
CS5204 – Operating Systems 1

π Calculus

Reasoning about concurrency and
communication (Part 2).

CS 5204 – Operating Systems 2

π Calculus

A Process with Alternative Behavior

A vending machine that dispenses chocolate candies allows either a 1p
(p for pence) or a 2p coin to be inserted. After inserting a 1p coin, a
button labelled “little” may be pressed and the machine will then
dispense a small chocolate. After inserting a 2p coin, the “big” button
may be pressed and the machine will then dispense a large chocolate.
The candy must be collected before additional coins can be inserted.

big little

1p2p

collect

CS 5204 – Operating Systems 3

π Calculus

An Process with Alternative Behavior

big little

1p2p

collect

VM(big, little, collect, 1p, 2p) =
2p.big.collect largeChoc.VM(big, little, collect, 1p, 2p)

+ 1p.little.collect smallChoc.VM(big, little, collect, 1p, 2p)

The plus (“+”) operator expresses alternative behavior.

CS 5204 – Operating Systems 4

π Calculus

Modeling a Bounded Buffer
Suppose that a buffer has get and put operations and can hold up to three data
items. Ignoring the content of the data items, and focusing only on the
operations, a buffer can be defined as:

Buffer 0(put, get) = put.Buffer 1(put, get)
Buffer 1(put, get) = put.Buffer 2(put, get) + get.Buffer 0(put, get)
Buffer 2(put, get) = put.Buffer 3(put, get) + get.Buffer 1(put, get)
Buffer 3(put, get) = get.Buffer 2(put, get)

Notice that this captures the idea that a get operation is not possible when the
buffer is empty (i.e., in state Buffer 0) and a put operation is not possible
when the buffer is full (i.e., in state Buffer 3).

CS 5204 – Operating Systems 5

π Calculus

Reusing a Process Definition

CELLa CELL bcc

CELLa b

CELLddCELLa CELL
bcc

CELL(a,b) = a.b.CELL(a,b)

C0 = CELL(a, c)
C1 = CELL(c, b)
BUFF2 = (ν c) (C0 | C1)

C0 = CELL (a,c)
C1 = CELL (c,d)
C2 = CELL (d,b)
BUFF3 = (ν c)(ν d)(C0 | C1 | C2)

CS 5204 – Operating Systems 6

π Calculus

Modeling Mutual Exclusion

A lock to control access to a critical region is modeled by:

Lock(lock, unlock) = lock.Locked(lock, unlock)
Locked(lock, unlock) = unlock.Lock(lock, unlock)

A generic process with a critical region follows the locking protocol is:

Process(enter, exit, lock, unlock)

= lock.enter.exit.unlock.Process(enter, exit, lock, unlock)

A system of two processes is:

Process1 = Process (enter1, exit1, lock, unlock)
Process2 = Process (enter2, exit2, lock, unlock)

MutexSystem = (ν lock) (ν unlock) (Process1 | Process2 | Lock)

CS 5204 – Operating Systems 7

π Calculus

Modeling Mutual Exclusion

A system of two processes is:

Process1 = Process (enter1, exit1, lock, unlock)
Process2 = Process (enter2, exit2, lock, unlock)
MutexSystem = new lock, unlock (Process1 | Process2 | Lock)

A “specification” for this system is:

MutexSpec(enter1, exit1, enter2, exit2)

= enter1.exit1.MutexSpec(enter1, exit1, enter2, exit2)

+ enter2.exit2.MutexSpec(enter1, exit1 , enter2, exit2)

CS 5204 – Operating Systems 8

π Calculus

Modeling a Bounded Buffer

The Buffer equations might be thought of as the “specification” of the
bounded buffer because it only refers to states of the buffer and not to any
internal components or machinery to create these states.

An “implementation” of the bounded buffer is readily available by re-
labeling the BUFF3 agent developed earlier

CELL = a.b.CELL

C0 = CELL (put , c)
C1 = CELL (c , d)
C2 = CELL (d , get)
BufferImpl = (ν c) (ν d) (C0 | C1 | C2)

CS 5204 – Operating Systems 9

π Calculus

Equality of Processes

We would like to know if two process have the same
behavior (interchagable), or if an implementation
has the behavior required by a given specification
(conformance). For example:

is Buffer0 = BufferImpl ?
is MutexSystem = MutexSpec ?

How do we tell if two behaviors are the same?

CS 5204 – Operating Systems 10

π Calculus

Structural Congruence

Two expressions are the same if one can be transformed to the other
using these rules:

(1) change of bound names : (ν a) (a.P) = (ν c) (c.P)
(2) reordering of terms in summation: a.P + b.Q = b.Q + a.P
(3) P | 0 = P, P | Q = Q | P, P | (Q | R) = (P | Q) | R
(4) (ν x) (P | Q) = P | (ν x) Q if x is not a free name in P,

(ν x) 0 = 0, (ν x) (ν y) P = (ν y) (ν x) P

CS 5204 – Operating Systems 11

π Calculus

Reaction Rules

An equation can be changed by the application of these rules that
express the “reaction” of the system being described:

COMM: (x(y).P + M) | x z.Q + N) {z/y}P | Q

P P’

P | Q P’ | Q
PAR:

P P’
(ν x) P (ν x) P’

RES:

Q=P P P’ P’=Q’
Q Q’

STRUCT:

CS 5204 – Operating Systems 12

π Calculus

Reaction Rules

Processes: A(a,c) = a.A'(a,c) B(c,b) = c.B'(c,b)
A' (a,c) = c.A(a,c) B'(c,b) = b.B(c,b)

A system: System = ν c (A | B)

Show: ν c (A' | B) ν c (A | B')

by REACT: c.A | c.B' A | B'

by RES: ν c(c.A | c.B') ν c (A | B')

by definition: ν c (A' | B) ν c(A | B')

CS 5204 – Operating Systems 13

π Calculus

Depicting an Agent's Behavior

a

τ

...

(A|B)

(A'|B)

(A|B')

...

Define:
A = a.A' B = c.B'
A' = c.A B' = b.B
System = (ν c) (A | B)

Draw a graph to show all possible sequences of actions. Here is the
start:

CS 5204 – Operating Systems 14

π Calculus

More of the Behavior

a

τ

(A|B)

(A'|B)

(A|B')

(A|B) (A'|B')

ab

a

(A'|B) (A'|B)

b

CS 5204 – Operating Systems 15

π Calculus

Depicting an Agent's Behavior

a

τ

(A|B)

(A'|B)

(A|B')

a

(A'|B')

b

b

CS 5204 – Operating Systems 16

π Calculus

Equivalence of Agents

CS 5204 – Operating Systems 17

π Calculus

Bisimulation

The behavior of two process are equal when each can simulate
exactly the behavior of the other.

Q

I can do everything
you can do!

P

I can do everything
you can do!

