
CS5204 – Operating Systems 1

Checkpointing-Recovery

CS 5204 – Operating Systems 2

Checkpointing

Fault Tolerance

erroneous state error

valid state
failure

causes
fault

leads to

recovery

An error is a manifestation of a fault that can lead to a failure.

Failure Recovery:
• backward recovery

• operation-based (do-undo-redo logs)
• state-based (checkpointing/logging)

• forward recovery

CS 5204 – Operating Systems 3

Checkpointing

System Model

Basic approaches
• checkpointing : copying/restoring the state of a process
• logging : recording/replaying messages

CS 5204 – Operating Systems 4

Checkpointing

Orphan Message

X
m

x1

Y
y1

CS 5204 – Operating Systems 5

Checkpointing
Lost Messages

Y

X
m

y1

x1

Regenerating lost messages on recovery:
• if implemented on unreliable communication channels, the application is
responsible

• if impelmented on reliable communication channels, the recovery
algorithm is responsible

CS 5204 – Operating Systems 6

Checkpointing

Domino Effect

Cases:
• X fails after x3
• Y fails after sending message m
• Z fails after sending message n

x2 x3

X

n

my2

x1

z2z1

Z

Y
y1

CS 5204 – Operating Systems 7

Checkpointing

Other Issues

Output commit
the state from which messages are sent to the “outside
world” can be recovered
affects latency of message delivery to “outside world” and
overhead of checkpoint/logging

Stable storage
survives process failures
contains checkpoint/logging information

Garbage collection
removal of checkpoints/logs no longer needed

CS 5204 – Operating Systems 8

Checkpointing

Logging Protocols

Elements
• Piecewise deterministic (PWD) assumption – the system state can be

recovered by replaying message receptions
• Determinant – record of information needed to recover receipt of message

Determinants for m5 and m6 not logged

CS 5204 – Operating Systems 9

Checkpointing

Taxonomy

Rollback-Recovery

checkpointing logging

uncoordinated coordinated communication
-induced

pessimistic optimistic causal

blocking non-blocking index-basedmodel-based

CS 5204 – Operating Systems 10

Checkpointing

Uncoordinated Checkpointing

Rollback-Recovery

checkpointing

uncoordinated
• susceptible to domino effect
• can generate useless checkpoints
• complicates storage/GC
• not suitable for frequent output commits

CS 5204 – Operating Systems 11

Checkpointing

Cordinated/Blocking Protocols

Rollback-Recovery

checkpointing

coordinated

blocking

X

Z

Y
my1 y2

x1 x2

z1 z2

• no messages can be in transit during checkpointing
• {x1, y1, z1} forms “recovery line”

CS 5204 – Operating Systems 12

Checkpointing

Coordinated/Blocking Notation

Each node maintains:
• a monotonically increasing counter with which each message from that node is labeled.
• records of the last message from/to and the first message to all other nodes.

X

Y

last_label_rcvdX[Y]
last_label_sentX[Y]

first_label_sentY[X]

m.l (a message m and its label l)

Note: “sl” denotes a “smallest label” that is < any other label and
“ll” denotes a “largest label” that is > any other label

CS 5204 – Operating Systems 13

Checkpointing

Coordinated/Blocking Algorithm

(1) When must I take a checkpoint?
(2) Who else has to take a checkpoint when I do?

tentative checkpoint

(1) When I (Y) have sent a message to the checkpointing process, X, since my last
checkpoint:

last_label_rcvdX[Y] >= first_label_sentY[X] > sl
(2) Any other process from whom I have received messages since my last checkpoint.

ckpt_cohortX = {Y | last_label_rcvdX[Y] > sl}

X

m

x1 x2

Z

Y
y1 y2

z1 z2

CS 5204 – Operating Systems 14

Checkpointing

Coordinated/Blocking Algorithm
(1) When must I rollback?
(2) Who else might have to rollback when I do?

(1) When I ,Y, have received a message from the restarting process,X,
since X's last checkpoint.

last_label_rcvdY(X) > last_label_sentX(Y)
(2) Any other process to whom I can send messages.

roll_cohort Y = {Z | Y can send message to Z}

X

Z

Y
y1 y2

x1 x2

z1 z2

CS 5204 – Operating Systems 15

Checkpointing

Taxonomy

Rollback-Recovery

checkpointing

coordinated

non-blocking

Approach:
“tag” message to trigger checkpointing

Example:
global-state recording algorithm

CS 5204 – Operating Systems 16

Checkpointing

Communication-Induced Checkpointing

checkpointing

Z-path:[m1,m2] and [m3,m4]
Z-cycle: [m3,m4,m5]
Checkpoints (like c2,2) in a z-cycle are useless
Cause checkpoints to be taken to avoid z-cycles

Rollback-Recovery

communication
-induced

CS 5204 – Operating Systems 17

Checkpointing

Logging

Rollback-Recovery

logging

pessimistic optimistic causal

Orphan process: a non-failed process whose state depends on a
non-deterministic event that cannot be reproduced during
recovery.
Determinant: the information need to “replay” the occurrence
of a non-deterministic event (e.g., message reception).

Avoid orphan processes by guaranteeing:

For all e : not Stable(e) => Depend(e) < Log(e)

where: Depend(e) – set of processes affected by event e
Log(e) – set of processes with e logged on volatile memory
Stable(e) – set of processes with e logged on stable storage

CS 5204 – Operating Systems 18

Checkpointing

Pessimistic Logging

•Determinant is logged to stable storage before message is delivered
•Disadvantage: performance penalty for synchronous logging
•Advantages:

• immediate output commit
• restart from most recent checkpoint
• recovery limited to failed process(es)
• simple garbage collection

CS 5204 – Operating Systems 19

Checkpointing

Optimistic Logging

• determinants are logged asynchronously to stable storage
• consider: P2 fails before m5 is logged
• advantage: better performance in failure-free execution
• disadvantages:

• coordination required on output commit
• more complex garbage collection

CS 5204 – Operating Systems 20

Checkpointing

Causal logging

combines advantages of optimistic and pessimistic logging
based on the set of events that causally precede the state of a
process
guarantees determinants of all causally preceding events are logged
to stable storage or are available locally at non-failed process
non-failed process “guides” recovery of failed processes
piggybacks on each message information about causally preceding
messages
reduce cost of piggybacked information by send only difference
between current information and information on last message

	Checkpointing-Recovery
	Fault Tolerance
	System Model
	Orphan Message
	Domino Effect
	Other Issues
	Logging Protocols
	Taxonomy
	Uncoordinated Checkpointing
	Cordinated/Blocking Protocols
	Coordinated/Blocking Notation
	Coordinated/Blocking Algorithm
	Coordinated/Blocking Algorithm
	Taxonomy
	Communication-Induced Checkpointing
	Logging
	Pessimistic Logging
	Optimistic Logging
	Causal logging

