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Abstract

Peer-to-Peer systems have become, in a short period of time, one of the
fastest growing and most popular applications. The decentralized and
distributed nature of p2p systems leads to living aside the client-server
model. In p2p model each node takes both the roles of client and server.
As a client, it can query and download its wanted data files from other
nodes and as a server, it can provide data files to other nodes. Two main
objectives in p2p systems are data location and search for interesting
data. In order to present these topics, we survey various structured and
unstructured p2p systems. We also study content-based p2p systems that
are systems with clusters of nodes, according to the content of their data
files. We point replication strategies and techniques and we show how
range queries are performed.

1 Introduction

Peer-to-Peer applications are distributed systems, without any centralized con-
trol or hierarchical organization. All nodes, which are called peers, have equiv-
alent functionality. Each pair of nodes can communicate each other directly or
via other nodes, through the routing protocol.

There are several reasons that make this kind of systems attractive. Firstly,
the barriers to growing are low and so, p2p can scale well. They usually do
not require any special administrative arrangements and in that way, they can
support systems with an increasing number of nodes and data elements. They
are robust to faults and when a failure occurs it is easy to recover, because of
the data replication and the multiple paths leading to data. Furthermore, p2p
systems have good performance, due to the fact that there is a balancing in load
because of their decentralized character (there are no nodes that have to serve
all requests from all the other nodes). In addition, the availability seems to be
high, making the p2p systems very useful.

In p2p systems, there are two approaches to execute a searching operation:
the centralized and the decentralized approach. In centralized systems, such as
Napster, a basic problem is that in case of a failure there is a network failure,
as well. That happens when the node that stores all the information about the
network fails. Also, the system has a poor performance when the number of
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nodes is increased. The decentralized systems, such as Gnutella, Chord, CAN,
try to overcome these disadvantages. They have no central directory server and
each of them uses different techniques of storing and querying data.

Furthermore, there is an additional distinction of p2p systems between struc-
tured and unstructured ones. In a structured topology, data files are placed at
specified locations and not at random nodes. This tightly controlled structure
enables the system to satisfy queries in an efficient manner. Examples of struc-
tured systems are CAN and Chord. In contrast, in unstructured p2p systems,
like Gnutella, there is no precise control over the network topology and data
files’ location. The files’ location is not based on any kind of knowledge of the
topology. Usually, to find a file the method that is followed is flooding. A node
queries its neighbors, its neighbors their own neighbors and so on, for a specific
number of steps. Also, an unstructured system seems to not scale well; when
many nodes join the system many messages are produced in the network.

Paper outline. In this paper, we underline the features of structured and
unstructured networks, in order to survey p2p systems. The rest of the paper
is organized as follows. At first, in section 2 we present Chord and Can, which
are examples of structured systems. Then, in section 3, we investigate unstruc-
tured systems. We present the Gnutella system and a variety of improvements.
Furthermore, we discuss the use of routing indices. Section 4 focuses on content-
based p2p systems and section 5 presents replication strategies and replication
techniques. In this section, we also show how updates are spread. Section 5 is
referred to how range queries are performed and section 6 states an additional
technique that provides a way to use a full-featured query language. Finally,
section 7 concludes the paper with a summary of our study.

2 Structured P2P Systems

There are many different p2p systems, each one with various advantages and
disadvantages. They differ both in their object query mechanism and in their
logical topology. In order to understand p2p systems we classified them into
structured and unstructured. In this section, the structured systems Chord and
CAN, are presented. In such systems, data files are placed not at random nodes,
but at specified locations.

2.1 Chord

Chord [18] is a distributed lookup protocol. In this protocol all nodes are uni-
formly distributed in a ring, which is called identifier circle or Chord ring. Data
files are also uniformly distributed over the network. In particular, Chord maps
a key, i.e. an m-bits identifier, to the nodes and to the data files using consistent
hashing. The method of consistent hashing uses the SHA1 algorithm (Secure
Hash Algorithm - [4]). Nodes are ordered in the ring according to the modulo
of the key with the number 2m. A data file with key k is stored on the first
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Figure 1: The Chord Ring.

node whose identifier is equal or follows k in the identifier space. This node is
named successor node.

Each node needs only to be aware of its successor node on the circle (every
node is linked to the next one with a successor pointer). Queries for a given
identifier can be passed around the circle via the successor pointers until they
first encounter a node that succeeds the identifier; this is the node the query
maps to. To accelerate this process, each node maintains a routing table with
information for only O(logN) other nodes. In this way, the queries are executed
more efficiently. In particular, each node knows all the other nodes carrying the
nearest, largest key among all the keys that are at a distance of an increasing
power of 2. This knowledge is stored in a table with m entries, called finger
table. A finger table entry includes the Chord identifier, the IP address and the
port number of the relevant node. The first entry is its immediate successor on
the circle. The ith entry of the finger table for a node k has the identifier of the
first next node from the node (k + 2(i−1))mod(m), where 1 ≤ i ≤ m. When we
look up for a key at node k, we first check if the key is located between k and
its successor. If this is true, k’s successor is the node that has the key that we
are looking up. Otherwise, k searches its finger table to find the node with the
first largest key from the key we are looking up. The procedure continues until
the node that stores the key is found. In a system with N nodes, when a node
executes a lookup operation, O(logN) messages are transmitted to other nodes.
An example of a Chord ring, where is represented the finger table of the N8
node, is shown in Fig. 1.

Nodes can join and leave at any time. In both cases, it is necessary to move
a small amount of keys to different nodes. These nodes are now responsible for
the keys. More specifically, when a new node joins the network some of the keys
that are assigned to the successor of the new node, must be assigned to the new
node. Similarly, when a node leaves the network, all its keys are assigned to its
successor. These are the only keys that must be moved, to ensure the system’s
consistency.
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2.2 CAN

CAN (Content-Addressable Network) is a distributed hash-based infrastructure
that provides fast lookup functionality. Each node stores a chunk, which is called
zone of the hash table. Also, a node maintains information about its neighbors
in the network. Requests for keys are routed to those nodes that their zones
have the corresponding keys.

CAN [15] is designed around a virtual d-dimensional cartesian coordinate
space on a d-torus. This coordinate space is partitioned among all the nodes
of the system. In that way, each node has its own zone. For example, Fig.
2 shows a 2-dimensional [0, 1] × [0, 1] coordinate space partitioned between 5
nodes. The virtual space is used to store (key,value) pairs. A key k is assigned
to a point p using a hash function. Then, the corresponding (key,value) pair is
stored to the node whose zone includes point p. To retrieve this key and the
corresponding data, a node executes the same hash function to find point p. For
the routing operation each node maintains the IP addresses of the nodes of its
neighborhood. It also, has information regarding the zones of the network. In a
d-dimensional space, two nodes are neighbors if their coordinates are overlapped
along d− 1 dimensions and are adjoin along 1 dimension. A node, using the set
of its neighbors, routes a message towards its destination by forwarding it to the
neighbor, which is closest to the destination. Each node maintains information
about 2d neighbors. The average routing path length is (d/4)(n1/d) hops.

As referred above the coordinate space is partitioned among all the nodes of
the system. When a new node joins the system, an existing node splits its zone
and the new chunk is assigned to the new node. This operation is performed
in three steps. First, the new node discovers an existing node. Then, it finds
the node whose zone must be split and lastly the neighbors of the split zone are
notified that routing can include the new node. Furthermore, CAN supports
nodes leaving. In this case, i.e. when a node leaves the network, its zone is
assigned to one of the existing nodes.
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3 Unstructured P2P Systems

In this type of networks, the logical p2p topology is often random or is based
on a nodes’ hierarchy, i.e. there exists super-nodes. A query is executed hop-
by-hop through the network until a success, a failure or a timeout occurs. In
this section, we first present Gnutella, which is an unstructured p2p system,
and then a variety of techniques for improving the performance of unstructured
systems.

3.1 Gnutella

Gnutella [2] is one of the earliest decentralized p2p file sharing systems. To
join the system, a new node first must connect to one of several known nodes
that are already in the system. The new node notifies the Gnutella node for
its existence with a join message. Then, this node notifies its neighbors that a
new node has connected to the system; they notify their neighbors for the new
node, and so on. This process continues until the TTL (Time-To-Live) becomes
0 (TTL has an initial value which is decreased by 1 in every hop). To find a
file, a node broadcasts messages to its neighbors. The most typical method is
flooding. A node sends a query to its neighbors on the network. In turn, its
neighbors forward the query to all of their neighbors until the query has traveled
for a certain radius, according to the TTL.

Gnutella is completely decentralized, and so there is no single point of failure,
such as in Napster. In Napster ([3]) a node stores all the information about the
network and in the case this node fails, there is a network’s failure. The above
systems are shown in Fig. 3. On the other hand, using flooding, many messages
are transmitted between the nodes, causing large loads on the network.

Improvements. In order to overcome this disadvantage several techniques are
proposed. In [13] two mechanisms are presented: expanding ring and random
walks. In the first one, a node starts the flooding method with a small TTL.
In case that the search is not successful, the node increases the TTL and starts
another flooding. The process is stopped when the data file is found. This
mechanism achieves best results when it is possible that flooding will satisfy a
query with a small number of hops. In a different case, the mechanism produces
even bigger loads than the standard flooding mechanism. In the random walks
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mechanism, the requesting node sends k query messages and each query message
takes its own random walk, i.e. forwards the query to only one randomly chosen
neighbor at each step. This mechanism effects some kind of local load balancing,
because each node, which is chosen to be forwarded a query, is selected randomly.
Also, the number of messages transmitted in the network is reduced. The most
important drawback of this mechanism is its highly changeable performance.
The above remarks are referred in [20].

3.2 Routing Indices

In Gnutella, queries are propagated from node to node until the data files are
found, without any use of indices. This approach has as a disadvantage the cost
of flooding the network when a query is executed. The use of routing indices,
which are proposed in [8], allows nodes to forward queries to these nodes that
possibly have the answers. So, if a node cannot answer a query, it uses its local
routing index in order to forward the query to a selected set of neighbors, instead
of forwarding the query to all its neighbors (flooding) or to a randomly selected
number of neighbors. In following, we present the compound, the hop-count
and the exponential routing indices.

Compound Routing Indices. In general, we use routing indices because
they provide to a node a set of its neighbors that are appropriate to send a
query to. Each node has a local index for finding local data files quickly, when
a query is executed. Data files are divided into categories, according to their
topic. Also, the node has a compound routing index containing the number of
files along each path and the number of files on each topic of interest. For a node
the number of its available paths is equal to the number of its neighbors. For
finding how ’good’ is a node, in order to propagate a query to it, the number
of data files that may be found in its path is measured. In case that a new
connection between two nodes is established, nodes must inform their routing
indices and so the indices are updated, including the new data files that can be
accessed. In a similar way, the routing indices are updated when a node leaves
the network.

Hop-Count Routing Indices. The main drawback of using compound rout-
ing indices is the fact that they take into account only the number of data files
in a path and not the distance cost to reach them. This leads to an alternative
data structure: the hop-count routing indices. This kind of indices store ag-
gregated routing indices for each hop up to a maximum number of hops. This
number is named horizon of the routing index. For instance, when we have a
hop-count routing index with an horizon of 2 hops, we store the number of data
files that can be accessed with 1 hop and also the number of data files that can
be accessed with 2 hops. Comparing this approach with the previous one, we
note that here, there is no information about the number of data files that are
stored to the nodes beyond the horizon. In addition, we observe that a path
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Figure 4: Cycles and Routing Indices.

which seems to be better for answering a query with k hops, it might be not
the appropriate one when we use a (k + 1) hops distance. For example, when
we compare 2 paths, A and B, to find the best one, A can give us 20 results
(data files) for a specific query and B 10 with k hops, but on the other hand A
might give us 25 results for the same query and B 35 with (k + 1) hops.

Exponentially Aggregated Routing Indices. The previous approach takes
into account the number of hops, although the storage amount increases. An
alternative index structure that is introduced, is the exponential aggregated rout-
ing index, which overcomes this problem but it looses in accuracy. In particular,
each entry of the index has a value computed as:

Σj=1...th(goodness(N [j], T ])/F j−1),
where th is the height and F the fanout of an assumed tree that represent the
network topology, goodness() is the compound routing index estimator, N[j] is
the summary of the local index of neighbor j of N and T is the topic of interest
of the entry.

In any of the above cases, the process of creating and updating indices is
more complicated, when there are cycles in the network topology. An example,
where there is a cycle, is shown in Fig. 4. The authors of [8] provide the
following solutions:

• No-op solution, where there is no modifications to the algorithms. This
approach can be applied to hop-count and to exponential routing indices.

• Cycle avoidance solution, where the creation of cycles is not permitted.

• Cycle detection and recovery, where cycles are detected and the effects
that they create are canceled.

In Table 1, we summarize basic features of p2p systems that are presented above.

4 Content-Based P2P Systems

P2p systems that are presented above have low cost for sharing information,
privacy and autonomy. However, query processing some times is not very effi-
cient and does not scale well. These drawbacks arise because many p2p systems
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Table 1: A comparison of various p2p systems

P2P Systems Napster Gnutella Chord CAN

Degree of Centralized centralized decentralized decentralized decentralized
Network Topology - unstructured structured structured
Parameters none none N-number of nodes N-number of nodes and

d-number of dimensions
Routing State constant constant logN 2d

Query Path Length O(1) < TTL O(logN) O(dN1/d)
Fault Tolerance poor poor random random

create a random graph that represents the network topology, where queries are
propagated from node to node in a blind manner. Furthermore, there are sys-
tems where data files are placed not at random nodes but at specified locations
using hash functions. Such systems have good performance for point queries,
but they are not efficient for text or range queries. In this section, we present
different approaches that aim to improve query performance. We first discuss
the interest-based shortcuts protocol, and then we present various works that
includes clusters of nodes, according to the contents of their data files and their
interests.

4.1 Interest-Based Shortcuts

In [17], authors propose a content location solution. In this approach, nodes
loosely organize themselves into an interest-based structure on top of the ex-
isting Gnutella network. The principle of interest-based locality states that if a
node has a particular data file that one is interested in, it is possible that it will
have other files that one is interested in as well. This principle is used to create
shortcuts from a node to another. These nodes share many similar interests. In
addition, shortcuts not only provide a loose structure on top of Gnutella, but
also are compatible with many other mechanisms, such as DHTs and hybrid
centralized-decentralized architectures. In that way, at first a query is sent to
nodes through shortcuts, avoiding flooding or other methods, and only if short-
cuts fail, the query is flooded to the entire system. A topology with shortcuts
is shown in Fig. 5. The shortcuts are represented with the bold lines.

When shortcuts are used in a system, there must be a way to select which
shortcut should be used. Authors in [17] propose a ranking of shortcuts based on
their utility. So, the useful shortcuts are posed on the top of the list. A node,
starts from the top of the list, checks all shortcuts one after the other, until
the searching data file is found. Each node continuously updates its ranking
list, based on the performance of shortcuts. This allows nodes to adapt to
dynamic changes. The ranking of shortcuts is created by using metrics, such as
probability of providing content, latency of the path to the shortcut, available
bandwidth of the path, amount of content at the shortcut, load at the shortcut
or a combination of the above.
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Figure 5: Paths with shortcuts.

4.2 Clustering Techniques

An alternative kind of decentralized p2p systems is based on the creation of
nodes’ clusters. In each cluster, all the nodes have similar interests. These
systems retain the desirable properties of unstructured systems and support
partial-match queries. In the following subsections, we present 3 systems that
are organized according to the content of data files stored at each node. Firstly,
we discuss the associative overlays ([6]), and then the semantic overlay networks
(SONs - [9]). At last, we present how semantic vectors ([19]) can be used, to
express the similarities between queries and data files.

4.2.1 Associative Overlays

A guided search is proposed in [6]. This kind of search is neither a blind search
used by unstructured systems nor a routed search used by structured systems.
Here, queries are propagated to nodes that have relevant data files. These nodes
are semantically similar and belong to the same cluster. All nodes that belong
to a cluster satisfy a predicate. This set of nodes is called guide rule. The guide
rules define the network topology. In Fig. 6, we can see a pictorial example
of the sets of nodes associated with two overlapping guide rules. Each node
maintains a small list of other nodes that belong to the same guide rule. A
search process in a guide rule is performed like the blind search in unstructured
systems. Furthermore, a node has the capability to select a guide rule, among
those that belongs to, in order to execute a search.

A guide rule is a set of nodes whose index satisfies a predicate. A possession
rule is a particular kind of a guide rule. For instance, a possession rule may
check for the presence of a certain entry in the index. In this way, a node
participates in a rule if it has a specific item.

Two search algorithms are proposed: the Rapier (Random Possession Rule)
and the Gas (Greedy Guide Rule) algorithm. In the first one, a possession rule
is selected at random and then a blind search is performed. In the latter, we do
not select randomly a guide rule, but we choose this guide rule that probably
leads to an efficient search.
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4.2.2 SONs

In a similar way, Semantic Overlay Networks (SONs - [9]) consist of clusters of
nodes. Each cluster includes nodes that are semantically related. Two nodes
are semantically related when the content of their data files are similar. All
connections are between nodes that belong to the same SON, without the need
that in a SON all nodes are connected to each other. Furthermore, a node
might belong to more than one SON. Queries are processed first by finding the
appropriate SON to answer it. Then, the query is propagated to this SON and
finally, is performed a blind search in the specific SON. This process reduces
the time to answer a query.

Moreover, in [9] is introduced a different implementation of SONs, which is
called Layered SONs. This approach improves further the query performance.
It uses a zipfian data distribution, while each node can decide which SONs to
join according to the number of the related data files that are stored at the
node.

4.2.3 Semantic Vectors

Another way to exploit the similarities of content of the nodes’ data files is to
place them (or their indices) to specific nodes. For each data file a vector is cre-
ated, according to its content. This vector is used to place the data file. Also,
each query has a vector. The similarity between a file’s vector and a query’s
vector, leads the query to an appropriate node, i.e. a node that may have the
result of the query. This approach is presented in clearness in [19].

In Fig. 7, it is shown a tree form that represents the above content based p2p
systems.
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5 Replication

One way to improve the performance of a system is to replicate data files on
several nodes, before a query is resolved. In this section, we survey various
replication techniques that are applied to p2p systems.

Initially, specific replication strategies that indicates how relicas are distrib-
uted across the nodes are proposed in [7]. Uniform, proportional and square-root
replication are examples of the above strategies. In uniform replication strat-
egy all data files are replicated at the same number of nodes, even though some
data files are more frequently requested than others. Using this technique, the
required maximum search cost is minimized. An alternative strategy is pro-
portional replication. Here, the number of replicas for a specific data file is
proportional to the query probability of the data file. So, if nodes store only
the data files that are requested for, the replication distribution is almost pro-
portional to the query distribution. Although queries for popular data files are
satisfied efficiently because there are many replicas for the requested data files
across the network, queries for unpopular data files require higher search cost.
Between uniform and proportional replication is square-root replication. In this
strategy, the replicas of a specific data file is proportional to the square root of
its query probability. Square-root replication provides a balance for searching
popular and unpopular data files.

5.1 Discussion on Structured Systems

Additionally, structured p2p systems use specific methods to improve their per-
formance and to increase their availability. When data files are replicated, the
load of the system is balanced and usually there are copies nearby the requestor.
Also, the availability is higher since we can use replicas in the case of failures
and nodes departures. On the other hand, the amount of storage increases and
we must maintain the consistency of the replicated data. In this section, we
introduce such methods that are applied to Chord and CAN [18, 15].

Chord. A strategy for metadata replication that is used in Chord is based on
successor lists. With a successor list a node maintains information about the
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r next nearest successors on the ring. This list guarantees the correctness of a
search.

CAN. In CAN a replication technique is based on realities, which are inde-
pendent coordinate spaces. Each node is assigned to a zone in each reality.
Thus, if CAN has r realities, a node is assigned to r zones, one for each reality.
Replicas of the hash table are stored in each reality. In this way, when there are
multiple realities, a pointer for a specific data file is stored at more than one
different nodes.

In order to improve data availability, we can also use k different hash func-
tions to map a key onto k points in the coordinate space, and so replicas of the
(key,value) pair are placed to k different nodes in the system. In this case, the
(key,value) pair is not available only when all k replicas are not available at the
same time.

Furthermore, replication is also used in the overloading coordinate zones
technique. According to this technique, multiple nodes may share a zone. So,
replicas of the hash table are placed to all nodes that have been assigned to the
same zone, ensuring higher availability.

In general, when a node conceives that receives many requests for a specific
data key, it may replicate this data key at each of its neighbors. A node that
holds a replica can be used to satisfy related requests, reducing the load of the
node that holds the ’original’ data.

A particular kind of replication is caching. A node can maintain a cache of
data keys that are recently accessed. So, it first checks its own cache in order
to find the requested data key. Only if the data key is not found, the request is
forwarded to other nodes.

5.2 Discussion on Unstructured Systems

Moreover in [7, 13], authors present replication techniques for unstructured p2p
systems. The first one is called owner replication. When a search is success-
ful, the desirable data file is replicated to the node that requests for it. This
technique is used in Gnutella. Alternatively, in path replication, when a search
is successful, the desirable data file is replicated to all nodes along the query
path, i.e. the path from the node that asks for the data file to the node that
provides it. This technique is used in Freenet ([1]) and in specific circumstances
may decrease the system’s performance. In a different approach, the idea of
random walks is used (random walks are illustrated in section 3.1). So, in ran-
dom replication we count the number of nodes on a query path, say p, and we
select randomly p of the nodes that the walks visited to replicate the data file.
This technique seems to be harder to be implemented.

5.3 Spreading Updates

When data files are replicated at many nodes, consistency must be maintained
among the nodes. In general, we can separate replication into eager and lazy
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methods. Eager replication keeps all replicas synchronized at all nodes, by up-
dating all replicas in a single transaction. In reverse, lazy replication propagates
asynchronously replicas’ updates to other nodes after replicating transaction
commits. Most times, p2p systems use lazy replication because of its lower
cost.

Furthermore, in [11], several strategies for spreading updates are proposed.
The following strategies are typical examples of epidemic algorithms.

• Direct mail. When an update occurs, it is immediately mailed from its
originating node, i.e. the node where the update occurs, to all other nodes.
The main advantage of this strategy is that updates are propagated very
quickly.

• Anti-entropy. Periodically, every node selects randomly another node and
resolves any differences between them, by exchanging content. There are
three ways to execute anti-entropy, called push, pull and push-pull. In
push method, when an update occurs, the originating node propagates
an update message to all nodes that hold replicas of the updated data
file. In pull method, all nodes that hold replicas, ask the ’primary’ node
for updates. The last method, named push-pull, is a combination of the
others. The anti-entropy strategy is reliable, but quite slow.

• Rumor mongering. When a node receives a new update, it periodically
selects randomly another node and checks if this node has seen the update,
in order to send it to it. A node stops to send the update to other nodes,
when many other nodes have seen it.

Moreover in [10], is proposed an update strategy, which is based on a hybrid
push/pull rumor spreading algorithm. Nodes are many times offline. When these
nodes are connected again, they must be informed about the updates that they
have missed. This update scheme has two phases: the push and the pull one.
The node where the update occurred, initiates the push phase. The node prop-
agates the new update to a subset of nodes that hold a corresponding replica.
They propagate, in turn, the update to another subset of nodes that they have
not been updated yet, and so on. This process is similar to flooding method
with constrains, because it is executed for a specific number of steps. Further-
more, it avoids many duplicate messages, while propagating the rumor. On the
other hand, the pull phase is initiated either by a node that has been offline and
then gets connected and needs to update its replicas or by a node that does not
receive updates for some time or by a node that receives a pull request and is
not sure that it has the freshest replica. The above hybrid spreading algorithm
provides probabilistic guarantees for acceptable results for queries and results
no strict consistency.

In Table 2, we integrate replication strategies and algorithms that are presented
above.
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Table 2: Replication Methods

General Replication Replication in Replication in Spreading
Strategies Structured Systems Unstructured Systems Updates

uniform successor lists (Chord) owner replication direct mail
proportional multiple realities (CAN) path replication anti − entropy
square − root multiple hash random replication rumor mongering

functions (CAN)
overloading coordinate hybrid push/pull

zones (CAN) rumor spreading

6 Approaches for Range Queries

Most p2p systems support only simple lookup queries. For example, these
queries include only the select operator. However, general p2p applications
require a richer query model. So, in this section, we present several systems
that are capable to support range queries.

6.1 Mercury

At first in [5], it is proposed a scalable routing protocol for supporting multi-
attribute range queries, called Mercury. Mercury creates a routing hub for each
attribute of the database schema. Each hub is a logical set of nodes, and so
a physical node can participate in multiple logical hubs. Each new data file,
according to its attributes, is sent to all the corresponding hubs. In reverse,
each query that is referred to a set of attributes is propagated to only one of
the corresponding hubs.

A hub in Mercury organizes its nodes into a Chord-like ring. The main
difference with Chord is that in Mercury is not used random hash functions for
placing data files but each node in the hub is responsible for a range of values
for the specific attribute. So, when a query is posed in a hub, it is routed to
the node that is responsible for the first value of the range and via successor
pointers that each node maintains, the query is spread along the ring, until it
arrives to the node that is responsible for the last value of the range. Also,
a node maintains pointers to its predecessor to keep consistent the ring with
lower cost when a node’s join or leave occurs. In addition to the successor and
predecessor pointers, a node can maintain a set of k long-distance pointers (as
in Chord) to reduce the routing cost in the hub ring. Furthermore, a node
maintains a third kind of pointers, called cross-hub pointers. These pointers are
used to connect one hub to another.

In Fig 8, we see a pictorial example of hubs in Mercury. We suppose that
there are two hubs, x and y, each for an attribute. The attributes take values
from 0 to 320 and each node is responsible for a partition of the range, as it
shown in the figure. A data file that has values 100 ≤ x ≤ 120 and 200 ≤ y ≤ 220
is stored to both hubs, i.e. to nodes b and g, respectively. In reverse, a query
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  x y

b[80,160)
a[0,80) e[0,100)

f[100,200)c[160,240)

g[200,320)d[240,320)

Figure 8: Routing data files and queries in Mercury.

for 50 ≤ x ≤ 150 and 150 ≤ y ≤ 250 is routed to only one of the hubs, e.g. to
x. So, if the query is posed to node d, it is routed via pointers to nodes a and
b, because these nodes are responsible for the result.

In order to reduce the storage amount of the replicated data files (there is a
replica for all data files in each relative hub), nodes can hold pointers to other
nodes that hold the particular data file. In this case, it is needed an additional
step to catch the node that is responsible for the result of a query.

6.2 A Framework for Caching Range Queries

An alternative method to evaluate range queries is proposed in [16]. This
method is based on the multidimensional CAN system. Nodes cache the re-
sults of range queries and use them to answer future range queries.

More specific, the system maintains a global database schema that is known
from all the nodes. Nodes store range partitions of the data files and cooperate
with each other to answer queries, instead of asking direct the database. This
system is based on CAN and uses a 2d virtual space; two dimensions for each
CAN dimension. The virtual space is partitioned among the nodes. A node is
responsible for a part of the virtual space, accordingly to the range of the data
files that stores. This part is called zone. In this approach, not all the nodes
are responsible for a zone.

A data file is referred to a range. This range is assigned to a point in the
virtual space. This specific point belongs to a zone, and so the data file is stored
to the node that is responsible for that zone. Similarly, a query for a particular
range is assigned to a point in the virtual space. The query is routed to the node
that is responsible for the zone that includes this point. The routing is executed
such in CAN. We first propagate the query to the neighbor that is closest to
the point, and so on. For the above reason, each node maintains a routing
table with the IP addresses of its neighbors. When a node gets the result for
its query, it caches the result to use it in future, for itself or for another node.
A main drawback of this approach is that it can not turn to account the half
CAN space, because a point demonstrates a range.

In following, we present how the running example of the previous section
acts in this approach. As before, there is a virtual space for each attribute. Fig.
9 shows a partitioning of the virtual space for attribute x. As it shown, four
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  a  b

cd

(320,320)

(320,160)

(320,0)(160,0)(0,0)

(160,320)(0,320)

(0,160) (160,160)

Figure 9: Partitioning of the virtual space for x.

nodes are connected in the network. So, the data file, which is described above,
is assigned to node a and if the query is posed for instance to node d, it is routed
to node a, because this node is responsible for the corresponding range.

6.3 SCRAP and MURK Approaches

In [12], two different approaches for answering multi-dimensional range queries
are proposed. These approaches are called SCRAP (Space-Filling Curves with
Range Partitioning) and MURK (Multi-Dimensional Rectangulation with KD-
Trees). Both of them are divided into two components. With a partitioning
strategy, data files according to their content, are distributed to a set of nodes,
and with a routing strategy, queries are passed to nodes that can serve them.
In following, there is a description of the above approaches.

SCRAP. In order to partition the multi-dimensional data, at first data is
mapped into a single dimension using a space-filling curve. Examples of such
curves are the Hilbert curve and z-ordering. Then, data is partitioned across all
the available nodes, in a way that ensures that each node is responsible for a
continuous range of values. As far as routing concerns, the multi-dimensional
range query is divided into a set of range queries and each one is propagated to
a node with a relative range, using for example a skip graph. The result of the
initial query is the aggregation of subqueries’ results.

MURK. This approach uses KD trees to model the storage of data files. In
each leaf node is assigned a rectangle that is managed by a node. When a node
joins the system a leaf’s rectangle is split into two parts with equal load. On
the other hand, when a node leaves the system, its rectangle is merged with
the rectangle of the sibling node in the KD tree. This approach presents many
similarities with CAN. However, if there is a need for a rectangle’s splitting,
the two new parts have equal load, instead of equal space. The queries are
routed such in CAN. A node maintains pointers to connect with its neighbors
and forwards the queries to them. Furthermore, there are additional pointers to
few other nodes, called skip pointers, in order to accelerate the routing operation.
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Table 3: Approaches for Range Queries

Approaches Data Files’ Location Routing Queries

Mercury Data files are stored to Queries are routed to only one
all the corresponding hubs of the corresponding hubs

Cache Range Data files according to their range Queries are propagated to the
Queries are stored to specific zones neighbor that is closest to the result

Multi-dimensional data files are Multi-dimensional range queries are
SCRAP mapped into a single dimension and divided into a set of range queries

they are partitioned across nodes and each one is routed to a node
MURK KD leaf nodes store data files with Queries routed to relative nodes

relative ranges to node’s rectangle via neighboring pointers

Table 3 presents in few words the above approaches that are capable to support
range queries.

7 Distributed Query Processing

Apart from the above systems, in [14] authors propose a kind of a query plan,
which is called Mutant Query Plan or simply MQP. This approach provides
a method that allows to use a full-featured query language. An MQP is an
algebraic query plan graph. In this plan, data is encoded in verbatim XML.
The plan has information about the locations and the abstract names of the
resources (URLs and URNs). Furthermore, the plan knows the network address
(IP) to send the fully evaluated MQP, i.e. the result of the query, to.

In general, the process of the plan is described in the following steps.

• The MQP starts at the node that posed the query.

• Then, it propagated from node to node, while partial results are selected.

• When the whole MQP is evaluated, the result is returned to the initial
node.

Figure 10 represents the above process in details. When a MQP arrives at a
node, the node parses the plan and resolves the corresponding with the query
URNs. Locally, at each node, there is a catalog. This catalog maintains informa-
tion about the mappings from URNs to URLs. Using this catalog, all URNs it is
possible, are replaced with the corresponding URLs. Then, the optimizer finds
parts of the plan that can be evaluated locally, optimizes them and estimates
their costs. A policy manager selects the parts of the plan that will be executed
locally by the query engine (the data of the partial result is encoded in ver-
batim XML), and finally the new plan, which includes the partial results from
previous executions, is propagated to the next node to continue the execution
of the query.
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Figure 10: Mutant Query Processing.

For instance, we assume that we are looking for CDs in Portland with less
than $10. In this example, the client that pose the query has a list of favorite
songs. Also, there is a list of CD titles and we use an online track-listing service
to connect the resources. In Fig 11, we can see the mutant query plan for this
query. This plan includes several operators (select, join, display), two URNs
and a piece of XML.

As referred above, this model of p2p systems maintains distributed cata-
logs, that are catalogs with mappings from URNs to URLs. In order to cate-
gorize data files, the nodes that provides data files (data providers) use multi-
hierarchical namespaces to describe the category of files, as concerns its content,
that they serve. In a similar way, the nodes that form queries (data consumers)
use these namespaces to express their queries. In this approach, there are many
different kind of roles that a node can play. So, a base server stores data files
within a category, an index server stores information about base and index
servers that have the same category of data files with its own and a meta-index
server is an index server which stores additional information about the hierar-
chy level of a data file. Furthermore, a category server is responsible to answer
queries about the levels of the hierarchies. Each node can play more than one
of the above different roles.

8 Conclusion

In conclusion, this paper presents an overview of p2p systems, underlining the
features of them. The system that is best suited depends on the application
and its required functionalities. Several of these schemes are implemented in
applications, such as sharing of music files, multi-player games, replication of
electronic yellow pages or address books, the provisioning of location services,
and the distribution of workloads of mirrored websites. In particular, here we
discuss certain structured and unstructured p2p systems. We also study content-
based systems, that are systems with cluster nodes according to the contents
of their data files and their interests. Then, we investigate how replication
techniques are applied to p2p systems and several algorithms for spreading
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display (IP = 129.95.50.105:9020)

 join (song)

 favorite
   song join (CD title)

select (price < 10)urn: CD: TrackListings

urn: ForSale: Portland−CDs

Figure 11: A Mutant Query Plan.

updates. Finally, the paper concludes with a discussion on range queries.
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