request
EventHandle eh =

[/ Schedule event handler to nm on reply
// by registering continuafion
RegisterContinuation(eh, cont);

InitReyncDiskRead (cald, calnfo);

}

vold GetlAInfoHandler2 (Continuation
xcont) {
// Recover live variables
CRAID cald = (CAID) cont—>argl;
CAInfo #caInfo = (CAInfox) cont—>argZz;
Continuation #*callerCont =
(Continuation#) cont—>arg3l;
// Stash CAlnfo object in hash
InsertHashTabkle (cald, calnfo);
// Now “return™ results to origmal caller
(#callerCont—>function) (callerCont) ;

T

CS 5204 — Operating Systems 8

Threads vs. Events

Ousterhout’s conclusions

Why Threads Are A Bad Idea
(for most purposes)

John Ousterhout

Sun Microsystems Laboratories

john.ousterhout@eng.sun.com
http://www.sunlabs.com/~ouster

Conclusions

v Concurrency is fundamentally hard; avoid whenever
possible.

v Threads more powerful than events, but power is
rarely needed.

v Threads much harder to program than events; for
experts only.

v Use events as primary development tool (both GUIs
and distributed systems).

v Use threads only for performance-critical kernels.

Why Threads Are A Bad Idea September 28, 1993, slide 15

&

CS 5204 — Operating Systems

Two approaches

.. [
m Capriccio 1]
Uds
0 Each service request bound to
an independent thread

O Each thread executes all T
stages of the computation PR
N—1 %

s

8

A

v

m Seda

0O Each thread bound to one
stage of the computation

O Each service request proceeds
through successive stages

V‘ it _ .
mTedl CS 5204 — Operating Systems

&

Cappricio

m Philosophy
O Thread model is useful

O Improve implementation to remove barriers to
scalability

m Techniques

O User-level threads
O Linked stack management
0 Resource aware scheduling

m Tools
O Compiler-analysis
O Run-time monitoring

Virginia CS 5204 — Operating Systems
mTeeh

11

Capriccio - user level threads

O O DR

A

yield
\ 4 <
v o, . ; *| scheduler Capriccio
* scheduler — Capriccio ! '
3 B
=y i £
3 8
@ | 1
: k I
kernel v v eme

m User-level threading with fast context switch = Intercepts and converts blocking 1/0 into
m Cooperative scheduling (via yielding) asynchronous 1/0

m Thread management costs independent of m Does polling to determine 1/0 completion
number of threads (except for sleep queue)

Vm@&m CS 5204 — Operating Systems 12

Compiler Analysis - Checkpoints

S=1k S=0.2k S=0.2k

m Call graph — each node is a procedure annotated with maximum stack size needed
to execute that procedure; each edge represents a call

m Maximum stack size for thread executing call graph cannot be determined

statically
O Recursion (cycles in graph)
| S_ub-o)ptimal allocation (different paths may require substantially different stack
sizes
m Insert checkpoints to allocate additional stack space (“chunk’) dynamically
O Onentry (e.g., Cp)
O On each back-edge (e.g. C,)

O On each edge where the needed (maximum) stack space to reach a leaf node or
the r)1ext checkpoints exceeds a given limit (MaxPath) (e.g., C, and C; if limit is
1KB

m Checkpoint code added by source-source translation

WTECh CS 5204 — Operating Systems 13

| —

Threads vs. Events

Linked Stacks

main

A 4

A 4

Thread stack is collection of non-contiguous blocks (‘chunks™)
MinChunk: smallest stack block allocated

Stack blocks “linked” by saving stack pointer for “old” block in
field of “new” block; frame pointer remains unchanged

Two kinds of wasted memory
O Internal (within a block) (yellow)
O External (in last block) (blue)

Two controlling parameters

O MaxPath: tradeoff between amount of instrumentation and run-
time overhead vs. internal memory waste

O MinChunk: tradeoff between internal memory waste and
external memory waste

Memory advantages

O Avoids pre-allocation of large stacks

O Improves paging behavior by (1) leveraging LIFO stack usage
pattern to share chunks among threads and (2) placing multiple
chunks on the same page

&

Tech

CS 5204 — Operating Systems 14

Resource-aware scheduling

— \'ée j
o S thread create

Gwir}i JES . _
" o Ly T

m Blocking graph
O Nodes are points where the program blocks
O Arcs connect successive blocking points

m Blocking graph formed dynamically

O Appropriate for long-running program (e.g. web servers)

m Scheduling annotations
0O Edge - exponentially weighted average resource usage
O Node - weighted average of its edge values (average resource usage of next edge)
O Resources - CPU, memory, stack, sockets

m Resource-aware scheduling:

O Dynamically prioritize nodes/threads based on whether the thread will increase or
decrease its use of each resource

O When a resource is scarce, schedule threads that release that resource

m Limitations
O Difficult to determine the maximum capacity of a resource
0O Application-managed resources cannot be seen
O Applications that do not yield

%Tem CS 5204 — Operating Systems 15

I.I_ Threads vs. Events

Bandwidth (Mb/s)

350 ~

300 -

250 ~

200 ~

150

100

50 A

Performance comparison

Apache — standard distribution

B R, m Haboob — event-based web server
Teoeg H‘ m Knot - simple, threaded specially
[. developed web server

—e+— Apache

—-a— Apache with Capriccio
»a--Haboob
—=%—Knot

10 100 1000 10000 100000

Number of Clients

&

Tech

CS 5204 — Operating Systems 16

SEDA - Staged Event-Driven Architecture

m Goals
O Massive concurrency

= required for heavily used web servers
= large spikes in load (100x increase in demand)

m requires efficient, non-blocking 1/0
O Simplify constructing well-conditioned services

= “well conditioned”: behaves like a simple pipeline
m Offers graceful degradation, maintaining high throughput as load exceeds capacity
= provides modular architecture (defining and interconnecting “stages”)

= hides resource management details
O Introspection

= ability to analyze and adapt to the request stream
0 Self-tuning resource management

= thread pool sizing
= dynamic event scheduling

m Hybrid model

0 combines threads (within stages) and events (between stages)

v@nﬂw.rem CS 5204 — Operating Systems 17

Threads vs. Events

SEDA'’s point of view
D

e

% request 2

network L II“II“ dispatch % send result network

7 G

30000 T

. 400
Throughput e
Latency =B~

Linear (ideal) latency ««m |3 350

i 300

25000 /L\\
20000 /

\ i 250
i 200

15000
4

10000

Latency, msec

\ HEERT

Throughput, tasks/sec

5000

Number of threads

Thread model and performance

\.\i 1100

T 40000
Throughpui st
35000 Latency ==-E==
Linear (ideal) latency «-m.-
30000 /\ :
H 30000
o]
& 25000
o)
o
@
= 20000 20000
o
5
> 15000
o
E -
= §
10000 ; < 10000
5000 4
0 o 0
1 32 1024 32768 1048576

Number of tasks in pipeline

Latency, msec

Event model and performance

T

CS 5204 — Operating Systems

18

|

SEDA - structure

Ou

tgoing

Event Queue

Event Handler |

Thread Pool

E\?, [11] %;

Controller

Event queue — holds incoming reque
Thread pool

sts

- E%%%%;

Threads vs. Events

O takes requests from event queue and invokes event handler
O Limited number of threads per stage

Event handler
O Application defined

O Performs application processing and possibly generates events for other

stages

O Does not manage thread pool or event queue

Controller — performs scheduling and thread management

&

Tech

CS 5204 — Operating Systems

19

Resource Controllers

L 11T
Event Handler .
TI1] ?5__ X (Event Handler Other Stages
2 111 —)” N 111
Observe ‘%%‘%% —
Length Thread Pool Thread Pool
Adjust Adjust 1 (TTT]
> ; Batchin -
~>) Size 9L)
Factor - Observe
T Rate
Threshold Running Avg
Thread pool controller Batching controller
m Thread added (up to a maximum) when m Adjusts batching factor: the number of event
event queue exceeds threshold processed at a time
m Thread deleted when idle for a given period m High batching factor improves throughput

m Low batching factor improves response time

m Goal: find lowest batching factor that sustains
high throughput

Vmﬂw.rem CS 5204 — Operating Systems 20

Threads vs. Events

Asynchronous Socket layer

_Application

]
-
AMr
I EN
- a2 ServerSocket
. i ! asyncServersSocke
asyncCIlentSocket‘ ‘ asyncConnection ‘ | y d
| ‘\‘. Iﬂl
\ AN // . \ | Listen
\ Read /x;\ f New \ request
;‘request Packet \ | Write connection \
| 7 Write | complete \
' o request |\ | | 1
- 7 | |
- - -
CRead > < Write > CListen”
[[[}
| | |
T Read ready Write ready T Connect pending

Operating System

Implemented as a set of SEDA stages

Each asynchSocket stage has two event queues

Thread in each stage serves each queue alternately based on time-out
Similar use of stages for file 1/0

Vm@&m CS 5204 — Operating Systems

21

Performance
240 m F— o - L
~~El+ Apache
220 |- =--2==- Flash
—8— Haboob
m Apache 200
o process-per-request design 180
m Flash o
a event-drived design 3 160
O one process handling most tasks E 140 Throughput 0.9
m Haboob = '
O SEDA-based design S 120] 0.88
e Fairness
2 100 p 0.86
o
< 80 1 0.84
60 | 0.82
40 608
20 0.78
0 1 1 1 1 1 1 076
. 1 2 4 8 16 32 64 128 256 512 1024
Fairness Number of clients

m Measure of number of requests completed per client
m Value of 1 indicates equal treatment of clients

m Value of k/N indicates k clients received equal treatment and n-k clients received
no service

Fairness

Vm@&m CS 5204 — Operating Systems 22

TAME

- expressive abstractions for event-based programming
e Implemented via source-source translation

e avoids stack ripping

o type safety and composability via templates

M. Krohn, E. Kohler, M.F. Kaashoek, “Events Can Make Sense,”
USENIX Annual Technical Conference, 2007, pp. 87-100.

v@nﬂw.rem CS 5204 — Operating Systems 23

A typical thread programming problem

C

A 4

. (blocking, synchronous
operation, e.g., I/O)

Problem: the thread becomes blocked in the
called routine (f) and the caller (c) is unable to
continue even if it logically is able to do so.

Vmﬂw.rem CS 5204 — Operating Systems 24

A partial solution

C

f
\ d }>

\ . (non-blocking, asynchronous
T~ | operation, e.g., 1/0)
register
A 4
handler [---------------------- (signal + data)
Issues

» Synchronization: how does the caller know when the signal
has occurred without busy-waiting?

» Data: how does the caller know what data resulted from the
operation?

Vm@&m CS 5204 — Operating Systems 25

| —

A “Tame” solution

Threads vs. Events

C e o f
‘\ i @
(5) \(4)\ (3) .
\¢ (non-blocking, asynchronous
(10) operation, e.g., I1/0)
(11)
I
slot | <T> a; yy
x (©):
\ 4
e(@):; <T> - handler
e et o 7) 1 T TR
a<-data (8)) .trigger(data) (signal + data) (6)

<> wait point @ rendezvous<I> <T>

event<T>

Vm@&m CS 5204 — Operating Systems

26

Tame Primitives

Threads vs. Events

Classes

Keywords & Language Extensions

Functions & Methods

event-

& A basic event

event«T=

e An event with a single frigger value of
type T. This value is set when the event
occurs; an example might be a character
read from a file descriptor. Events may
also have multiple trigger values of types
T ... T,.

rendezvous<r-

Represents a set of outstanding events
with event IDs of type I. Callers name a
rendezvons when they block, and unblock
on the triggering of any associated event.

twait(e], 1)

« A wait point. Block on explicit rendez-
vous r, and optionally set the event 10 §
when control resumes.

tamed

* A return type for functions that use twWait.
tvars { ... }

DMarks safe local variables.

twait { statements; }

& Wait point syntactic sugar: block on an
implicit rendezvous until all events cre-
ated in statements have triggered.

mkevent{r,i,s);

e Allocate a new event with event 1D 7
When triggered, it will awake rendezvous
rand store trigger value in slot 5.

nkeventis);

o Allocate a new event for an implicit
twalt{} rendezvous. When triggered,
store trigger value in slot =

e, trigger(v);
Trigger event e, with trigger value v
timer(io,) ; Walt_on_£d(fd, rw, el ;

& Primitive event interface for timeouts and
file descriptor events, respectively.

Figure 2: Tame primitives for event programming in C4++.

mTed'I

CS 5204 — Operating Systems

27

An example

1 wvoid multidns(dnsname name[], ipaddr a[], int n) {
2 for (int i = &; i < n; i++)

3 a[i] = gethostbyname(name[i]);
4

¥

1 tamed multidns_tame(dnsname name[], ipaddr a[],
int n, event<> done) {

2 tvars { int i; }
> 3 for (i1 =0; 1 < n; i++)
< twalt { gethost_ev(name[i], mkevent(a[i])); }
5 done.trigger();
6}

tamed gethost ev(dsname name, event<ipaddr> e);

V@@Tedl CS 5204 — Operating Systems 28

Variations on control flow

1 tamed multidns_par(dnsname name[], ipaddr afl],
int n, event<> done) {

2 wait{ | | parallel control
3 for (int 1 = 0; 1 < sz; 1++)
4 gethost_ev(name[1], mkevent(al[i])); fk)VV
5 }
6 done.trigger();
7 }
1 tamed multidns_win(dnsname name[], ipaddr af[],

int n, event<> done) {
2 tvars { int sent(®), recv(®); rendezvous<»> r; } . . .
3 while (recv < m) window/pipeline
4 if (sent < n && sent - recv <« WINDOWSIZE) {
5 gethost_ev(name [sent], mkevent(r,a[sent])); ContrOI ﬂOW
G sent++;
7 } else {
8 twait(r);
9 recy++;
18 }
11 done.trigger();
12 }

Vm@&m CS 5204 — Operating Systems 29

Event IDs & Composability

Threads vs. Events

1 template <typename T> tamed
__add_timeout(event<T> &e_base, event<bool, T> e) {

wake
caller

2 tvars { rendezvous<bool> r; T result; bool rok; }
3 timer (TIMEOUT, mkevent(r, false));
4 e_base = mkevent(r, true, result);
5 twait(r, rok);
6 e.trigger(rok, result);
7 r.cancel();
8 }
9 template <typename T> event«<T> add_timeout(event<bool, T> e) {
10 event<T> e_base;
11 __add_timeout (e_base, e);
12 return e_base;
13 }

timer Private to __add_timeout

event 1 L.
gethost_ev ID false

i tri
e_base i, rok; e S
slot result slots ok, a
. -

e.trigger(rok, resulfji

mTed'I

CS 5204 — Operating Systems

30

Closures

f(|...paréms...|)

{

rendezvous<>r;
tvars { ...locals|..};

twait(r);
continue_here:

Threads vs. Events

closure

Smart pointers and reference counting insure correct

deallocation of events, redezvous, and closures.

Vm@&m CS 5204 — Operating Systems

31

I.I_ Threads vs. Events

Performance
(relative to Capriccio)

Capriccio Tame

Throughput (connections/sec) 28,318 28,457
Number of threads 350]
Physical memory (kB) 6.560 2.156
Virtual memory (kB) 49 517 10,740

Figure 7: Measurements of Knot at maximum throughput. Throughput
is averaged over the whole one-minute run. Memory readings are taken
after the warm-up period. as reported by ps.

mTech CS 5204 — Operating Systems

