Scheduler Activations

CS 5204 — Operating Systems

N
I Concurrency

Concurrent Processing

How can concurrent processing activity be structured on a
single processor?

How can application-level information and system-level
information be combined to provide efficient scheduling of
processing activities?

Virginia CS 5204 — Operating Systems

mTed'I

Concurrency

|

parallelism

performance

VM@T@ CS 5204 — Operating Systems 3

Concurrency

Technologies Driving Concurrent Programming

10000

1000

Intel Processor Clock Speed (MHz)

Pentium 4 Prescott

Pentium
100

Pentiumill

Y

Muilticore Crisis
isHere!

Celeron

80386

1958 1973 1979 1984 1950

1995 2001 2006

Sun: 8 core
chip

Intel: Quad Core

Niagara2 Chip Overview

* 8 Sparc cores, 8

threads each

|+ Shared 4MB L2,

8-banks, 16-way
associative

* Four dual-channel

FBDIMM memory
controllers

|+ Two 10/1 Gb Enet

ports

« One PCI-Express

x8 1.0A port

* 342 mm*2 die

size in 65 nm

+ 711 signal /O,

1831 total

Intel: 80 core
experimental
system

T

CS 5204 — Operating Systems

N
I Concurrency

Synchronization

m Difficulty in controlling concurrency via blocking
0 Deadlock
O Priority inversion
0 Convoying

m A variety of “correct” answers

0 Sequential consistency (Lamport): individual operations
on a shared resource (e.g., memory).

0 Serializability: a group of operations (transaction) which
may be interleaved with operations of another group
(transaction) each operating on a shared resource (e.g., a
database).

0 Linearizability (Herlihy, Wing): a group of operations
(transaction) not interleaved with operations of another
group (transaction) each operating on a shared object.

vm@Tedl CS 5204 — Operating Systems 5

N
I Concurrency

Context

Support for concurrent and parallel programming

conform to application semantics functionality
respect priorities of applications

no unnecessary blocking

concurrent

fast context switch

parallel

v
: e erformance
high processor utilization P

relative importance

Vm@&m CS 5204 — Operating Systems

N
Concurrency

“Heavyweight” Process Model

user |
kernel l

* simple, uni-threaded model

* security provided by address space boundaries
* high cost for context switch

e coarse granularity limits degree of concurrency

mTed'I

CS 5204 — Operating Systems

N
Concurrency

“Lightweight” (User-level) Threads

@ (B
;¢

* thread semantics defined by application

« fast context switch time (within an order of magnitude of
procedure call time)

o system scheduler unaware of user thread priorities

 unnecessary blocking (1/0O, page faults, etc.)

e processor under-utilization

user

kernel

mTed'I

CS 5204 — Operating Systems

N
I Concurrency

Kernel-level Threads

kernel / l !

* thread semantics defined by system

 overhead incurred due to overly general implementation and cost of
kernel traps for thread operations

e context switch time better than process switch time by an order of
magnitude, but an order of magnitude worse than user-level threads

« system scheduler unaware of user thread state (e.g, in a critical region)
leading to blocking and lower processor utilization

vugjﬁTech CS 5204 — Operating Systems 9

N
I Concurrency

Problem

m Application has knowledge of the user-level thread state but has little

knowledge of or influence over critical kernel-level events (by design!
to achieve the virtual machine abstraction)

m Kernel has inadequate knowledge of user-level thread state to make
optimal scheduling decisions

Solution: a mechanism that facilitates exchange of

Information between user-level and kernel-level
mechanisms.

A general system design problem: communicating
Information and control across layer boundaries while

preserving the inherent advantages of layering,
abstraction, and virtualization.

Vm@.red] CS 5204 — Operating Systems

10

N
I Concurrency

Scheduler Activations: Structure

» Change in processor
requirements

_ thread
library

Scheduler activations

kernel support

‘schange in processor
allocation

kernel » change in thread

status

V@H@Tﬁh CS 5204 — Operating Systems 11

I.I_ Concurrency

Communication via Upcalls

The kernel-level scheduler activation mechanism
communicates with the user-level thread library by
a set of upcalls:

Add this processor (processor #)

Processor has been preempted (preempted activation #, machine state)
Scheduler activation has blocked (blocked activation #)

Scheduler activation has unblocked (unblocked activation #, machine state)

The thread library must maintain the association
between a thread’s identity and thread’s scheduler
activation number.

Virginia CS 5204 — Operating Systems 12
@Tedl

I.I_ Concurrency

Role of Scheduler Activations

abstraction iImplementation
user-level
threads thread
library
1 1 kernel
P1 P2 -.-|Pn SA SA ... SA

/ Invariant: there is one running scheduler

virtual activation (SA) for each processor assigned
multiprocessor tO the user process.

V@R@Tedl CS 5204 — Operating Systems 13

N
I Concurrency

Avoiding Effects of Blocking

user user

1: system call 4: upcall

\

%i 3nww-ﬂ»i;
2: block

O
kernel kernel

Vm@&m CS 5204 — Operating Systems

N
I Concurrency

Resuming Blocked Thread

USer

t 4: preempt

5: resume
3: upcall

)

2: preempt — %

: 1: unblock

kernel

Vm@&m CS 5204 — Operating Systems 15

| —

Performance

Concurrency

Operation FastThreads on FastThreads on Topaz Threads Ultrix process
Topaz Threads Scheduler Activations
Null fork 34 37 948 11300
Signal-Wait 37 42 441 1840
Virginia CS 5204 — Operating Systems 16

&

Tech

