
5204 – Operating Systems

Threads vs. Events

Capriccio – A Thread Model



CS 5204 – Operating Systems

Threads vs. Events

2

Two approaches

Capriccio

Each service request bound to 
an independent thread
Each thread executes all 
stages of the computation

Seda

Each thread bound to one 
stage of the computation
Each service request proceeds 
through successive stages



CS 5204 – Operating Systems

Threads vs. Events

3

Capriccio

Philosophy
Thread model is useful
Improve implementation to remove barriers to 
scalability

Techniques
User-level threads
Linked stack management
Resource aware scheduling

Tools
Compiler-analysis
Run-time monitoring



CS 5204 – Operating Systems

Threads vs. Events

4

Capriccio – user level threads

Intercepts and converts blocking I/O into 
asynchronous I/O
Does polling to determine I/O completion

scheduler Capriccio

kernelas
yn

ch
I/

O

po
lli

ng
 

scheduler Capriccio

kernel

yield

User-level threading with fast context switch
Cooperative scheduling (via yielding)
Thread management costs independent of 
number of threads (except for sleep queue)



CS 5204 – Operating Systems

Threads vs. Events

5

Compiler Analysis - Checkpoints

Call graph – each node is a procedure annotated with maximum stack size needed 
to execute that procedure; each edge represents a call
Maximum stack size for thread executing call graph cannot be determined 
statically

Recursion (cycles in graph)
Sub-optimal allocation (different paths may require substantially different stack 
sizes)

Insert checkpoints to allocate additional stack space (“chunk”) dynamically
On entry (e.g., CO)
On each back-edge (e.g. C1)
On each edge where the needed (maximum) stack space to reach a leaf node or 
the next checkpoints exceeds a given limit (MaxPath) (e.g., C2 and C3 if limit is 
1KB)

Checkpoint code added by source-source translation



CS 5204 – Operating Systems

Threads vs. Events

6

Linked Stacks

Thread stack is collection of non-contiguous blocks (‘chunks”)
MinChunk: smallest stack block allocated
Stack blocks “linked” by saving stack pointer for “old” block in 
field of “new” block; frame pointer remains unchanged
Two kinds of wasted memory

Internal (within a block) (yellow)
External (in last block) (blue)

Two controlling parameters
MaxPath: tradeoff between amount of instrumentation and run-
time overhead vs. internal memory waste
MinChunk: tradeoff between internal memory waste and 
external memory waste

Memory advantages
Avoids pre-allocation of large stacks
Improves paging behavior by (1) leveraging LIFO stack usage 
pattern to share chunks among threads and (2) placing multiple 
chunks on the same page

A

C

main

B



CS 5204 – Operating Systems

Threads vs. Events

7

Resource-aware scheduling

Blocking graph
Nodes are points where the program blocks
Arcs connect successive blocking points

Blocking graph formed dynamically
Appropriate for long-running program (e.g. web servers)

Scheduling annotations
Edge – exponentially weighted average resource usage
Node – weighted average of its edge values (average resource usage of next edge)
Resources – CPU, memory, stack, sockets

Resource-aware scheduling:
Dynamically prioritize nodes/threads based on whether the thread will increase or 
decrease its use of each resource
When a resource is scarce, schedule threads that release that resource

Limitations
Difficult to determine the maximum capacity of a resource
Application-managed resources cannot be seen
Applications that do not yield



CS 5204 – Operating Systems

Threads vs. Events

8

Performance comparison

Apache – standard distribution
Haboob – event-based web server
Knot – simple, threaded specially 
developed web server


