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TWO PHASE LOCKING 

3.1 AGGRESSIVE AND CONSERVATIVE SCHEDULERS 

In this chapter we begin our study of practical schedulers by looking at two 
phase locking schedulers, the most popular type in commercial products. For 
most of the chapter, we focus on locking in centralized DBSs, using the model 
presented in Chapter 1. Later sections show how locking schedulers can be 
modified to handle a distributed system environment. The final section 
discusses specialized locking protocols for trees and dags. 

Recall from Chapter 1 that when a scheduler receives an operation from a 
TM it has three options: 

1. immediately schedule it (by sending it to the DM); 

2. delay it (by inserting it into some queue); or 

3. reject it (thereby causing the issuing transaction to abort). 

Each type of scheduler usually favors one or two of these options. Based 
on which of these options the scheduler favors, we can make the fuzzy, 
yet conceptually useful, distinction between aggressive and conservative 
schedulers. 

An aggressive scheduler tends to avoid delaying operations; it tries to 
schedule them immediately, But to the extent it does so, it foregoes the oppor- 
tunity to reorder operations it receives later on. By giving up the opportunity 
to reorder operations, it may get stuck in a situation in which it has no hope of 
finishing the execution of all active transactions in a serializable fashion. At 
this point, it has to resort to rejecting operations of one or more transactions, 
thereby causing them to abort (option (3) above). 
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A conservative scheduler, on the other hand, tends to delay operations. 
This gives it more leeway to reorder operations it receives later on. This Ieeway 
makes it less likely to get stuck in a situation where it has to reject operations 
to produce an SR execution. An extreme case of a conservative scheduler is one 
that, at any given time, delays the operations of all but one transaction. When 
that transaction terminates, another one is selected to have its operations 
processed. Such a scheduler processes transactions serially. It never needs to 
reject an operation, but avoids such rejections by sometimes excessively delay- 
ing operations. 

There is an obvious performance trade-off between aggressive and conser- 
\Jative schedulers. Aggressive schedulers avoid delaying operations and thereby 
risk rejecting them later. Conservative schedulers avoid rejecting operations by 
deliberately delaying them. Each approach works especially well for certain 
types of applications. 

For example, in an application where transactions that are likely to 
execute concurrently rarely conflict, an aggressive scheduler might perform 
better than a conservative one. Since conflicts are rare, conflicts that require 
the rejection of an operation are even rarer. Thus, the aggressive sched- 
uler wouId not reject operations very often. By contrast, a conservative 
scheduler would needlessly delay operations, anticipating conflicts that seldom 
materialize. 

On the other hand, in an application where transactions that are likely to 
execute concurrently conflict, a conservative scheduler’s cautiousness may pay 
off, An aggressive scheduler might output operations recklessly, frequently 
placing itself in the undesirable position where rejecting operations is the only 
alternative to producing incorrect executions. 

The rate at which conflicting operations are submitted is not the only 
factor that affects concurrency control performance. For example, the Ioad on 
computer resources other than the DBS is also important. Therefore, this 
discussion of trade-offs between aggressive and conservative approaches to 
scheduling should be taken with a grain of salt. The intent is to develop some 
intuition about the operation of schedulers, rather than to suggest precise rules 
for designing them. Unfortunately, giving such precise rules for tailoring a 
scheduler to the performance specifications of an application is beyond the 
state-of-the-art. 

Almost all types of schedulers have an aggressive and a conservative 
version. GeneraIly speaking, a conservative scheduler tries to anticipate the 
future behavior of transactions in order to prepare for operations that it has 
not yet received. The main information it needs to know is the set of data items 
that each transaction will read and write (called, respectively, the rendset and 
writeset of the transaction). In this way, it can predict which of the operations 
that it is currently scheduling may conflict with operations that will arrive in 
the future. By contrast, an aggressive scheduler doesn’t need this information, 
since it schedules operations as early as it can, relying on rejections to correct 
mistakes. 
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A very conservative version of any type of scheduler can usually be built if 
transactions predeclare their readsets and writesets. This means that the TM 
begins processing a transaction by giving the scheduler the transaction’s read- 
set and writeset. Predeclaration is more easily and efficiently done if trans- 
actions are analyzed by a preprocessor, such as a compiler, before being 
submitted to the system, rather than being interpreted on the fly. 

An impediment to building very conservative schedulers is that different 
executions of a given program may result in transactions that access different 
sets of data items. This occurs if programs contain conditional statements. For 
example, the following program reads either x and y, or x and Z, depending on 
the value of x that it reads. 

Procedure Fuzzy-readset begin 
Start; 
a : = Read(x), 
if (a > 0) then b : = Read(y) else b : = Read(z); 
Commit 

end 

In this case the transaction must predeclare the set of all data items it might 
read or write. This often causes the transaction to overstate its readset and 
writeset. For example, a transaction executing Fuzzy-readset would declare its 
readset to be {x, y, Z) , even though on any single execution it will only access 
two of those three data items. The same problem may occur if transactions 
interact with the DBS using a high level (e.g., relational) query language. A 
high level query may potentially access large portions of the database, even 
though on any single execution it only accesses a small portion of the database. 
When transactions overstate readsets and writesets, the scheduler ends up 
being even more conservative than it has to be, since it will delay certain opera- 
tions in anticipation of others that will never be issued. 

3.2 BASIC TWO PHASE LOCKlNG 

Locking is a mechanism commonly used to solve the problem of synchronizing 
access to shared data. The idea behind locking is intuitively simple. Each data 
item has a lock associated with it. Before a transaction T, may access a data 
item, the scheduler first examines the associated lock. If no transaction holds 
the lock, then the scheduler obtains the lock on behalf of T,. If another trans- 
action T, does hold the lock, then T, has to wait until T2 gives up the lock. 
That is, the scheduler will not give T, the lock until T, releases it. The sched- 
uler thereby ensures that only one transaction can hold the lock at a time, so 
only one transaction can access the data item at a time. 

Locking can be used by a scheduler to ensure serializability. To present 
such a locking protocol, we need some notation. 
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Transactions access data items either for reading or for writing them. We 
therefore associate two types of locks with data items: read locks and write 
locks. We use rl[x] to denote a read lock on data item x and w/[x] to denote a 
write Iock on x. We use rl,[x] (or u~/,[x]) to indicate that transaction T, has 
obtained a read (or write) lock on x. As in Chapter 2, we use the letters o, p, 
and 4 to denote an arbitrary type of operation, that is, a Read (r) or Write (w). 
We use oE,[x] to denote a lock of type o by T, on x. 

Locks can be thought of as entries in a lock table. For example, Y~~[x] 

corresponds to the entry [x, Y, TJ in the table. For now, the detailed data struc- 
ture of the table is unimportant. We’ll discuss those details in Section 3.6. 

Two locks p&[x] and ql,[y] conflict if x = y, i # j, and operations p and q 
are of conflicting type. That is, two locks conflict if they are on the same data 
item, they are issued by different transactions, and one or both of them are 
write locks.] Thus, two locks on different data items do not conflict, nor do 
two locks that are on the same data item and are owned by the same transac- 
tion, even if they are of conflicting type. 

We also use rl,[x] (or wl,[x]) to denote the operation by which T, sets or 
obtains a read (or write) lock on X. It will always be clear from the context 
whether rl,[x] and wl,[x] denote locks or operations that set locks. 

We use m,[x] (or wu,[x]) to denote the operation by which T, releases its 
read (or write) lock on x. In this case, we say T, unlocks x (the u in ru and WM 
means unlock). 

It is the job of a two phase locking (2PL) scheduler to manage the locks by 
controiling when transactions obtain and release their locks. In this section, 
we’ll concentrate on the Basic version of 2PL. We’ll look at specializations of 
2PL in later sections. 

Here are the rules according to which a Basic 2PL scheduler manages and 
uses its locks: 

1. When it receives an operation p;[x] from the TM, the scheduler tests if 
p&[x] conflicts with some ql,[x] that is already set. If so, it delays p,[x], 
forcing TI to wait until it can set the lock it needs. If not, then the 
scheduler sets pl,[x], and then sends pJxJ to the DM.2 

2. Once the scheduler has set a lock for T,, say pl,[x], it may not release 
that lock at least until after the DM acknowledges that it has processed 
the lock’s corresponding operation, pi[x]. 

3. Once the scheduler has released a lock for a transaction, it may not 
subsequently obtain any more locks for that transaction (on any 
data item). 

‘We will generalize the notion of lock conflict to operations other than Read and Write in 
Section 3.8. 
‘The scheduler must be implemented so that setting a lock is atomic relative to setting conflict- 
ing locks. This ensures that conflicting locks are never held simultaneously. 
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Rule (1) prevents two transactions from concurrently accessing a data item 
in conflicting modes. Thus, conflicting operations are scheduled in the same 
order in which the corresponding locks are obtained. 

Rule (2) supplements rule (1) by ensuring that the DM processes opera- 
tions on a data item in the order that the scheduler submits them. For example, 
suppose Ti obtains r&[x], which it releases before the DM has confirmed that 
T~[x] has been processed. Then it is possible for Tj to obtain a conflicting lock 
on X, wlJx], and send w,[x] to the DM. Although the scheduler has sent the 
DM Ti[x] before zuj[z], without rule (2) there is no guarantee that the DM will 
receive and process the operations in that order. 

RuIe (3), called the two phase rule, is the source of the name two phase 
locking. Each transaction may be divided into two phases: a growing phase 
during which it obtains locks, and a shrinking phase during which it releases 
locks. The intuition behind rule (3) is not obvious. Roughly, its function is to 
guarantee that all pairs of conflicting operations of two transactions are sched- 
uled in the same order. Let’s look at an example to see, intuitively, why this 
might be the case. 

Consider two transactions T, and T,: 

T,: T*[Xl -+ WJYI + Cl T,: wbl + dyl + cz 

and suppose they execute as follows: 

H* = 4[Xl r,[xl w[xl wL[xl w&l WUYI %[YI wdxl WdYl c2 WL[Yl 
W[Yl WdYl Cl 

Since T,[x] < w,[x] and w,[y] < w,[y], SG(H,) consists of the cycle T, + T2 + 
T,. Thus, H, is not SR. 

The problem in H, is that T, released a lock (ru,[.r]) and subsequently set a 
lock (wl,[y]), in violation of the two phase rule. Between TU,[X] and wl,[y], 
another transaction T2 wrote into both x and y, thereby appearing to follow T, 
with respect to x and precede it with respect to y. Had T, obeyed the two phase 
rule, this “window” between TU,[X] and wl,[y] would not have opened, and T, 
could not have executed as it did in H,. For exampie, T, and T2 might have 
executed as follows. 

1. Initially, neither transaction owns any locks. 

2. The scheduler receives r,[x] from the TM. Accordingly, it sets ul,[x] and 
submits r,[x] to the DM. Then the DM acknowledges the processing 
of TJX]. 

3. The scheduler receives ZUJX] from the TM. The scheduler can’t set 
wl,[x], which conflicts with rl,[x], so it delays the execution of w,[x] by 
placing it on a queue. 

4. The scheduler receives w,[y] from the TM. It sets wl,[y] and submits 
w,[y] to the DM. Then the DM acknowledges the processing of w,[y]. 

5. The scheduler receives c1 from the TM, signalling that T, has termi- 
nated. The scheduler sends c, to the DM. After the DM acknowledges 
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processing cl, the scheduler releases rl,[x] and wl,[y]. This is safe with 
respect to rule (2), because Y,[x] and w,[y] have already been processed, 
and with respect to rule (3), because T, won’t request any more locks. 

6, The scheduler sets wl,[x] so that wJx], which had been delayed, can 
now be sent to the DM. Then the DM acknowledges w?[x]. 

7. The scheduler receives wZ[y] from the TM. It sets WI&~] and sends wJy] 
to the DM. The DM then acknowIedges processing w&l. 

8. Tz terminates and the TM sends cJ to the scheduler. The scheduler sends 
c, to the DM. After the DM acknowledges processing cl, the scheduler 
releases ZU~~[X] and w1Jy]. 

This execution is represented by the following history. 

Hz is serial and therefore is SR. 
An important and unfortunate property of 2PL schedulers is that they are 

subject to deadlocks. For example, suppose a 2PL scheduler is processing 
transactions T, and T, 

T,: r,[xl -+ Wl[Yl + c1 T3: w[yl --+ w[xl -+ c3 

and consider the following sequence of events: 

1. Initially, neither transaction holds any locks. 

2. The scheduler receives rl[x] from the TM. It sers rl,[~] and submits r,[x] 
to the DM. 

3. The scheduler receives wJy] from the TM. It sers wl,[y] and submits 
w,[y] to the DM. 

4. The scheduler receives w,[x] from the TM. The scheduler does not set 
wl,[x] because it conflicts with rl,[x] which is already set. Thus w,[x] is 
delayed. 

5. The scheduler receives w,[y] from the TM. As in (4), w,[y] must be 
delayed. 

Although the scheduler behaved exactly as prescribed by the ruies of 2PL 
schedulers, neither T, nor T3 can complete without violating one of these rules. 
If the scheduler sends w,[y] to the DM without setting wl,b], it violates rule 
(I). Similarly for w,+[x]. Suppose the scheduler releases w/,[y], so it can set 
wl,[y] and thereby be allowed to send w,[y] to the DM. In this case, the sched- 
uler will never be able to set wl,[x] (so it can process w,[x]), or else it would 
violate rule (3). Similarly if it releases rl,[x]. The scheduler has painted itself 
into a corner. 

This is a classic deadlock situation. Before either of two processes can 
proceed, one must release a resource that the other needs to proceed. 
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Deadlock also arises when transactions try to strengthen read locks to 
write locks. Suppose a transaction Ti reads a data item x and subsequently tries 
to write it. Ti issues Yi[x] to the scheduler, which sets rl;[x]. When Ti issues 
w;[x] to the scheduler, the scheduler must upgrade rli[x] to wli[x]. This upgrad- 
ing of a lock is called a lock conversion. To obey 2PL, the scheduler must not 
release rli[x]. This is not a problem, because locks set by the same transaction 
do not conflict with each other. However, if two transactions concurrently 
try to convert their read locks on a data item into write locks, the result is 
deadlock. 

For example, suppose T4 and T5 issue operations to a 2PL scheduler. 

T,: r&x] + w4[x] + c4 T,: r&Y] + w,[x] + c, 

The scheduler might be confronted with the following sequence of events: 

1. The scheduler receives Y,,[x], and therefore sets rl.,[x] and sends r4[x] to 
the DM. 

2. The scheduler receives rJx], and therefore sets rl,[x] and sends r5[x] to 
the DM. 

3. The scheduler receives w,[x]. It must delay the operation, because wl,,[x] 
conflicts with rl,[x]. 

4. The scheduler receives w5[x].,,,It must delay the operation, because wI,[x] 
conflicts with rl,[x]. 

Since neither transaction can release the rl[x] it owns, and since neither can 
proceed until it sets ~4x1, the transactions are deadlocked. This type of dead- 
lock commonly occurs when a transaction scans a large number of data items 
looking for data items that contain certain values, and then updates those data 
items. It sets a read lock on each data item it scans, and converts a read lock 
into a write lock only when it decides to update a data item. 

We will examine ways of dealing with deadlocks in Section 3.4. 

3.3 *CORRECTNESS OF BASIC TWO PHASE LOCKING 

To prove that a scheduler is correct, we have to prove that all histories repre- 
senting executions that could be produced by it are SR. Our strategy for prov- 
ing this has two steps. First, given the scheduler we characterize the properties 
that all of its histories must have. Second, we prove that any history with these 
properties must be SR. Typically this last part involves the Serializability Theo- 
rem. That is, we prove that for any history H with these properties, SG(H) is 
acyclic. 

To prove the correctness of the 2PL scheduler, we must characterize the set 
of 2P.L histories, that is, those that represent possible executions of transac- 
tions that are synchronized by a 2PL scheduler. To characterize 2PL histories, 
we’ll find it very helpful to include the Lock and Unlock operations. (They 
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were not in our formal model of Chapter 2.) Examining the order in which 
Lock and Unlock operations are processed will help us establish the order in 
which Reads and Writes are executed. This, in turn, will enable us to prove 
that the SG of any history produced by 2PL is acyclic. 

To characterize 2PL histories, let’s list all of the orderings of operations 
that we know must hold. First, we know that a lock is obtained for each data- 
base operation before that operation executes. This follows from rule (1) of 
2PL. That is, 01,[3c] < o,[x]. From rule (2) of 2PL, we know that each opera- 
tion is executed by the DM before its corresponding lock is released. In terms 
of histories, that means o,[x] < oti,[x]. In particular, if oi[x] belongs to a 
committed transaction (all of whose operations are therefore in the history), 
we have ol,[x] < o,[x] < OI~,[X]. 

Proposition 3.1: Let H be a history produced by a 2PL scheduler. If oi[x] 
is in C(H), then ol,[x] and ou,[x] are in C(H), and ol,[x] < o,[x] < 
ozf,[x]:. cl 

Now suppose we have two operations pJx] and q,[x] that conflict. Thus, the 
locks that correspond to these operations also conflict. By rule (1) of 2PL, 
only one of these locks can be held at a time. Therefore, the scheduler must 
release the lock corresponding to one of the operations before it sets the 
lock for the other. In terms of histories, we must have pu,[x] < ql,[x] or 
qdxl < PUXI. 

Proposition 3.2: Let H be a history produced by a 2PL scheduler. If p,[x] 
and s,[x] (i # j) are conflicting operations in C(H), then either eui[x] < 
ql,[xl or 44x1 < eL[xl. 0 

Finally, let’s look at the two phase rule, which says that once a transaction 
releases a lock it cannot subsequently obtain any other locks. This is equiva- 
lent to saying that every Iock operation of a transaction executes before every 
unlock operation of that transaction. In terms of histories, we can write this as 
ml < WM. 

Proposition 3.3: Let H be a complete history produced by a 2PL sched- 
uler. If e,[x] and ‘~,[y] are in C(H), then pl,[x] < qz&]. 0 

Using these properties, we must now show that every 2PL history H has an 
acyclic SG. The argument has three steps. (Recall that SG(H) contains nodes 
only for the committed transactions in H.) 

1. If T, + 7J is in SG(H), then one of Ti’s operations on some data item, 
say x, executed before and conflicted with one of T,‘s operations. There- 
fore, T, must have released its lock on x before T, set its lock on X. 
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2. Suppose T; + Tj --t Tk is a path in SG(H). From step (l), T, released 
some lock before Tj set some lock,‘and similarly Tj released some lock 
before Tk set some lock. Moreover, by the two phase rule, T1 set all of 
its locks before it released any of them. Therefore, by transitivity, T, 
released some lock before Tk set some lock. By induction, this argument 
extends to arbitrarily long paths in SG(H). That is, for any path T, -+ 
T, + * - - --f T,,, T, released some lock before T, set some lock. 

3. Suppose SG(H) had a cycle T, + T, + * * * + T, + T,. Then by step 
(2), T, released a lock before T, set a lock. But then T, violated the 
two phase rule, which contradicts the fact that H is a 2PL history. 
Therefore, the cycle cannot exist. Since SG(H) has no cycles, the 
Serializability Theorem implies that H is SR. 

Notice that in step (2), the lock that Ti released does not necessarily 
conflict with the one that Tk set, and in general they do not. T/s lock conflicts 
with and precedes one that Tl set, and Tj released a lock (possibly a different 
one) that conflicts with and precedes the one that Tk set. For example, the 
history that leads to the path Ti -+ Tj + Tk could be 

dxl --, Qxl + qEy1 + dY1. 

Tcs lock on x does not conflict with Tk’s lock on y. 
We formalize this three step argument in the following lemmas and theo- 

rem. The two lemmas formalize steps (1) and (2). The theorem formalizes 
step (3). 

Lemma 3.4: Let H be a 2PL history, and suppose T; --f Tl is in SG(H). 
Then, for some data item x and some conflicting operations p;[x] and qJx] 
in H, pu;[x] < q1,[x]. 

Proof: Since T, + Tj, there must exist conflicting operations ei[x] and 
qj[x] such that ei[x] < qj[x]. By Proposition 3.1, 

1. ,Dli[x] < P~[x] < PU;[X], and 

2. ql,[X] < qj[X] < quj[X]* 

By Proposition 3.2, either p~i[x] < ql,[x] or qz+[x] < pl,[x]. In the latter 
case, by (I), (2) and transitivity, we would have qj[x] < pi[x], which 
contradicts pi[x] < q/[x]. Thus, pz4i[x] < ql,[x], as desired. 0 

Lemma 3.5: Let H be a 2PL history, and let T, + T, + - * * -+ T, be a 
path in SG(H), where n > 1. Then, for some data items x and y, and some 
operations p,[x] and qn[y] in H, pu,[x] < ql,,[y]. 

Proof: The proof is by induction on II. The basis step, for IZ = 2, follows 
immediately from Lemma 3.4. 
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For the induction step, suppose the lemma holds for n = k for some k 1 
2. We will show that it holds for n = k + 1. By the induction hypothesis, 
the path T, -+ * * * --* Tk implies that there exist data items x and z, and 
operations e,[x] and ok[z] in H, such that eu,[zc] < olJz]. By Tk + Tk+, 
and Lemma 3.4, there exists data item y and conflicting operations oh[y], 
and qh+][y] in H, such that o’uh[y] < qlk+i[y]. By Proposition 3.3, oIk[z] 
< o’tlb[y]. By the last three precedences and transitivity, ,DU,[X] < q/k-,[y], 
as desired. I3 

Theorem 3.6: Every 2PL history H is serializable. 

Proof: Suppose, by way of contradiction, that SG(H) contains a cycle T, 
-+ Tz --) * . * --t T, --+ T,, where n > 1. By Lemma 3.5, for some data 
items x and y, and some operations p,[x] and q,[y] in H, ~M~[x] < ql,[y]. 
But this contradicts Proposition 3.3. Thus, SG(H) has no cycles and so, by 
the Serializability Theorem, H is SR. 0 

3.4 DEADLOCKS 

The scheduler needs a strategy for detecting deadlocks, so that no transaction 
is blocked forever. One strategy is timeotlt. If the scheduler finds that a trans- 
action has been waiting too long for a lock, then it simply guesses that there 
may be a deadlock involving this transaction and therefore aborts it. Since the 
scheduler is only guessing that a transaction may be involved in a deadlock, it 
may be making a mistake. It may abort a transaction that isn’t really part of a 
deadlock but is just waiting for a lock owned by another transaction that is 
taking a long time to finish. There’s no harm done by making such an incorrect 
guess, insofar as correctness is concerned. There is certainly a performance 
penalty to the transaction that was unfairly aborted, though as we’ll see in 
Section 3.12, the overall effect may be to improve transaction throughput, 

One can avoid too many of these types of mistakes by using a long timeout 
period. The longer the timeout period, the more chance that the scheduler is 
aborting transactions that are actually involved in deadlocks. However, a long 
timeout period has a liability, too. The scheduler doesn’t notice that a transac- 
tion might be deadlocked until the timeout period has elapsed. So, should a 
transaction become involved in a deadlock, it will lose some time waiting for 
its deadlock to be noticed. The timeout period is therefore a parameter that 
needs to be tuned. It should be long enough so that most transactions that are 
aborted are actually deadlocked, but short enough that deadlocked transac- 
tions don’t wait too long for their deadlocks to be noticed. This tuning activity 
is tricky but manageable, as evidenced by its use in several commercial prod- 
ucts, such as Tandem. 

Another approach to deadlocks is to detect them precisely To do this, the 
scheduler maintains a directed graph called a waits-for graph ( WFG). The 
nodes of WFG are labelled with transaction names. There is an edge T, --t T,, 
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from node Ti to node T,, iff transaction T, is waiting for transaction Tj to 
release some lock.3 

Suppose a WFG has a cycle: T, + T, + * * * 4 T, -+ T,. Each transaction 
is waiting for the next transaction in the cycle. So, T, is waiting for itself, as 
is every other transaction in the cycle. Since all of these transactions are 
blocked waiting for locks, none of the locks they are waiting for are ever going 
to be released. Thus, the transactions are deadlocked. Exploiting this observa- 
tion, the scheduler can detect deadlocks by checking for cycles in WFG. 

Of course, the scheduler has to maintain a representation of the WFG in 
order to check for cycles in it. The scheduler can easily do this by adding an 
edge Ti -+ Tj to the WFG whenever a lock request by T; is blocked by a 
conflicting lock owned by T1. It drops an edge Ti + Tj from the WFG when- 
ever it releases the (last) lock owned by Tj that had formerly been blocking a 
lock request issued by T;. For example, suppose the scheduler receives YJx], 
but has to delay it because Tj already owns wl,[x]. Then it adds an edge T; + Tj 
to the WFG. After Tj releases w~[x], the scheduler sets rl;[x], and therefore 
deletes the edge Ti -+ Tja 

How often should the scheduler check for cycles in the WFG? It could 
check every time a new edge is added, looking for cycles that include this new 
edge. But this could be quite expensive. For example, if operations are 
frequently delayed, but deadlocks are relatively rare, then the scheduler is 
spending a lot of effort looking for deadlocks that are hardly ever there. In 
such cases, the scheduler should check for cycles less often. Instead of checking 
every time an edge is added, it waits until a few edges have been added, or until 
some timeout period has elapsed. There is no danger in checking less 
frequently, since the scheduler will never miss a deadlock. (Deadlocks don’t go 
away by themselves!) Moreover, by checking less frequently, the scheduler 
incurs the cost of cycle detection less often. However, a deadlock may go unde- 
tected for a longer period this way. In addition, all cycles must be found, not 
just those involving the most recently added edge. 

When the scheduler discovers a deadlock, it must break the deadlock by 
aborting a transaction. The Abort will in turn delete the transaction’s node 
from the WFG. The transaction that it chooses to abort is called the victim. 
Among the transactions involved in a deadlock cycle in WFG, the scheduler 
should select a victim whose abortion costs the least. Factors that are 
commonly used to make this determination include: 

3WFGs are related to SGs in the following sense. If T; + T’ is in the WFG, and both T; and 
Tj ultimately commit, then Tj --f Ti will be in the SG. However, if Ti aborts, then Tj --f Ti 
may never appear in the SG. That is, WFGs describe the current state of transactions, which 
includes waits-for situations involving operations that never execute (due to abortions). SGs 
only describe dependencies between committed transactions (which arise from operations that 
actually execute). 
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n The amount of effort that has already been invested in the transaction. 
This effort will be lost if the transaction is aborted. 

c The cost of aborting the transaction. This cost generally depends on the 
number of updates the transaction has already performed. 

o The amount of effort it will take to finish executing the transaction. The 
scheduler wants to avoid aborting a transaction that is almost finished. 
To do this, it must be able to predict the future behavior of active trans- 
actions, e.g., based on the transaction’s type (Deposits are short, Audits 
are long}. 

c The number of cycles that contain the transact~iion. Since aborting a 
transaction breaks all cycles that contain it, it is best to abort transac- 
tions that are part of more than one cycle (if such transactions exist). 

A transaction can repeatedly become involved in deadlocks. In each dead- 
lock, the transaction is selected as the victim, aborts, and restarts its execu- 
tion, only to become involved in a deadlock again. To avoid such cyclic 
restarts, the victim selection algorithm should also consider the number of 
times a transaction is aborted due to deadlock. If it has been aborted too many 
times, then it should not be a candidate for victim selection, unless all transac- 
tions involved in the deadlock have reached this state. 

3.5 VARIATIONS OF TWO PHASE LOCKING 

Conservative 2PL 

It is possible to construct a 2PL scheduler that never aborts transactions. This 
technique is known as Conservative 2PL or Static 2X. As we have seen, 2PL 
causes abortions because of deadlocks. Conservative 2PL avoids deadlocks by 
requiring each transaction to obtain all of its locks before any of its operations 
are submitted to the DM. This is done by having each transaction predeclare 
its readset and writeset. Specifically, each transaction T, first tells the scheduler 
all the data items it will want to Read or Write, for example as part of its Start 
operation. The scheduler tries to set all of the locks needed by T,. It can do this 
providing that none of these locks conflicts with a lock held by any other trans- 
action. If the scheduler succeeds in setting all of T,‘s locks, then it submits Ti’s 
operations to the DM as soon as it receives them. After the DM acknowledges 
the processing of T,‘s last database operation, the scheduler may release all of 
l-j’s locks. 

If, on the other hand, an)’ of the locks requested in T,‘s Start conflicts with 
locks presently held by other transactions, then the scheduler does not grant 
any of T,‘s locks. Instead, it inserts T, along with its lock requests into a wait- 
ing queue. Every time the scheduler releases the locks of a completed transac- 
tion, it examines the waiting queue to see if it can grant all of the lock requests 


	Index: 
	Contents: 


