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Concurrent Processing

How can concurrent processing activity be structured on a
single processor?

How can application-level information and system-level
information be combined to provide efficient scheduling of
processing activities?
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Technologies Driving Concurrent Programming
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Synchronization

m Difficulty in controlling concurrency via blocking
0 Deadlock
O Priority inversion
0 Convoying

m A variety of “correct” answers

0 Sequential consistency (Lamport): individual operations
on a shared resource (e.g., memory).

0 Serializability: a group of operations (transaction) which
may be interleaved with operations of another group
(transaction) each operating on a shared resource (e.g., a
database).

0 Linearizability (Herlihy, Wing): a group of operations
(transaction) not interleaved with operations of another
group (transaction) each operating on a shared object.
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Context

Support for concurrent and parallel programming

conform to application semantics functionality
respect priorities of applications

no unnecessary blocking

concurrent

fast context switch

parallel

v
: e erformance
high processor utilization P

relative importance
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“Heavyweight” Process Model

user |
kernel l

* simple, uni-threaded model

* security provided by address space boundaries
* high cost for context switch

e coarse granularity limits degree of concurrency
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“Lightweight” (User-level) Threads
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* thread semantics defined by application

« fast context switch time (within an order of magnitude of
procedure call time)

o system scheduler unaware of user thread priorities

 unnecessary blocking (1/0O, page faults, etc.)

e processor under-utilization

user

kernel

mTed'I

CS 5204 — Operating Systems



N
I Concurrency

Kernel-level Threads

kernel / l !

* thread semantics defined by system

 overhead incurred due to overly general implementation and cost of
kernel traps for thread operations

e context switch time better than process switch time by an order of
magnitude, but an order of magnitude worse than user-level threads

« system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization
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Problem

m  Application has knowledge of the user-level thread state but has little

knowledge of or influence over critical kernel-level events (by design!
to achieve the virtual machine abstraction)

m  Kernel has inadequate knowledge of user-level thread state to make
optimal scheduling decisions

Solution: a mechanism that facilitates exchange of

Information between user-level and kernel-level
mechanisms.

A general system design problem: communicating
Information and control across layer boundaries while

preserving the inherent advantages of layering,
abstraction, and virtualization.
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Scheduler Activations: Structure

» Change in processor
requirements

_ thread
library

Scheduler activations

kernel support

‘schange in processor
allocation

kernel » change in thread

status
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Communication via Upcalls

The kernel-level scheduler activation mechanism
communicates with the user-level thread library by
a set of upcalls:

Add this processor (processor #)

Processor has been preempted (preempted activation #, machine state)
Scheduler activation has blocked (blocked activation #)

Scheduler activation has unblocked (unblocked activation #, machine state)

The thread library must maintain the association
between a thread’s identity and thread’s scheduler
activation number.
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Role of Scheduler Activations

abstraction iImplementation
user-level
threads thread
library
1 1 kernel
P1 P2 -.-|Pn SA SA ... SA

/ Invariant: there is one running scheduler

virtual activation (SA) for each processor assigned
multiprocessor  tO the user process.
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Avoiding Effects of Blocking

user user

1: system call 4: upcall

\

%i 3nww-ﬂ»i;
2: block

O
kernel kernel
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Resuming Blocked Thread

USer

t 4: preempt

5: resume
3: upcall

)

2: preempt — %

: 1: unblock

kernel
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Performance

Concurrency

Operation FastThreads on FastThreads on Topaz Threads Ultrix process
Topaz Threads Scheduler Activations
Null fork 34 37 948 11300
Signal-Wait 37 42 441 1840
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