
5204 – Operating Systems

Threads vs. Events

CS 5204 – Operating Systems

Threads vs. Events

2

Forms of task management

serial preemptive cooperative

(yield)(interrupt)

CS 5204 – Operating Systems

Threads vs. Events

3

Programming Models

Process address space

thread

thread model

event handler

run-time/kernel

eventsblocking
operations

event model

CS 5204 – Operating Systems

Threads vs. Events

4

Stack (really state) Management

A

C

B

C

B

A

Run-time stack

stack frame

automatic manual

st
at

e

state

state

ev
en

t m
an

ag
er

CS 5204 – Operating Systems

Threads vs. Events

5

Threads are Bad

Difficult to program
Synchronizing access to shared state
Deadlock
Hard to debug (race conditions, repeatability)

Break abstractions
Modules must be designed “thread safe”

Difficult to achieve good performance
simple locking lowers concurrency
context switching costs

OS support inconsistent
semantics and tools vary across platforms/systems

May not be right model
Window events do not map to threads but to events

CS 5204 – Operating Systems

Threads vs. Events

6

Events are Bad- Threads are Good

Thread advantages
Avoids “stack ripping” to maintain application context
Exception handling simpler due to history recorded in stack
Exploits available hardware concurrency

Events and Threads are duals
Performance of well designed thread system equivalent to well
designed event system (for high concurrency servers)
Each can cater to the common control flow patterns (a
call/return pattern is needed for the acknowledgement required
to build robust systems)
Each can accommodate cooperative multitasking
Stack maintenance problems avoided in event systems and
can be mitigated in thread systems

CS 5204 – Operating Systems

Threads vs. Events

7

Stack Ripping

CS 5204 – Operating Systems

Threads vs. Events

8

Ripped Code

CS 5204 – Operating Systems

Threads vs. Events

9

Ousterhout’s conclusions

CS 5204 – Operating Systems

Threads vs. Events

10

Two approaches

Capriccio

Each service request bound to
an independent thread
Each thread executes all
stages of the computation

Seda

Each thread bound to one
stage of the computation
Each service request proceeds
through successive stages

CS 5204 – Operating Systems

Threads vs. Events

11

Cappricio

Philosophy
Thread model is useful
Improve implementation to remove barriers to
scalability

Techniques
User-level threads
Linked stack management
Resource aware scheduling

Tools
Compiler-analysis
Run-time monitoring

CS 5204 – Operating Systems

Threads vs. Events

12

Capriccio – user level threads

Intercepts and converts blocking I/O into
asynchronous I/O
Does polling to determine I/O completion

scheduler Capriccio

kernelas
yn

ch
I/

O

po
lli

ng

scheduler Capriccio

kernel

yield

User-level threading with fast context switch
Cooperative scheduling (via yielding)
Thread management costs independent of
number of threads (except for sleep queue)

CS 5204 – Operating Systems

Threads vs. Events

13

Compiler Analysis - Checkpoints

Call graph – each node is a procedure annotated with maximum stack size needed
to execute that procedure; each edge represents a call
Maximum stack size for thread executing call graph cannot be determined
statically

Recursion (cycles in graph)
Sub-optimal allocation (different paths may require substantially different stack
sizes)

Insert checkpoints to allocate additional stack space (“chunk”) dynamically
On entry (e.g., CO)
On each back-edge (e.g. C1)
On each edge where the needed (maximum) stack space to reach a leaf node or
the next checkpoints exceeds a given limit (MaxPath) (e.g., C2 and C3 if limit is
1KB)

Checkpoint code added by source-source translation

CS 5204 – Operating Systems

Threads vs. Events

14

Linked Stacks

Thread stack is collection of non-contiguous blocks (‘chunks”)
MinChunk: smallest stack block allocated
Stack blocks “linked” by saving stack pointer for “old” block in
field of “new” block; frame pointer remains unchanged
Two kinds of wasted memory

Internal (within a block) (yellow)
External (in last block) (blue)

Two controlling parameters
MaxPath: tradeoff between amount of instrumentation and run-
time overhead vs. internal memory waste
MinChunk: tradeoff between internal memory waste and
external memory waste

Memory advantages
Avoids pre-allocation of large stacks
Improves paging behavior by (1) leveraging LIFO stack usage
pattern to share chunks among threads and (2) placing multiple
chunks on the same page

A

C

main

B

CS 5204 – Operating Systems

Threads vs. Events

15

Resource-aware scheduling

Blocking graph
Nodes are points where the program blocks
Arcs connect successive blocking points

Blocking graph formed dynamically
Appropriate for long-running program (e.g. web servers)

Scheduling annotations
Edge – exponentially weighted average resource usage
Node – weighted average of its edge values (average resource usage of next edge)
Resources – CPU, memory, stack, sockets

Resource-aware scheduling:
Dynamically prioritize nodes/threads based on whether the thread will increase or
decrease its use of each resource
When a resource is scarce, schedule threads that release that resource

Limitations
Difficult to determine the maximum capacity of a resource
Application-managed resources cannot be seen
Applications that do not yield

CS 5204 – Operating Systems

Threads vs. Events

16

Performance comparison

Apache – standard distribution
Haboob – event-based web server
Knot – simple, threaded specially
developed web server

CS 5204 – Operating Systems

Threads vs. Events

17

SEDA – Staged Event-Driven Architecture

Goals
Massive concurrency

required for heavily used web servers
large spikes in load (100x increase in demand)
requires efficient, non-blocking I/O

Simplify constructing well-conditioned services
“well conditioned”: behaves like a simple pipeline
offers graceful degradation, maintaining high throughput as load exceeds capacity
provides modular architecture (defining and interconnecting “stages”)
hides resource management details

Introspection
ability to analyze and adapt to the request stream

Self-tuning resource management
thread pool sizing
dynamic event scheduling

Hybrid model
combines threads (within stages) and events (between stages)

CS 5204 – Operating Systems

Threads vs. Events

18

SEDA’s point of view

Thread model and performance Event model and performance

CS 5204 – Operating Systems

Threads vs. Events

19

SEDA - structure

Event queue – holds incoming requests
Thread pool

takes requests from event queue and invokes event handler
Limited number of threads per stage

Event handler
Application defined
Performs application processing and possibly generates events for other
stages
Does not manage thread pool or event queue

Controller – performs scheduling and thread management

CS 5204 – Operating Systems

Threads vs. Events

20

Resource Controllers

Thread pool controller
Thread added (up to a maximum) when
event queue exceeds threshold
Thread deleted when idle for a given period

Batching controller
Adjusts batching factor: the number of event
processed at a time
High batching factor improves throughput
Low batching factor improves response time
Goal: find lowest batching factor that sustains
high throughput

CS 5204 – Operating Systems

Threads vs. Events

21

Asynchronous Socket layer

Implemented as a set of SEDA stages
Each asynchSocket stage has two event queues
Thread in each stage serves each queue alternately based on time-out
Similar use of stages for file I/O

CS 5204 – Operating Systems

Threads vs. Events

22

Performance

Apache
process-per-request design

Flash
event-drived design
one process handling most tasks

Haboob
SEDA-based design

Fairness
Measure of number of requests completed per client
Value of 1 indicates equal treatment of clients
Value of k/N indicates k clients received equal treatment and n-k clients received
no service

CS 5204 – Operating Systems

Threads vs. Events

23

TAME

• expressive abstractions for event-based programming
• implemented via source-source translation
• avoids stack ripping
• type safety and composability via templates

M. Krohn, E. Kohler, M.F. Kaashoek, “Events Can Make Sense,”
USENIX Annual Technical Conference, 2007, pp. 87-100.

CS 5204 – Operating Systems

Threads vs. Events

24

A typical thread programming problem

f

(blocking, synchronous
operation, e.g., I/O)

c

Problem: the thread becomes blocked in the
called routine (f) and the caller (c) is unable to
continue even if it logically is able to do so.

CS 5204 – Operating Systems

Threads vs. Events

25

A partial solution

Issues
• Synchronization: how does the caller know when the signal
has occurred without busy-waiting?

• Data: how does the caller know what data resulted from the
operation?

f

(non-blocking, asynchronous
operation, e.g., I/O)

c

handler (signal + data)

register

CS 5204 – Operating Systems

Threads vs. Events

26

A “Tame” solution

f

(non-blocking, asynchronous
operation, e.g., I/O)

c

handler

(signal + data)

<I>

<T>e(a):

r:

e.trigger(data)

<T> a;slot

e

<I> rendezvous<I> <T> event<T>

a <- data

(11)

(9)

(8)
(7)

(6)

(5)
(4)

(2)
(1)

(10)

(3)

wait point

CS 5204 – Operating Systems

Threads vs. Events

27

Tame Primitives

CS 5204 – Operating Systems

Threads vs. Events

28

An example

tamed gethost_ev(dsname name, event<ipaddr> e);

CS 5204 – Operating Systems

Threads vs. Events

29

Variations on control flow

window/pipeline
control flow

parallel control
flow

CS 5204 – Operating Systems

Threads vs. Events

30

Event IDs & Composability

CS 5204 – Operating Systems

Threads vs. Events

31

Closures

f(…params…)
{

rendezvous<> r;
tvars { …locals…};

twait(r);
continue_here:

}

copy

copy

closure

r:

Smart pointers and reference counting insure correct
deallocation of events, redezvous, and closures.

CS 5204 – Operating Systems

Threads vs. Events

32

Performance
(relative to Capriccio)

