Checkpointing-Recovery
Fault Tolerance

An error is a manifestation of a fault that can lead to a failure.

Failure Recovery:
- backward recovery
 - operation-based (do-undo-redo logs)
 - state-based (checkpointing/logging)
- forward recovery
System Model

Basic approaches
- checkpointing: copying/restoring the state of a process
- logging: recording/replaying messages
Orphan Message

Consistent state

Inconsistent state

(a)

(b)
Regenerating lost messages on recovery:

- if implemented on unreliable communication channels, the application is responsible
- if implemented on reliable communication channels, the recovery algorithm is responsible
Checkpointing

Domino Effect

Cases:
- X fails after x_3
- Y fails after sending message m
- Z fails after sending message n
Other Issues

- **Output commit**
 - the state from which messages are sent to the “outside world” can be recovered
 - affects latency of message delivery to “outside world” and overhead of checkpoint/logging

- **Stable storage**
 - survives process failures
 - contains checkpoint/logging information

- **Garbage collection**
 - removal of checkpoints/logs no longer needed
Logging Protocols

Elements

- Piecewise deterministic (PWD) assumption – the system state can be recovered by replaying message receptions
- Determinant – record of information needed to recover receipt of message

Determinants for m_5 and m_6 not logged
Taxonomy

Rollback-Recovery

- checkpointing
 - uncoordinated
 - coordinated
 - communication-induced
 - blocking
 - non-blocking
 - model-based
 - index-based

- logging
 - pessimistic
 - optimistic
 - causal
Uncoordinated Checkpointing

Rollback-Recovery

- susceptible to domino effect
- can generate useless checkpoints
- complicates storage/GC
- not suitable for frequent output commits
Checkpointing

Cordinated/Blocking Protocols

Rollback-Recovery

- no messages can be in transit during checkpointing
- \(\{x_1, y_1, z_1\} \) forms “recovery line”
Coordinated/Blocking Notation

Each node maintains:
• a monotonically increasing counter with which each message from that node is labeled.
• records of the last message from/to and the first message to all other nodes.

\[\text{last_label_rcvd}_x[Y] \]
\[\text{last_label_sent}_x[Y] \]
\[\text{first_label_sent}_y[X] \]

Note: “sl” denotes a “smallest label” that is < any other label and
“ll” denotes a “largest label” that is > any other label
Coordinated/Blocking Algorithm

(1) When must I take a checkpoint?
(2) Who else has to take a checkpoint when I do?

![Diagram of processes and messages](Diagram.png)

(1) When I (Y) have sent a message to the checkpointing process, X, since my last checkpoint:

\[\text{last_label_rcvd}_x[Y] \geq \text{first_label_sent}_y[X] > \text{sl} \]

(2) Any other process from whom I have received messages since my last checkpoint.

\[\text{ckpt_cohort}_x = \{Y \mid \text{last_label_rcvd}_x[Y] > \text{sl} \} \]
Coordinated/Blocking Algorithm

1. When must I rollback?
2. Who else might have to rollback when I do?

(1) When I, Y, have received a message from the restarting process, X, since X's last checkpoint.
 \[\text{last_label_rcvd}_Y(X) > \text{last_label_sent}_X(Y) \]

(2) Any other process to whom I can send messages.
 \[\text{roll_cohort}_Y = \{ Z \mid Y \text{ can send message to } Z \} \]
Taxonomy

Rollback-Recovery

checkpointing

coordinated

non-blocking

Approach:
“tag” message to trigger checkpointing

Example:
global-state recording algorithm
Communication-Induced Checkpointing

Rollback-Recovery

Z-path: \([m_1, m_2]\) and \([m_3, m_4]\)
Z-cycle: \([m_3, m_4, m_5]\)
Checkpoints (like \(c_{2,2}\)) in a z-cycle are useless
Cause checkpoints to be taken to avoid z-cycles
Orphan process: a non-failed process whose state depends on a non-deterministic event that cannot be reproduced during recovery.

Determinant: the information need to “replay” the occurrence of a non-deterministic event (e.g., message reception).

Avoid orphan processes by guaranteeing:

For all e: not $\text{Stable}(e) \Rightarrow \text{Depend}(e) < \text{Log}(e)$

where:
- $\text{Depend}(e)$ – set of processes affected by event e
- $\text{Log}(e)$ – set of processes with e logged on volatile memory
- $\text{Stable}(e)$ – set of processes with e logged on stable storage
Checkpointing

Pessimistic Logging

- Determinant is logged to stable storage before message is delivered
- Disadvantage: performance penalty for synchronous logging
- Advantages:
 - immediate output commit
 - restart from most recent checkpoint
 - recovery limited to failed process(es)
 - simple garbage collection
Optimistic Logging

- determinants are logged asynchronously to stable storage
- consider: P_2 fails before m_5 is logged
- advantage: better performance in failure-free execution
- disadvantages:
 - coordination required on output commit
 - more complex garbage collection
Causal logging

- combines advantages of optimistic and pessimistic logging
- based on the set of events that causally precede the state of a process
- guarantees determinants of all causally preceding events are logged to stable storage or are available locally at non-failed process
- non-failed process “guides” recovery of failed processes
- piggybacks on each message information about causally preceding messages
- reduce cost of piggybacked information by send only difference between current information and information on last message