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Event Ordering

Time and Ordering

The two critical differences between centralized and distributed systems are: 
• absence of shared memory 
• absence of a global clock 

We will study: 
• how programming mechanisms change as a result of these 

differences 
• algorithms that operate in the absence of a global clock 
• algorithms that create a sense of a shared, global time 
• algorithms that capture a consistent state of a system in the 

absence of shared memory 
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How can the events on P be related to the events on Q? 

Which events of P “happened before” which events of Q? 

Partial answer: events on P and Q are strictly ordered. So: 
P1 --> P2 --> P3 

and 
Q1 --> Q2 --> Q3
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Realization: the only events on P that can causally affect events on Q 
are those that involve communication between P and Q. 

If P1 is a send event and Q2 is the corresponding receive event then it 
must be the case that: 

P1 --> Q2

Q
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“Happened Before” relation: 
If Ei and Ej are two events of the same process, then 

Ei --> Ej if i < j. 
If Ei and Ej are two events of different processes, then 

Ei --> Ej

if Ei is a message send event and Ej is the corresponding message 
receive event. 
The relation is transitive.
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Lamport's Algorithm
Lamport's algorithm is based on two implementation rules that define how 
each process's local clock is incremented. 
Notation: 

• the processes are named Pi , 
• each process has a local clock, Ci

• the clock time for an event a on process Pi is denoted by Ci (a). 
Rule 1:

If a and b are two successive events in Pi and a --> b 
then Ci (b) = Ci (a) + d where d > 0. 

Rule 2:
If a is a message send event on Pi and b is the message receive event on 

Pj then: 
• the message is assigned the timestamp tm = Ci (a) 
• Cj (b) = max ( Cj , tm +d)
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Example of Lamport’s Algorithm
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Limitation of Lamport's Algorithm

In Lamport's algorithm two events that are causally related will be related 
through their clock times. That is:

If a --> b then C(a) < C(b)

However, the clock times alone do not reveal which events are causally 
related. That is, if C(a) < C(b) then it is not known if a --> b or not. All 
that is known is:

if C(a) < C(b) then b -/-> a

It would be useful to have a stronger property - one that guarantees that 

a --> b iff C(a) < C(b)

This property is guaranteed by Vector Clocks.
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Vector Clock Rules
Each process Pi is equipped with a clock Ci which is an integer vector of 
length n.
Ci(a) is referred to as the timestamp event a at Pi

Ci[i], the ith entry of Ci corresponds to Pi’s on logical time.
Ci[j], j≠ i is Pi’s best guess of the logical time at Pj

Implementation rules for vector clocks:
[IR1] Clock Ci is incremented between any two successive events in 
process Pi

Ci[i] := Ci[i] + d (d > 0)
[IR2] If event a is the sending of the message m by process Pi, then 
message m is assigned a vector timestamp tm = Ci(a); on receiving the same 
message m by process Pj, Cj is updated as follows:

∀k, Cj[k] := max(Cj[k], tm [k])
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Vector Clocks
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Causal Ordering of Messages
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Birman-Schiper-Stephenson Protocol
1. Before broadcasting a message m, a process Pi increments the vector 
time VTPi[i] and timestamps m. Note that (VTPi[i] - 1) indicates how many 
messages from Pi precede m.

2. A process Pj ≠ Pi, upon receiving message m timestamped VTm from Pi, 
delays its delivery until both the following conditions are satisfied.

a. VTPj[i] = VTm[i] - 1

b. VTPj[k] ≥ VTm[k] ∀k ∈ {1,2,….,n} - {i}

where n is the total number of processes.

Delayed messages are queued at each process in a queue that is 
sorted by vector time of the messages. Concurrent messages are 
ordered by the time of their receipt. 

3. When a message is delivered at a process Pj, VTPj is updated according to 
the vector clocks rule [IR2]
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