
The Problem with Threads

Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2006-1

http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html

January 10, 2006



Copyright © 2006, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

 
Acknowledgement

 
This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF award No. CCR-0225610), the
State of California Micro Program, and the following companies: Agilent,
DGIST, General Motors, Hewlett Packard, Infineon, Microsoft, and Toyota.



The Problem with Threads

Edward A. Lee
Professor, Chair of EE, Associate Chair of EECS

EECS Department
University of California at Berkeley

Berkeley, CA 94720, U.S.A.
eal@eecs.berkeley.edu

January 10, 2006

Abstract

Threads are a seemingly straightforward adaptation of the dominant sequential model of
computation to concurrent systems. Languages require little or no syntactic changes to sup-
port threads, and operating systems and architectures have evolved to efficiently support them.
Many technologists are pushing for increased use of multithreading in software in order to take
advantage of the predicted increases in parallelism in computer architectures. In this paper, I
argue that this is not a good idea. Although threads seem to be a small step from sequential
computation, in fact, they represent a huge step. They discard the most essential and appeal-
ing properties of sequential computation: understandability, predictability, and determinism.
Threads, as a model of computation, are wildly nondeterministic, and the job of the program-
mer becomes one of pruning that nondeterminism. Although many research techniques improve
the model by offering more effective pruning, I argue that this is approaching the problem
backwards. Rather than pruning nondeterminism, we should build from essentially determinis-
tic, composable components. Nondeterminism should be explicitly and judiciously introduced
where needed, rather than removed where not needed. The consequences of this principle are
profound. I argue for the development of concurrent coordination languages based on sound,
composable formalisms. I believe that such languages will yield much more reliable, and more
concurrent programs.

1 Introduction

It is widely acknowledged that concurrent programming is difficult. Yet the imperative for concur-
rent programming is becoming more urgent. Many technologists predict that the end of Moore’s
Law will be answered with increasingly parallel computer architectures (multicore or chip multpro-
cessors, CMPs) [15]. If we hope to continue to get performance gains in computing, programs must
be able to exploit this parallelism.

1This work was supported in part by the Center for Hybrid and Embedded Software Systems (CHESS) at UC Berkeley,
which receives support from the National Science Foundation (NSF award No. CCR-0225610), the State of California
Micro Program, and the following companies: Agilent, DGIST, General Motors, Hewlett Packard, Infineon, Microsoft,
and Toyota.

1



One possible technical solution is automatic exploitation of parallelism in sequential programs,
through either computer architecture techniques such as dynamic dispatch, or through automatic
program parallelization of sequential programs [6]. However, many researchers agree that these
automatic techniques have been pushed about as far as they will go, and that they are capable of
exploiting only modest parallelism. A natural conclusion is that programs themselves must become
more concurrent.

If we understand why concurrent programming is so difficult, we have a better chance of solving
the problem. Sutter and Larus observe [47]

“humans are quickly overwhelmed by concurrency and find it much more difficult to
reason about concurrent than sequential code. Even careful people miss possible inter-
leavings among even simple collections of partially ordered operations.”

Yet humans are actually quite adept at reasoning about concurrent systems. The physical world is
highly concurrent, and our very survival depends on our ability to reason about concurrent physical
dynamics. The problem is that we have chosen concurrent abstractions that do not even vaguely
resemble the concurrency of the physical world. We have become so used to these computational
abstractions that we have lost track of the fact that they are not immutable. In this paper, I argue that
the difficulty of concurrent programming is a consequence of the abstractions, and that if we are are
willing to let go of those abstractions, then the problem will be fixable.

An optimistic view is given by Barrosso [7], who argues that technology forces will drive com-
puting in both servers and desktops to CMPs, and that when the technology becomes mainstream,
the programming problems will somehow be solved. But we should not underestimate the chal-
lenges. What is required is, in the words of Stein, “to replace the conventional metaphora sequence
of stepswith the notion of a community of interacting entities” [46]. This paper makes that case.

2 Threads

In general-purpose software engineering practice, we have reached a point where one approach to
concurrent programming dominates all others, namely, threads. Threads are sequential processes
that share memory. They represent a key concurrency model supported by modern computers,
programming languages, and operating systems. Many general-purpose parallel architectures in
use today (such as symmetric multiprocessors, SMPs) are direct hardware realizations of the thread
abstraction.

Some applications can very effectively use threads. So-called “embarrassingly parallel” ap-
plications (for example, applications that essentially spawn multiple independent processes such
as build tools, like PVM gmake, or web servers). Because of the independence of these applica-
tions, programming is relatively easy, and the abstraction being used is more like processes than
threads (where memory is not shared). Where such applications do share data, they do so through
database abstractions, which manage concurrency through such mechanisms as transactions. How-
ever, client-side applications are not so simple. Quoting Sutter and Larus again [47]:

“The world of client applications is not nearly as well structured and regular. A typical
client application executes a relatively small computation on behalf of a single user, so
concurrency is found by dividing a computation into finer pieces. These pieces, say the
user interface and program’s computation, interact and share data in a myriad of ways.

2



Non-homogeneous code; fine-grain, complicated interactions; and pointer-based data
structures make this type of program difficult to execute concurrently.”

Of course, threads are not the only possibility for concurrent programming. In scientific com-
puting, where performance requirements have long demanded concurrent programming, data par-
allel language extensions and message passing libraries (like PVM [23], MPI [39], and OpenMP1)
dominate over threads for concurrent programming. In fact, computer architectures intended for
scientific computing often differ significantly from so-called “general purpose” architectures. They
commonly support vectors and streams in hardware, for example. However, even in this domain,
concurrent programs remain tedious to write. C and FORTRAN dominate, despite a long history of
much better data parallel languages.

In distributed computing, threads are often not a practical abstraction because creating the illu-
sion of shared memory is often too costly. Even so, we have gone to considerable lengths to create
distributed computing mechanisms that emulate multithreaded programming. CORBA and .NET,
for example, are rooted in distributed object-oriented techniques, where software components inter-
act with proxies that behave as if they were local objects with shared memory. Object-orientation’s
data abstraction limits the extent to which the illusion of shared memory needs to be preserved, so
such techniques prove reasonably cost effective. They make distributed programming look much
like multithreaded programming.

Embedded computing also exploits concurrency models other than threads. Programmable DSP
architectures are often VLIW machines. Video signal processors often combine SIMD with VLIW
and stream processing. Network processors provide explicit hardware support for streaming data.
However, despite considerable innovative research, in practice, programming models for these do-
mains remain primitive. Designers write low-level assembly code that exploits specific hardware
features, and combine this assembly code with C code only where performance is not so critical.

An interesting property of many embedded applications is that reliability and predictability are
far more important than expressiveness or performance. It is arguable that this should be true in
general purpose computing, but that’s a side argument. I will argue that achieving reliability and
predictability using threads is essentially impossible for many applications.

3 Threads as Computation

In this section, I will examine threads from a fundamental perspective, without reference to particu-
lar thread libraries or languages, and show that as a model of computation, they are serious flawed.
In the next section, I consider a number of proposed fixes.

Let N = {0, 1, 2, · · · } represent the natural numbers. LetB = {0, 1} be the set of binary digits.
Let B∗ be the set of all finite sequences of bits, and

Bω = (N → B)

be the set of all infinite sequences of bits (each of which is a function that mapsN intoB). Following
[17], let B∗∗ = B∗ ∪ Bω. We will useB∗∗ to represent the state of a computing machine, its
(potentially infinite) inputs, and its (potentially infinite) outputs. Let

Q = (B∗∗ ⇀ B∗∗)
1See http://www.openmp.org

3



denote the set of all partial functions with domain and codomainB∗∗.2

An imperative machine(A, c) is a finite setA ⊂ Q of atomic actionsand acontrol function
c : B∗∗ → N. The setA represents the atomic actions (typically instructions) of the machine and
the functionc represents how instructions are sequenced. We assume thatA contains onehalt
instructionh ∈ A with the property that

∀ b ∈ B∗∗, h(b) = b.

That is, the halt instruction leaves the state unchanged.
A sequential programof lengthm ∈ N is a function

p : N → A

where
∀ n ≥ m, p(n) = h.

That is, a sequential program is a finite sequence of instructions tailed by an infinite sequence of
halt instructions. Note that the set of all sequential programs, which we denoteP , is a countably
infinite set.

An execution of this program is athread. It begins with an initialb0 ∈ B∗∗, which represents
the initial state of the machine and the (potentially infinite) input, and for alln ∈ N,

bn+1 = p(c(bn))(bn). (1)

Here,c(bn) provides the index into the programp for the next instructionp(c(bn)). That instruction
is applied to the statebn to get the next statebn+1. If for anyn ∈ N c(bn) ≥ m, thenp(c(bn)) = h
and the program halts in statebn (that is, the state henceforth never changes). If for all initial states
b0 ∈ B a programp halts, thenp defines a total function inQ. If a programp halts for someb0 ∈ B,
then it defines a partial function inQ.3

We now get to the core appeal that sequential programs have. Given a program and an initial
state, the sequence given by (1) is defined. If the sequence halts, then the function computed by
the program is defined. Any two programsp andp′ can be compared. They are equivalent if they
compute the same partial function. That is, they are equivalent if they halt for the same initial states,
and for such initial states, their final state is the same.4 Such a theory of equivalence is essential for
any useful formalism.

These essential and appealing properties of programs are lost when multiple threads are com-
posed. Consider two programsp1 andp2 that execute concurrently in a multithreaded fashion. What
we mean by this is that (1) is replaced by

bn+1 = pi(c(bn))(bn) i ∈ {1, 2}. (2)

2Partial functions are functions that may or may not be defined on each element of their domain.
3Note that a classic result in computing is now evident. It is easy to show thatQ is not a countable set. (Even the

subset ofQ of constant functions is not countable, sinceB∗∗ itself is not countable. This can be easily demonstrated
using Cantor’s diagonal argument.) Since the set of all finite programsP is countable, we can conclude that not all
functions inQ can be given by finite programs. That is, any sequential machine has limited expressiveness. Turing and
Church [48] demonstrated that many choices of sequential machines(A, c) result in programsP that can give exactly the
same subset ofQ. This subset is called theeffectively computable functions.

4In this classical theory, programs that do not halt are all equivalent. This creates serious problems when applying the
theory of computation to embedded software, where useful programs do not halt [34].

4



At each stepn, either program may provide the next (atomic) action. Consider now whether we have
a useful theory of equivalence. That is, given a pair of multithreaded programs(p1, p2) and another
pair (p′

1, p
′
2), when are these two pairs equivalent? A reasonable extension of the basic theory

defines them to be equivalent ifall interleavingshalt for the same initial state and yield the same
final state. The enormous number of possible interleavings makes it extremely difficult to reason
about such equivalence except in trivial cases (where, for example, the stateB∗∗ is partitioned so
that the two programs are unaffected by each others’ partition).

Even worse, given two programsp andp′ that are equivalent when executed according to (1), if
they are executed in a multithreaded environment, we can no longer conclude that they are equiva-
lent. In fact, we have to know about all other threads that might execute (something that may not
itself be well defined), and we would have to analyze all possible interleavings. We conclude that
with threads, there is no useful theory of equivalence.

Still worse, implementing a multithreaded model of computation is extremely difficult. Witness,
for example, the deep subtleties with the Java memory model (see for example [41] and [24]), where
even astonishingly trivial programs produce considerable debate about their possible behaviors.

The core abstraction of computation given by (1), on which all widely-used programming lan-
guages are built, emphasizes deterministic composition of deterministic components. The actions
are deterministic and their sequential composition is deterministic. Sequential execution is, seman-
tically, function composition, a neat, simple model where deterministic components compose into
deterministic results.

Threads, on the other hand, are wildly nondeterministic. The job of the programmer is to
prune away that nondeterminism. We have, of course, developed tools to assist in the pruning.
Semaphores, monitors, and more modern overlays on threads (discussed in the following section)
offer the programmer ever more effective pruning. But pruning a wild mass of brambles rarely
yields a satisfactory hedge.

To offer another analogy, suppose that we were to ask a mechanical engineer to design an
internal combustion engine by starting with a pot of iron, hydrocarbon, and oxygen molecules,
moving randomly according to thermal forces. The engineer’s job is to constrain these motions
until the result is an internal combustion engine. Thermodynamics and chemistry tells us that this
is a theoretically valid way to think about the design problem. But is it practical?

To offer a third analogy, a folk definition of insanity is to do the same thing over and over again
and to expect the results to be different. By this definition, we in fact require that programmers of
multithreaded systems be insane. Were they sane, they could not understand their programs.

I will argue that we must (and can) build concurrent models of computation that are far more
deterministic, and that we must judiciously and carefully introduce nondeterminism where needed.
Nondeterminism should be explicitly added to programs, and only where needed, as it is in sequen-
tial programming. Threads take the opposite approach. They make programs absurdly nondeter-
ministic, and rely on programming style to constrain that nondeterminism to achieve deterministic
aims.

4 How Bad is it In Practice?

We have argued that threads provide a hopelessly unusable extension of the core abstractions of
computation. Yet in practice, many programmers today write multi-threaded programs that work.

5



public class ValueHolder {
private List listeners = new LinkedList();
private int value;
public interface Listener {

public void valueChanged(int newValue);
}

public void addListener(Listener listener) {
listeners.add(listener);

}

public void setValue(int newValue) {
value = newValue;
Iterator i = listeners.iterator();
while(i.hasNext()) {

((Listener)i.next()).valueChanged(newValue);
}

}
}

Figure 1: A Java implementation of the observer pattern, valid for one thread.

Is there a contradiction here? In practice, programmers are provided with tools that prune away
much of the nondeterminism. Object-oriented programming, for example, limits the visibility that
certain portions of a program have into portions of the state. This effectively partitions the state
spaceB∗∗ into disjoint sections. Where programs do operate on shared portions of this state space,
semaphores, mutual-exclusion locks, and monitors (objects with mutually-exclusive methods) pro-
vide mechanisms that programs can use to prune away more of the nondeterminism. But in practice,
these techniques yield understandable programs only for very simple interactions.

Consider a commonly used design pattern known as the observer pattern [22]. This is a very
simple and widely used design pattern. A Java implementation that is valid for a single thread is
shown in figure 1.5 This shows two methods from a class where an invocation of thesetValue()
method triggers notification of the new value by calling thevalueChanged() method of any
objects that have been registered by a call toaddListener() .

The code in figure 1 is not thread safe, however. That is, if multiple threads can callsetValue()
or addListener() , then it could occur that thelisteners list gets modified while the iterator
is iterating through the list. This will trigger an exception that will likely terminate the program.

The simplest solution is to add the Java keywordsynchronized to each of thesetValue()
andaddListener() method definitions. Thesynchronized keyword in Java implements
mutual exclusion, turning instances of thisValueHolder class into monitors, preventing any two
threads from being in these methods simultaneously. When a synchronized method is called, the
calling thread attempts to acquire an exclusive lock on the object. If any other thread holds that
lock, then the calling thread stalls until the lock is released.

However, this solution is not wise because it can lead to deadlock. In particular, suppose we have
an instancea of ValueHolder and an instanceb of another class that implements theListener
interface. That other class can do anything in itsvalueChanged() method, including acquiring

5Thanks to Mark S. Miller for suggesting this example.

6



public class ValueHolder {
private List listeners = new LinkedList();
private int value;
public interface Listener {

public void valueChanged(int newValue);
}

public synchronized void addListener(Listener listener) {
listeners.add(listener);

}

public void setValue(int newValue) {
List copyOfListeners;
synchronized(this) {

value = newValue;
copyOfListeners = new LinkedList(listeners);

}
Iterator i = copyOfListeners.iterator();
while(i.hasNext()) {

((Listener)i.next()).valueChanged(newValue);
}

}
}

Figure 2: A Java implementation of the observer pattern that attempts to be thread safe.

a lock on another monitor. If it stalls in acquiring that lock, it will continue to hold the lock on
this ValueHolder object while it is stalled. Meanwhile, whatever thread holds the lock it is
trying to acquire might calladdListener() on a. Both threads are now blocked with no hope
of becoming unblocked. This sort of potential deadlock lurks in many programs that use monitors.

Already, this rather simple design pattern is proving difficult to implement correctly. Consider
the improved implementation shown in figure 2. While holding a lock, thesetValue() method
makes copy of the listeners list. Since theaddListeners() method is synchronized, this avoid
the concurrent modification exception that might occur with the code in figure 1. Further, it calls
valueChanged() outside of synchronized block to avoid deadlock.

It is tempting to think we have solved the problem, but in fact, this code is still not correct.
Suppose two threads call setValue(). One of them will set the value last, leaving that value in the
object. But listeners may be notified value changes in the opposite order. The listeners will conclude
that the final value of theValueHolder object is the wrong value!

Of course, this pattern can be made to work robustly in Java (I leave this as an exercise for the
reader). My point is that even this very simple and commonly used design pattern has required some
rather intricate thinking about possible interleavings. I speculate that most multithreaded programs
have such bugs. I speculate further that the bugs have not proved to be major handicaps only
because today’s architectures and operating systems deliver modest parallelism. The cost of context
switching is high, so only a tiny percentage of the possible interleavings of thread instructions
ever occur in practice. I conjecture that most multi-threaded general-purpose applications are, in
fact, so full of concurrency bugs that as multi-core architectures become commonplace, these bugs
will begin to show up as system failures. This scenario is bleak for computer vendors: their next

7



generation of machines will become widely known as the ones on which many programs crash.
These same computer vendors are advocating more multi-threaded programming, so that there

is concurrency that can exploit the parallelism they would like to sell us. Intel, for example, has
embarked on an active campaign to get leading computer science academic programs to put more
emphasis on multi-threaded programming. If they are successful, and the next generation of pro-
grammers makes more intensive use of multithreading, then the next generation of computers will
become nearly unusable.

5 Fixing Threads by More Aggressive Pruning

In this section, I discuss a number of approaches to solving this problem that share a common
feature. Specifically, they preserve the essential thread model of computation for programmers,
but provide them with more aggressive mechanisms for pruning the enormously nondeterministic
behavior.

The first technique is better software engineering processes. These are, in fact, essential to get
reliable multithreaded programs. However, they are not sufficient. An anecdote from the Ptolemy
Project6 is telling (and alarming). In the early part of the year 2000, my group began developing the
kernel of Ptolemy II [20], a modeling environment supporting concurrent models of computation.
An early objective was to permit modification of concurrent programs via a graphical user interface
while those concurrent programs were executing. The challenge was to ensure that no thread could
ever see an inconsistent view of the program structure. The strategy was to use Java threads with
monitors.

A part of the Ptolemy Project experiment was to see whether effective software engineering
practices could be developed for an academic research setting. We developed a process that included
a code maturity rating system (with four levels, red, yellow, green, and blue), design reviews, code
reviews, nightly builds, regression tests, and automated code coverage metrics [43]. The portion
of the kernel that ensured a consistent view of the program structure was written in early 2000,
design reviewed to yellow, and code reviewed to green. The reviewers included concurrency experts,
not just inexperienced graduate students (Christopher Hylands (now Brooks), Bart Kienhuis, John
Reekie, and myself were all reviewers). We wrote regression tests that achieved 100 percent code
coverage. The nightly build and regression tests ran on a two processor SMP machine, which
exhibited different thread behavior than the development machines, which all had a single processor.
The Ptolemy II system itself began to be widely used, and every use of the system exercised this
code. No problems were observed until the code deadlocked on April 26, 2004, four years later.

It is certainly true that our relatively rigorous software engineering practice identified and fixed
many concurrency bugs. But the fact that a problem as serious as a deadlock that locked up the
system could go undetected for four years despite this practice is alarming. How many more such
problems remain? How long do we need test before we can be sure to have discovered all such
problems? Regrettably, I have to conclude that testing may never reveal all the problems in nontrivial
multithreaded code.

Of course, there are tantalizingly simple rules for avoiding deadlock. For example, always
acquire locks in the same order [32]. However, this rule is very difficult to apply in practice because
no method signature in any widely used programming language indicates what locks the method

6See http://ptolemy.eecs.berkeley.edu

8



acquires. You need to examine the source code of all methods that you call, and all methods that
those methods call, in order to confidently invoke a method. Even if we fix this language problem
by making locks part of the method signature, this rule makes it extremely difficult to implement
symmetric accesses (where interactions can originate from either end). And no such fix gets around
the problem that reasoning about mutual exclusion locks is extremely difficult. If programmers
cannot understand their code, then the code will not be reliable.

One might conclude that the problem is in the way Java realizes threads. Perhaps the synchro-
nized keyword is not the best pruning tool. Indeed, version 5.0 of Java, introduced in 2005, added
a number of other mechanisms for synchronizing threads. These do in fact enrich the toolkit for
the programmer to prune nondeterminacy. But the mechanisms (such as semaphores) still require
considerable sophistication to use, and very likely will still result in incomprehensible programs
with subtle lurking bugs.

Software engineering process improvements alone will not do the job. Another approach that
can help is the use of vetted design patterns for concurrent computation, as in [32] and [44]. Indeed,
these are an enormous help when the programmer’s task identifiably matches one of the patterns.
However, there are two difficulties. One is that implementation of the patterns, even with careful
instructions, is still subtle and tricky. Programmers will make errors, and there are no scalable tech-
niques for automatically checking compliance of implementations to patterns. More importantly,
the patterns can be difficult to combine. Their properties are not typically composable, and hence
nontrivial programs that require use of more than one pattern are unlikely to be understandable.

A very common use of patterns in concurrent computation is found in databases, particularly
with the notion of transactions. Transactions support speculative unsynchronized computation on
a copy of the data followed by acommitor abort. A commit occurs when it can be shown that
no conflicts have occurred. Transactions can be supported on distributed hardware (as is common
for databases), or in software on shared-memory machines [45], or, most interestingly, in hardware
on shared-memory machines [38]. In the latter case, the technique meshes well with cache con-
sistency protocols that are required anyway on these machines. Transactions eliminate unintended
deadlocks, but despite recent extensions for composability [26], remain a highly nondeterministic
interaction mechanism. They are well-suited to intrinsically nondeterminate situations, where for
example multiple actors compete nondeterministically for resources. But they are not well-suited
for building determinate concurrent interactions.

A particularly interesting use of patterns is MapReduce, as reported by Dean and Ghemawat
[19]. This pattern has been used for large scale distributed processing of huge data sets by Google.
Whereas most patterns provide fine-grain shared data structures with synchronization, MapReduce
provides a framework for the construction of large distributed programs. The pattern is inspired
by the higher-order functions found in Lisp and other functional languages. The parameters to the
pattern are pieces of functionality represented as code rather than pieces of data.

Patterns may be encapsulated into libraries by experts, as has been done with MapReduce at
Google, the concurrent data structures in Java 5.0, and STAPL in C++ [1]. This greatly improves the
reliability of implementations, but requires some programmer discipline to constrain all concurrent
interactions to occur via these libraries. Folding the capabilities of these libraries into languages
where syntax and semantics enforce these constraints may eventually lead to much more easily
constructed concurrent programs.

Higher-order patterns such as MapReduce offer some particularly interesting challenges and
opportunities for language designers. These patterns function at the level ofcoordination languages

9



rather than more traditionalprogramming languages. New coordination languages that are compat-
ible with established programming languages (such as Java and C++) are much more likely to gain
acceptance than new programming languages that replace the established languages.

A common compromise is to extend established programming languages with annotations or
a few selected keywords to support concurrent computation. This compromise admits the re-use
of signifcant portions of legacy code when concurrency is not an issue, but requires rewriting to
expose concurrency. This strategy is followed for example by Split-C [16] and Cilk [13], which
are both C-like languages supporting multithreading. In Cilk, a programmer can insert keywords
“cilk” “spawn” and “sync” into what are essentially C programs. The objective of Cilk is to sup-
port dynamic multithreading in a shared-memory context, where overhead is incurred only when
parallelism is actually exploited (that is, on one processor, the overhead is low).

A related approach combines language extensions with constraints that limit expressiveness
of established languages in order to get more consistent and predictable behavior. For example,
the Guava language [5] constrains Java so that unsynchronized objects cannot be accessed from
multiple threads. It further makes explicit the distinction between locks that ensure the integrity
of read data (read locks) and locks that enable safe modification of the data (write locks). These
language changes prune away considerable nondeterminacy without sacrificing much performance,
but they still have deadlock risk.

Another approach that puts more emphasis on the avoidance of deadlock ispromises, as realized
for example by Mark Miller in the E programming language7. These are also called futures, and
are originally attributable to Baker and Hewitt [27]. Here, instead of blocking to access shared data,
programs proceed with a proxy of the data that they expect to eventually get, using the proxy as if it
were the data itself.

Yet another approach leaves the programming languages and the mechanisms for expressing
concurrency unchanged, and instead introduces formal program analysis to identify potential con-
currency bugs in multithreaded programs. This is done for example in Blast [28] and the Intel thread
checker8. This approach can help considerably by revealing program behaviors that are difficult for
a human to spot. Less formal techniques, such as performance debuggers like Valgrind9, can also
help in a similar way, making it easier for programmers to sort through the vast nondeterminacy
of program behaviors. Although promising, both the formal and informal techniques still require
considerable expertise to apply and suffer from scalability limitations.

All of the above techniques prune away some of the nondeterminacy of threads. However, they
all still result in highly nondeterministic programs. For applications with intrinsic nondeterminacy,
such as servers, concurrent database accesses, or competition for resources, this is appropriate. But
achieving deterministic aims through nondeterministic means remains difficult. To achieve deter-
ministic concurrent computation requires approaching the problem differently. Instead of starting
with a highly nondeterministic mechanism like threads, and relying on the programmer to prune
that nondeterminacy, we should start with deterministic, composable mechanisms, and introduce
nondeterminism only where needed. We explore this approach next.

7See http://www.erights.org/
8See http://developer.intel.com/software/products/threading/tcwin
9See http://valgrind.org/

10



Figure 3: Observer pattern implemented in a rendezvous-based coordination language with a visual
syntax.

6 Alternatives to Threads

Consider again the observer pattern shown in figures 1 and 2. This is a simple (trivial, even) design
pattern [22]. An implementation should be simple. Regrettably, as shown above, it is not so easy to
implement using threads.

Consider figure 3, which shows the observer pattern implemented in the “Rendezvous domain”
of Ptolemy II [20]. The box at the upper left labeled “Rendezvous Director” is an annotation spec-
ifying that this diagram represents a CSP-like [29] concurrent program, where each component
(represented by an icon) is a process, and communication is by rendezvous. The processes them-
selves are specified using ordinary Java code, so this framework is properly viewed as a coordination
language (that happens to have a visual syntax). The Ptolemy II implementation of this rendezvous
domain is inspired by Reo [2] and includes a “Merge” block that specifies a conditional rendezvous.
In the diagram, the Merge block specifies that either of the two Value Producers can rendezvous
with both the Value Consumer and the Observer. That is, there two possible three-way rendezvous
interactions that can occur. These interactions can occur repeatedly in nondeterministic order.

First, note that once you understand what the icons mean, the diagram very clearly expresses
the observer pattern. Second, notice that everything about the program is deterministic except the
explicitly nondeterministic interaction specified by the Merge block. Were that block absent, then
the program would specify deterministic interactions between deterministic processes. Third, note
that deadlock is provably absent (in this case, the lack of cycles in the diagram ensures no deadlock).
Fourth, note that the multiway rendezvous ensures that the Value Consumer and Observer see new
values in the same order. The observer pattern becomes trivial, as it should be.

Now that we have made the trivial programming problem trivial, we can start to consider inter-
esting elaborations. Figure 4 shows the observer pattern implemented with a “PN Director,” which
realizes the Kahn process networks (PN) model of concurrency [31]. In this model, each icon again
represents a process, but instead of rendezvous-based interactions, the processes communicate via
message passing with conceptually unbounded FIFO queues and blocking reads (streams). In the
original PN model due to Kahn and MacQueen [31], the blocking reads ensure that every network
defines a deterministic computation. In this case, the PN model has been augmented with a primi-
tive called “NondeterministicMerge” that explicitly merges streams nondeterministically. Note that
augmenting the PN model with such explicit nondeterminism is common for embedded software
applications [18].

The new implementation of figure 4 has all the cited advantages of the one in figure 3 with the

11



Figure 4: Observer pattern implemented using a process networks model of concurrency.

added property that the Observer need not keep up with the Value Consumer. Notifications can be
queued for later processing. In a thread-based implementation, we are unlikely to ever even get to
point of asking such questions, since the programmer effort to get any form of the observer pattern
correct is so excessive.

A third implementation would elaborate on the nature of the nondeterminism represented by
the nondeterministic merge. The principles of synchronous languages [8] could be used to en-
sure fairness. In Ptolemy II, the same model can be implemented with an “SR director” (syn-
chronous/reactive), which implements a synchronous model related to Esterel [12], SIGNAL [10],
and Lustre [25]. The last of these has been used successfully to design highly concurrent, safety
critical software for aircraft control applications [11]. Using threads for such applications would
not be wise.

A fourth implementation would focus on the timing of nondeterministic events. In Ptolemy
II, a similar model using the “DE director” (discrete events), would provide a timed specification
with rigorous semantics [33] related to that of hardware description languages such as VHDL and
Verilog and to network modeling frameworks such as Opnet Modeler.

In all four cases (rendezvous, PN, SR, and DE), we have started with a fundamentally determin-
istic (and concurrent) interaction mechanism (deterministic in the sense of the computation being
performed, though in the first three cases not deterministic in the sense of timing). Nondeterminism
has been judiciously introduced exactly where needed. This style of design is very different from
the threads style, which starts with a wildly nondeterministic interaction mechanism and attempts
to prune away undesired nondeterminism.

The implementations shown in figures 3 and 4 both use Java threads. However, the program-
mer’s model is not one of threads at all. Compared to all the techniques described in the previous
section, this is closest to MapReduce, which has a similar flavor of streaming data through computa-
tions. But unlike MapReduce, it is supported in a rigorous coordination language that is sufficiently
expressive to describe a wide range of interactions. In fact, two distinct coordination languages are
given here, one with rendezvous semantics, and the other with PN semantics.

This style of concurrency is, of course, not new. Component architectures where data flows
through components (rather than control) have been called “actor-oriented” [35]. These can take
many forms. Unix pipes resemble PN, although they are more limited in that they do not support
cyclic graphs. Message passing packages like MPI and OpenMP include facilities for implementing
rendezvous and PN, but in a less structured context that emphasizes expressiveness rather than
determinacy. A naive user of such packages can easily be bitten by unexpected nondeterminacy.

12



Languages such as Erlang [4] make message passing concurrency an integral part of a general-
purpose language. Languages such as Ada make rendezvous an integral part. Functional languages
[30] and single-assignment languages also emphasize deterministic computations, but they are less
explicitly concurrent, so controlling and exploiting concurrency can be more challenging. Data
parallel languages also emphasize determinate interactions, but they require low-level rewrites of
software.

All of these approaches offer pieces of the solution. But it seems unlikely that any one will
become mainstream. I examine the reasons for this next.

7 Challenges and Opportunities

The fact is that alternatives to threads have been around for a long time, and yet threads dominate the
concurrent programming language landscape. There are, in fact, many obstacles to these alternatives
taking root. Probably the most important is that the very notion of programming, and the core
abstractions of computation, are deeply rooted in the sequential paradigm. The most widely used
programming languages (by far) adhere to this paradigm. Syntactically, threads are either a minor
extension to these languages (as in Java) or just an external library. Semantically, of course, they
thoroughly disrupt the essential determinism of the languages. Regrettably, programmers seem to be
more guided by syntax than semantics. The alternatives to threads that have taken root, like MPI and
OpenMP, share this same key feature. They make no syntactic change to languages. Alternatives
that replace these languages with entirely new syntax, such as Erlang or Ada, have not taken root,
and probably will not. Even languages with minor syntactic modifications to established languages,
like Split-C or Cilk, remain esoteric.

The message is clear. We should not replace established languages. We should instead build
on them. However, building on them using only libraries is not satisfactory. Libraries offer little
structure, no enforcement of patterns, and few composable properties.

I believe that the right answer is coordination languages. Coordination languages do introduce
new syntax, but that syntax serves purposes that are orthogonal to those of established programming
languages. Whereas a general-purpose concurrent language like Erlang or Ada has to include syntax
for mundane operations such as arithmetic expressions, a coordination language need not specify
anything more than coordination. Given this, the syntax can be noticeably distinct. The “programs”
given in figures 3 and 4 use a visual syntax to specify actor-oriented coordination (where data
streams through components rather than control). Although here a visual syntax is being used
only for pedagogical purposes, it is conceivable that eventually such visual syntaxes will be made
scalable and effective, as certain parts of UML have for object-oriented programming. Even if they
are not, it is easy to envision scalable textual syntaxes that specify the same structure.

Of course, even coordination languages have been around for a long time [40]. They too have
failed to take root. One reason for this that their acceptance amounts to capitulation on one key front:
homogeneity. A prevailing undercurrent in programming languages research is that any worthy
programming language must be general purpose. It must be, at a minimum, sufficiently expressive to
express its own compiler. And then, adherents to the language are viewed as traitors if they succumb
to the use of another language. Language wars are religious wars, and few of these religions are
polytheistic.

A key development, however, has broken the ice. UML, which is properly viewed as a family of
languages, each with a visual syntax, is routinely combined with C++ and Java. Programmers are

13



starting to get used to using more than one language, where complementary features are provided
by the disjoint languages. The programs in figures 3 and 4 follow this spirit, in that they specify
diagrammatically large-grain structure, which is quite orthogonal to fine-grain computation.

Concurrency models with stronger determinism than threads, such as Kahn process networks,
CSP, and dataflow, have also been available for a long time. Some of these have led to programming
languages, such as Occam [21] (based on CSP), and some have led to domain-specific frameworks,
such as YAPI [18]. Most, however, have principally been used to build elaborate process calculi,
and have not had much effect on mainstream programming. I believe this can change if these
concurrency models are used to define coordination languages rather than replacement languages.

There are many challenges on this path. Designing good coordination languages is no easier
than designing good general-purpose languages, and is full of pitfalls. For example, it is easy to be
trapped by the false elegance of a spare set of primitives. In general purpose languages, it is well
known that seven primitives are sufficient [48], but no serious programming language is built on
these primitives.

Figure 5 shows two implementations of a simple concurrent computation. In the upper program,
an adaptation of an example from [3], successive outputs from Data Source 1 and Data Source 2
are interleaved deterministically, appearing in alternating order at the Display block. This rather
simple functionality, however, is accomplished in a rather complex way. In fact, it is a bit of puzzle
to understand how it works.10 The lower program, however, is easily understood. The Commutator
block performs a rendezvous with each of its inputs in top-to-bottom order, and thus accomplishes
the same interleaving. Judicious choice of “language” primitives enable simple, direct, and deter-
ministic expressions of deterministic aims. The upper model uses nondeterministic mechanisms,
albeit more expressive ones, to accomplish deterministic aims. It is thus much more obtuse.

Of course, coordination languages need to develop scalability and modularity features analogous
to those in established languages. This can be done. Ptolemy II, for example, provides a sophisti-
cated, modern type system at the coordination language level [49]. Moreover, it offers a preliminary
form of inheritance and polymorphism that is adapted from object-oriented techniques [35]. A huge
opportunity exists in adapting the concept of higher-order functions to coordination languages to
offer constructs like MapReduce at the coordination language level. Some very promising early
work in this direction is given by Reekie [42].

A more challenging, long-term opportunity is to adapt the theory of computation to provide
better foundations for concurrent computations. Although considerable progress has been made
in this direction, I believe there is much more to be done. In section 3, sequential computation is
modeled as functions mapping bit sequences into bit sequences. A corresponding concurrent model
has been explored in [36], where instead of a function

f : B∗∗ → B∗∗

concurrent computation is given as a function

f : (T → B∗∗) → (T → B∗∗).

10The Barrier actor ensures that all its inputs participate in the same rendezvous interaction. The Merge actor was
explained before. The Buffer actor, which has capacity one, is initially empty, and thus willing to rendezvous with its
input. Once it becomes full, it is only willing to rendezvous with its output. All together, this model allows either of two
multiway rendezvous interactions to occur, in alternating order. The first involves both Data Source actors, the Buffer,
and the Display. The second involves only the Buffer and the Display.

14



Figure 5: Two ways to accomplish deterministic interleaving using rendezvous.

In the above,T is a partially or totally ordered set oftags, where the ordering can represent time,
causality, or more abstract dependency relations. A computation viewed in this way maps an evolv-
ing bit pattern into an evolving bit pattern. This basic formulation has been shown adaptable to
many concurrent models of computation [9, 14, 37].

8 Conclusion

Concurrency in software is difficult. However, much of this difficulty is a consequence of the ab-
stractions for concurrency that we have chosen to use. The dominant one in use today for general-
purpose computing is threads. But non-trivial multi-threaded programs areincomprehensible to
humans. It is true that the programming model can be improved through the use of design pat-
terns, better granularity of atomicity (e.g. transactions), improved languages, and formal methods.
However, these techniques merely chip away at the unnecessarily enormous nondeterminism of the
threading model. The model remains intrinsically intractable.

If we expect concurrent programming to be mainstream, and if we demand reliability and pre-
dictability from programs, then we must discard threads as a programming model. Concurrent
programming models can be constructed that are much more predictable and understandable than
threads. They are based on a very simple principle:deterministic ends should be accomplished
with deterministic means. Nondeterminism should be judiciously and carefully introduced where
needed, and should be explicit in programs. This principle seems obvious, yet it is not accom-
plished by threads. Threads must be relegated to the engine room of computing, to be suffered only
by expert technology providers.

15



References

[1] P. An, A. Jula, S. Rus, S. Saunders, T. Smith, G. Tanase, N. Thomas, N. Amato, and L. Rauchwerger.
STAPL: An adaptive, generic parallel C++ library. InWkshp. on Lang. and Comp. for Par. Comp.
(LCPC), pages 193–208, Cumberland Falls, Kentucky, 2001.

[2] F. Arbab. Reo: A channel-based coordination model for component composition.Mathematical Struc-
tures in Computer Science, 14(3):329–366, 2004.

[3] F. Arbab. A behavioral model for composition of software components.L’Object, to appear, 2006.
[4] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams.Concurrent programming in Erlang. Prentice

Hall, second edition, 1996.
[5] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: a dialect of Java without data races. InACM SIG-

PLAN conference on Object-oriented programming, systems, languages, and applications, volume 35
of ACM SIGPLAN Notices, pages 382–400, 2000.

[6] U. Banerjee, R. Eigenmann, A. Nicolau, and D. Padua. Automatic program parallelization.Proceedings
of the IEEE, 81(2):211–243, 1993.

[7] L. A. Barroso. The price of performance.ACM Queue, 3(7), 2005.
[8] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.Proceedings

of the IEEE, 79(9):1270–1282, 1991.
[9] A. Benveniste, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli. Heterogeneous reactive systems

modeling and correct-by-construction deployment. InEMSOFT. Springer, 2003.
[10] A. Benveniste and P. L. Guernic. Hybrid dynamical systems theory and the signal language.IEEE Tr.

on Automatic Control, 35(5):525–546, 1990.
[11] G. Berry. The effectiveness of synchronous languages for the development of safety-critical systems.

White paper, Esterel Technologies, 2003.
[12] G. Berry and G. Gonthier. The esterel synchronous programming language: Design, semantics, imple-

mentation.Science of Computer Programming, 19(2):87–152, 1992.
[13] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk: an

efficient multithreaded runtime system. InACM SIGPLAN symposium on Principles and Practice of
Parallel Programming (PPoPP), ACM SIGPLAN Notices, 1995.

[14] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli. Notes on agent algebras. Technical
Report UCB/ERL M03/38, University of California, November 2003.

[15] M. Creeger. Multicore CPUs for the masses.ACM Queue, 3(7), 2005.
[16] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. v. Eicken, and K. Yelick.

Parallel programming in Split-C. InSupercomputing, Portland, OR, 1993.
[17] B. A. Davey and H. A. Priestly.Introduction to Lattices and Order. Cambridge University Press, 1990.
[18] E. A. de Kock, G. Essink, W. J. M. Smits, P. van der Wolf, J.-Y. Brunel, W. Kruijtzer, P. Lieverse, and

K. A. Vissers. Yapi: Application modeling for signal processing systems. In37th Design Automation
Conference (DAC’00), pages 402–405, Los Angeles, CA, 2000.

[19] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. InSixth Sympo-
sium on Operating System Design and Implementation (OSDI), San Francisco, CA, 2004.

[20] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs, and Y. Xiong.
Taming heterogeneity—the Ptolemy approach.Proceedings of the IEEE, 91(2), 2003.

[21] J. Galletly.Occam-2. University College London Press, 2nd edition, 1996.
[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-

Oriented Software. Addison Wesley, 1994.
[23] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam.PVM: Parallel Virtual

Machine — A Users Guide and Tutorial for Network Parallel Computing. MIT Press, Cambridge, MA,
1994.

[24] A. Gontmakher and A. Schuster. Java consistency: nonoperational characterizations for Java memory
behavior.ACM Trans. Comput. Syst., 18(4):333–386, 2000.

[25] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming language
lustre.Proceedings of the IEEE, 79(9):1305–1319, 1991.

16



[26] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable memory transactions. InACM Confer-
ence on Principles and Practice of Parallel Programming (PPoPP), Chicago, IL, 2005.

[27] J. Henry G. Baker and C. Hewitt. The incremental garbage collection of processes. InProceedings
of the Symposium on AI and Programming Languages, volume 12 ofACM SIGPLAN Notices, pages
55–59, 1977.

[28] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer. Thread-modular abstraction refinement. In
15th International Conference on Computer-Aided Verification (CAV), volume 2725 ofLecture Notes
in Computer Science, pages 262–274. Springer-Verlag, 2003.

[29] C. A. R. Hoare. Communicating sequential processes.Communications of the ACM, 21(8), 1978.
[30] P. Hudak. Conception, evolution, and application of functional programming languages.ACM Com-

puting Surveys, 21(3), 1989.
[31] G. Kahn and D. B. MacQueen. Coroutines and networks of parallel processes. In B. Gilchrist, editor,

Information Processing. North-Holland Publishing Co., 1977.
[32] D. Lea.Concurrent Programming in Java: Design Principles and Patterns. Addison-Wesley, Reading

MA, 1997.
[33] E. A. Lee. Modeling concurrent real-time processes using discrete events.Annals of Software Engi-

neering, 7:25–45, 1999.
[34] E. A. Lee. What’s ahead for embedded software?IEEE Computer Magazine, pages 18–26, 2000.
[35] E. A. Lee and S. Neuendorffer. Classes and subclasses in actor-oriented design. InConference on

Formal Methods and Models for Codesign (MEMOCODE), San Diego, CA, USA, 2004.
[36] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models of computation.IEEE

Transactions on CAD, 17(12), 1998.
[37] X. Liu. Semantic foundation of the tagged signal model. Phd thesis, EECS Department, University of

California, December 20 2005.
[38] H. Maurice and J. E. B. Moss. Transactional memory: architectural support for lock-free data structures.

In Proceedings of the 20th annual international symposium on Computer architecture, pages 289–300,
San Diego, California, United States, 1993. ACM Press.

[39] Message Passing Interface Forum. MPI2: A message passing interface standard.International Journal
of High Performance Computing Applications, 12(1-2):1–299, 1998.

[40] G. Papadopoulos and F. Arbab. Coordination models and languages. In M. Zelkowitz, editor,Advances
in Computers - The Engineering of Large Systems, volume 46, pages 329–400. Academic Press, 1998.

[41] W. Pugh. Fixing the Java memory model. InProceedings of the ACM 1999 conference on Java Grande,
pages 89–98, San Francisco, California, United States, 1999. ACM Press.

[42] H. J. Reekie. Toward effective programming for parallel digital signal processing. Ph.D. Thesis Re-
search Report 92.1, University of Technology, Sydney, 1992.

[43] H. J. Reekie, S. Neuendorffer, C. Hylands, and E. A. Lee. Software practice in the Ptolemy project.
Technical Report Series GSRC-TR-1999-01, Gigascale Semiconductor Research Center, University of
California, Berkeley, April 1999.

[44] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Pattern-Oriented Software Architecture -
Patterns for Concurrent and Networked Objects. Wiley, 2000.

[45] N. Shavit and D. Touitou. Software transactional memory. InACM symposium on Principles of Dis-
tributed Computing, pages 204–213, Ottowa, Ontario, Canada, 1995. ACM Press.

[46] L. A. Stein. Challenging the computational metaphor: Implications for how we think.Cybernetics and
Systems, 30(6), 1999.

[47] H. Sutter and J. Larus. Software and the concurrency revolution.ACM Queue, 3(7), 2005.
[48] A. M. Turing. Computability andλ-definability. Journal of Symbolic Logic, 2:153–163, 1937.
[49] Y. Xiong. An extensible type system for component-based design. Ph.D. Thesis Technical Memoran-

dum UCB/ERL M02/13, University of California, Berkeley, CA 94720, May 1 2002.

17


