
Event Ordering

CS 5204 – Operating Systems 2

Event Ordering

Time and Ordering

The two critical differences between centralized and distributed systems are:
• absence of shared memory
• absence of a global clock

We will study:
• how programming mechanisms change as a result of these

differences
• algorithms that operate in the absence of a global clock
• algorithms that create a sense of a shared, global time
• algorithms that capture a consistent state of a system in the

absence of shared memory

CS 5204 – Operating Systems 3

Event Ordering

Event Ordering

How can the events on P be related to the events on Q?

Which events of P “happened before” which events of Q?

Partial answer: events on P and Q are strictly ordered. So:
P1 --> P2 --> P3

and
Q1 --> Q2 --> Q3

Q

P
P1

Q1

P3P2

Q3Q2

CS 5204 – Operating Systems 4

Event Ordering

Event Ordering

Realization: the only events on P that can causally affect events on Q
are those that involve communication between P and Q.

If P1 is a send event and Q2 is the corresponding receive event then it
must be the case that:

P1 --> Q2

Q

P
P1

Q1

P3P2

Q3Q2

Message

CS 5204 – Operating Systems 5

Event Ordering

Event Ordering

“Happened Before” relation:
If Ei and Ej are two events of the same process, then

Ei --> Ej if i < j.
If Ei and Ej are two events of different processes, then

Ei --> Ej

if Ei is a message send event and Ej is the corresponding message
receive event.
The relation is transitive.

Q

P
P1

Q1

P3P2

Q3Q2

Message

CS 5204 – Operating Systems 6

Event Ordering

Lamport's Algorithm
Lamport's algorithm is based on two implementation rules that define how
each process's local clock is incremented.
Notation:

• the processes are named Pi ,
• each process has a local clock, Ci

• the clock time for an event a on process Pi is denoted by Ci (a).
Rule 1:

If a and b are two successive events in Pi and a --> b
then Ci (b) = Ci (a) + d where d > 0.

Rule 2:
If a is a message send event on Pi and b is the message receive event on

Pj then:
• the message is assigned the timestamp tm = Ci (a)
• Cj (b) = max (Cj , tm +d)

CS 5204 – Operating Systems 7

Event Ordering

Example of Lamport’s Algorithm

P1

P2

P3

1

21

1

2

4

4

3

6

3

5

7 85 6 9

10

CS 5204 – Operating Systems 8

Event Ordering

Limitation of Lamport's Algorithm

In Lamport's algorithm two events that are causally related will be related
through their clock times. That is:

If a --> b then C(a) < C(b)

However, the clock times alone do not reveal which events are causally
related. That is, if C(a) < C(b) then it is not known if a --> b or not. All
that is known is:

if C(a) < C(b) then b -/-> a

It would be useful to have a stronger property - one that guarantees that

a --> b iff C(a) < C(b)

This property is guaranteed by Vector Clocks.

CS 5204 – Operating Systems 9

Event Ordering

Vector Clock Rules
Each process Pi is equipped with a clock Ci which is an integer vector of
length n.
Ci(a) is referred to as the timestamp event a at Pi

Ci[i], the ith entry of Ci corresponds to Pi’s on logical time.
Ci[j], j≠ i is Pi’s best guess of the logical time at Pj

Implementation rules for vector clocks:
[IR1] Clock Ci is incremented between any two successive events in
process Pi

Ci[i] := Ci[i] + d (d > 0)
[IR2] If event a is the sending of the message m by process Pi, then
message m is assigned a vector timestamp tm = Ci(a); on receiving the same
message m by process Pj, Cj is updated as follows:

∀k, Cj[k] := max(Cj[k], tm [k])

CS 5204 – Operating Systems 10

Event Ordering

Vector Clocks

P2

P1

(1,0,0)

(0,1,0)

(3,4,1)(2,0,0)

(2,4,1)(2,2,0)

(2,3,1)

P3
(0,0,2)(0,0,1)

CS 5204 – Operating Systems 11

Event Ordering

Causal Ordering of Messages

P2

P1

Send(M1)

Send(M2)

P3

Sp
ac

e

Time

CS 5204 – Operating Systems 12

Event Ordering

Birman-Schiper-Stephenson Protocol
1. Before broadcasting a message m, a process Pi increments the vector
time VTPi[i] and timestamps m. Note that (VTPi[i] - 1) indicates how many
messages from Pi precede m.

2. A process Pj ≠ Pi, upon receiving message m timestamped VTm from Pi,
delays its delivery until both the following conditions are satisfied.

a. VTPj[i] = VTm[i] - 1

b. VTPj[k] ≥ VTm[k] ∀k ∈ {1,2,….,n} - {i}

where n is the total number of processes.

Delayed messages are queued at each process in a queue that is
sorted by vector time of the messages. Concurrent messages are
ordered by the time of their receipt.

3. When a message is delivered at a process Pj, VTPj is updated according to
the vector clocks rule [IR2]

	Event Ordering
	Time and Ordering
	Event Ordering
	Event Ordering
	Event Ordering
	Lamport's Algorithm
	Example of Lamport’s Algorithm
	Limitation of Lamport's Algorithm
	Vector Clock Rules
	Vector Clocks
	Causal Ordering of Messages
	Birman-Schiper-Stephenson Protocol

