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This survey covers rollback-recovery techniques that do not require special language constructs.  In the first part of the survey we 
classify  rollback-recovery protocols into checkpoint-based and log-based.  Checkpoint-based protocols rely solely on checkpointing 
for system state restoration.  Checkpointing can be coordinated, uncoordinated, or communication-induced.  Log-based protocols 
combine checkpointing with logging of nondeterministic events, encoded in tuples called determinants.  Depending on how determi-
nants are logged, log-based protocols can be pessimistic, optimistic, or causal.  Throughout the survey, we highlight the research is-
sues that are at the core of rollback recovery and present the solutions that currently address them.  We also compare the performance 
of different rollback-recovery protocols with respect to a series of desirable properties and discuss the issues that arise in the practical 
implementations of these protocols. 
Categories and Subject Descriptors: D.4.5 [Software]: Reliability---checkpoint/restart; fault tolerance; D.4.7 [Software]: Organiza-
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1. INTRODUCTION 
Distributed systems today are ubiquitous and enable 
many applications, including client-server systems, 
transaction processing, World Wide Web, and scien-
tific computing, among many others.  The vast com-
puting potential of these systems is often hampered 
by their susceptibility to failures.  Therefore, many 
techniques have been developed to add reliability and 
high availability to distributed systems.  These tech-

niques include transactions, group communication, 
and rollback recovery, and have different tradeoffs 
and focuses.  For example, transactions focus on 
data-oriented applications, while group communica-
tion offers an abstraction of an ideal communication 
system that simplifies the development of reliable 
applications.  This survey covers transparent rollback 
recovery, which focuses on long-running applications 
such as scientific computing and telecommunication 
applications [Huang and Kintala 1993; Plank 1993]. 
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Rollback recovery treats a distributed system as a 
collection of application processes that communicate 
through a network.  The processes have access to a 
stable storage device that survives all tolerated fail-
ures.  Processes achieve fault tolerance by using this 
device to save recovery information periodically dur-
ing failure-free execution.  Upon a failure, a failed 
process uses the saved information to restart the 
computation from an intermediate state, thereby re-
ducing the amount of lost computation.  The recovery 
information includes at a minimum the states of the 
participating processes, called checkpoints.  Other 
recovery protocols may require additional informa-
tion, such as logs of the interactions with input and 
output devices, events that occur to each process, and 
messages exchanged among the processes.   
Rollback recovery has many flavors.  For example, a 
system may rely on the application to decide when 
and what to save on stable storage.  Or, it may pro-
vide the application programmer with linguistic con-
structs to structure the application [Randell 1975].  
We focus in this survey on transparent techniques, 
which do not require any intervention on the part of 
the application or the programmer.  The system 
automatically takes checkpoints according to some 
specified policy, and recovers automatically from 
failures if they occur.  This approach has the advan-
tages of relieving the application programmers from 
the complex and error-prone chores of implementing 
fault tolerance and of offering fault tolerance to exist-
ing applications written without consideration to reli-
ability concerns. 
Rollback recovery has been studied in various forms 
and in connection with many fields of research.  
Thus, it is perhaps impossible to provide an extensive 
coverage of all the issues related to rollback recovery 
within the scope of one article.  This survey concen-
trates on the definitions, fundamental concepts, and 
implementation issues of rollback-recovery protocols 
in distributed systems.  The coverage excludes the 
use of rollback recovery in many related fields such 
hardware-level instruction retry, distributed shared 
memory [Morin and Puaut 1997], real-time systems, 
and debugging [Mellor-Crummey and LeBlanc 
1989].  The coverage also excludes the issues of us-
ing rollback recovery when failures could include 
Byzantine modes or are not restricted to the fail-stop 
model [Schlichting and Schneider 1983].  Also ex-
cluded are rollback-recovery techniques that rely on 
special language constructs such as recovery blocks 
[Randell 1975] and transactions.  Finally, the section 
on implementation exposes many relevant issues re-
lated to implementing checkpointing on uniproces-
sors, although the coverage is by no means an ex-

haustive one because of the large number of issues 
involved. 
Message-passing systems complicate rollback recov-
ery because messages induce inter-process dependen-
cies during failure-free operation.  Upon a failure of 
one or more processes in a system, these dependen-
cies may force some of the processes that did not fail 
to roll back, creating what is commonly called roll-
back propagation.  To see why rollback propagation 
occurs, consider the situation where a sender of a 
message m rolls back to a state that precedes the 
sending of m.  The receiver of m must also roll back 
to a state that precedes m’s receipt; otherwise, the 
states of the two processes would be inconsistent 
because they would show that message m was re-
ceived without being sent, which is impossible in any 
correct failure-free execution.  Under some scenarios, 
rollback propagation may extend back to the initial 
state of the computation, losing all the work per-
formed before a failure.  This situation is known as 
the domino effect [Randell 1975].  
The domino effect may occur if each process takes its 
checkpoints independently—an approach known as 
independent or uncoordinated checkpointing.  It is 
obviously desirable to avoid the domino effect and 
therefore several techniques have been developed to 
prevent it.  One such technique is to perform coordi-
nated checkpointing in which processes coordinate 
their checkpoints in order to save a system-wide con-
sistent state [Chandy and Lamport 1985].  This con-
sistent set of checkpoints can then be used to bound 
rollback propagation.  Alternatively, communication-
induced checkpointing forces each process to take 
checkpoints based on information piggybacked on 
the application messages received from other proc-
esses [Russell 1980].  Checkpoints are taken such 
that a system-wide consistent state always exists on 
stable storage, thereby avoiding the domino effect. 
The approaches discussed so far implement check-
point-based rollback recovery, which relies only on 
checkpoints to achieve fault-tolerance.  In contrast, 
log-based rollback recovery combines checkpointing 
with logging of nondeterministic events.1  Log-based 
rollback recovery relies on the piecewise determinis-
tic (PWD) assumption [Strom and Yemini 1985], 
which postulates that all nondeterministic events that 
a process executes can be identified and that the in-

                                                           
1 Earlier papers in this area have assumed a model in which 
the occurrence of a nondeterministic event is modeled as a 
message receipt.  In this model, nondeterministic-event 
logging reduces to message logging.  In this paper, we use 
the terms event logging and message logging interchangea-
bly.  
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formation necessary to replay each event during re-
covery can be logged in the event’s determinant 
[Alvisi 1996; Alvisi and Marzullo 1998].  By logging 
and replaying the nondeterministic events in their 
exact original order, a process can deterministically 
recreate its pre-failure state even if this state has not 
been checkpointed.  Log-based rollback recovery in 
general enables a system to recover beyond the most 
recent set of consistent checkpoints.  It is therefore 
particularly attractive for applications that frequently 
interact with the outside world, which consists of all 
input and output devices that cannot roll back.  Log-
based rollback recovery has three flavors, depending 
on how the determinants are logged to stable storage.  
In pessimistic logging, the application has to block 
waiting for the determinant of each nondeterministic 
event to be stored on stable storage before the effects 
of that event can be seen by other processes or the 
outside world.  Pessimistic logging simplifies recov-
ery but hurts failure-free performance.  In optimistic 
logging, the application does not block, and determi-
nants are spooled to stable storage asynchronously.  
Optimistic logging reduces the failure-free overhead, 
but complicates recovery.  Finally, in causal logging, 
low failure-free overhead and simpler recovery are 
combined by striking a balance between optimistic 
and pessimistic logging.  The three flavors also differ 
in their requirements for garbage collection and their 
interactions with the outside world, as will be ex-
plained later. 
The outline of the rest of the survey is as follows: 
• Section 2: System model, terminology and ge-

neric issues in rollback recovery. 
• Section 3: Checkpoint-based rollback-recovery 

protocols. 
• Section 4: Log-based rollback-recovery proto-

cols. 
• Section 5: Implementation issues. 
• Section 6: Conclusions. 

2. BACKGROUND AND DEFINITIONS 

2.1 System Model 
A message-passing system consists of a fixed number 
of processes that communicate only through mes-
sages.  Throughout this survey, we use N to denote 
the total number of processes in a system.  Processes 
cooperate to execute a distributed application pro-
gram and interact with the outside world by receiving 
and sending input and output messages, respectively.  
Figure 1 shows a sample system consisting of three 
processes, where horizontal lines extending toward 
the right-hand side represent the execution of each 
process, and arrows between processes represent 
messages.  
Rollback-recovery protocols generally assume that 
the communication network is immune to partition-
ing but differ in the assumptions they make about 
network reliability.  Some protocols assume that the 
communication subsystem delivers messages relia-
bly, in First-In-First-Out (FIFO) order [Chandy and 
Lamport 1985], while other protocols assume that the 
communication subsystem can lose, duplicate, or 
reorder messages [Johnson 1989].  The choice be-
tween these two assumptions usually affects the 
complexity of recovery and its implementation in 
different ways.  Generally, assuming a reliable net-
work simplifies the design of the recovery protocol 
but introduces implementation complexities that will 
be described in Sections 2.3, 2.4 and 5.4.2.   
A process execution is a sequence of state intervals, 
each started by a nondeterministic event.  Execution 
during each state interval is deterministic, such that if 
a process starts from the same state and is subjected 
to the same nondeterministic events at the same loca-
tions within the execution, it will always yield the 
same output.  A concept related to the state interval is 
the piecewise deterministic assumption (PWD).  This 
assumption states that the system can detect and cap-

Figure 1.  An example of a message-passing system with three processes. 
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ture sufficient information about the nondeterministic 
events that initiate the state intervals. 
A process may fail, in which case it loses its volatile 
state and stops execution according to the fail-stop 
model [Schlichting and Schneider 1983].  Processes 
have access to a stable storage device that survives 
failures, such that state information saved on this 
device during failure-free execution can be used for 
recovery.  The number of tolerated process failures 
may vary from 1 to N, and the recovery protocol 
needs to be designed accordingly.  Furthermore, 
some protocols may not tolerate failures that occur 
during recovery. 
A generic correctness condition for rollback-recovery 
can be defined as follows: “A system recovers cor-
rectly if its internal state is consistent with the ob-
servable behavior of the system before the failure” 
[Strom and Yemini 1985]. Rollback-recovery proto-
cols therefore must maintain information about the 
internal interactions among processes and also the 
external interactions with the outside world.  A de-
scription of the notion of consistency and the interac-
tions with the outside world follow. 

2.2 Consistent System States 
A global state of a message-passing system is a col-
lection of the individual states of all participating 
processes and of the states of the communication 
channels.  Intuitively, a consistent global state is one 
that may occur during a failure-free, correct execu-
tion of a distributed computation.  More precisely, a 
consistent system state is one in which if a process’s 
state reflects a message receipt, then the state of the 
corresponding sender reflects sending that message 
[Chandy and Lamport 1985].  For example, Figure 2 
shows two examples of global states—a consistent 

state in Figure 2(a), and an inconsistent state in Fig-
ure 2(b).  Note that the consistent state in Figure 2(a) 
shows message m1 to have been sent but not yet re-
ceived.  This state is consistent, because it represents 
a situation in which the message has left the sender 
and is still traveling across the network.  On the other 
hand, the state in Figure 2(b) is inconsistent because 
process P2 is shown to have received m2 but the state 
of process P1 does not reflect sending it.  Such a state 
is impossible in any failure-free, correct computation. 
Inconsistent states occur because of failures.  For 
example, the situation shown in part (b) of Figure 2 
may occur if process P1 fails after sending message 
m2 to P2 and then restarts at the state shown in the 
figure. 
A fundamental goal of any rollback-recovery proto-
col is to bring the system into a consistent state when 
inconsistencies occur because of a failure.  The re-
constructed consistent state is not necessarily one that 
has occurred before the failure.  It is sufficient that 
the reconstructed state be one that could have oc-
curred before the failure in a failure-free, correct exe-
cution, provided that it be consistent with the interac-
tions that the system had with the outside world.  We 
describe these interactions next. 

2.3 Interactions with the Outside World 
A message-passing system often interacts with the 
outside world to receive input data or show the out-
come of a computation.  If a failure occurs, the out-
side world cannot be relied on to roll back [Pausch 
1988].  For example, a printer cannot roll back the 
effects of printing a character, and an automatic teller 
machine cannot recover the money that it dispensed 
to a customer. To simplify the presentation of how 
rollback-recovery protocols interact with the outside 

(b)(a) 
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Figure 2.  An example of a consistent and inconsistent state. 
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world, we model the latter as a special process that 
interacts with the rest of the system through message 
passing.  This special process cannot fail, and it can-
not maintain state or participate in the recovery pro-
tocol. Furthermore, since this special process models 
irreversible effects in the outside world, it cannot roll 
back. We call this special process the “outside world 
process” (OWP). 
It is necessary that the outside world perceive a con-
sistent behavior of the system despite failures.  Thus, 
before sending a message (output) to OWP, the sys-
tem must ensure that the state from which the mes-
sage is sent will be recovered despite any future fail-
ure.  This is commonly called the output commit 
problem [Strom and Yemini 1985].  Similarly, input 
messages that a system receives from the outside 
world may not be reproducible during recovery, be-
cause it may not be possible for OWP to regenerate 
them.  Thus, recovery protocols must arrange to save 
these input messages so that they can be retrieved 
when needed for execution replay after a failure.  A 
common approach is to save each input message on 
stable storage before allowing the application pro-
gram to process it.  
Rollback-recovery protocols, therefore, must provide 
special treatment for interactions with the outside 
world.  There are two metrics that express the impact 
of this special treatment, namely the latency of in-
put/output and the resulting slowdown of system’s 
execution during input/output.  The first metric repre-
sents the time it takes for an output message to be 
released to OWP after it has been issued by the sys-
tem, or the time it takes a process to consume an in-
put message after it has been sent from OWP.  The 
second metric represents the overhead that the system 
incurs to ensure that its state will remain consistent 
with the messages exchanged with the OWP despite 
future failures.  

2.4 In-Transit Messages 
In Figure 2(a), the global state shows that message m1 
has been sent but not yet received.  We call such a 
message an in-transit message.  When in-transit mes-
sages are part of a global system state, they do not 
cause any inconsistency.  However, depending on 
whether the system model assumes reliable commu-
nication channels, rollback-recovery protocols may 
have to guarantee the delivery of in-transit messages 
when failures occur.  For example, the rollback-
recovery protocol in Figure 3(a) assumes reliable 
communications, and therefore it must be imple-
mented on top of a reliable communication protocol 
layer.  In contrast, the rollback-recovery protocol in 
Figure 3(b) does not assume reliable communica-
tions. 
 
Reliable communication protocols ensure the reliabil-
ity of message delivery during failure-free execu-
tions.  They cannot, however, ensure by themselves 
the reliability of message delivery in the presence of 
process failures.  For instance, if an in-transit mes-
sage is lost because the intended receiver has failed, 
conventional communication protocols will generate 
a timeout and inform the sender that the message 
cannot be delivered.  In a rollback-recovery system, 
however, the receiver will eventually recover.  There-
fore, the system must mask the timeout from the ap-
plication program at the sender process and must 
make in-transit messages available to the intended 
receiver process after it recovers, in order to ensure a 
consistent view of the reliable system.  On the other 
hand, if a system model assumes unreliable commu-
nication channels, as in Figure 3(b), then the recovery 
protocol need not handle in-transit messages in any 
special way.  Indeed, in-transit messages lost because 
of process failures cannot be distinguished from those 
lost because of communication failures in an unreli-
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Unreliable communica-
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Figure 3. Implementation of rollback-recovery (a) on top of a reliable communication protocol;  (b) directly on 
top of unreliable communication channels. 
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able communication channel.  Therefore, the loss of 
in-transit messages due to either communication or 
process failure is an event that can occur in any fail-
ure-free, correct execution of the system.  

2.5 Logging Protocols 
Log-based rollback recovery uses checkpointing and 
logging to enable processes to replay their execution 
after a failure beyond the most recent checkpoint.  
This is useful when interactions with the outside 
world are frequent, since it enables a process to re-
peat its execution and be consistent with messages 
sent to OWP without having to take expensive 
checkpoints before sending such messages.  Addi-
tionally, log-based recovery generally is not suscepti-
ble to the domino effect, thereby allowing processes 
to use uncoordinated checkpointing if desired. 
Log-based recovery relies on the piecewise determi-
nistic (PWD) assumption [Strom and Yemini 1985].  
Under this assumption, the rollback recovery protocol 
can identify all the nondeterministic events executed 
by each process, and for each such event, logs a de-
terminant that contains all information necessary to 
replay the event should it be necessary during recov-
ery. If the PWD assumption holds, log-based roll-
back-recovery protocols can recover a failed process 
and replay its execution as it occurred before the fail-
ure. 
Examples of nondeterministic events include receiv-
ing messages, receiving input from the outside world, 
or undergoing an internal state transfer within a proc-
ess based on some nondeterministic action such as 
the receipt of an interrupt.  Rollback-recovery im-
plementations differ in the range of actual nondeter-
ministic events that are covered under this model.  
For instance, a particular implementation may only 
cover message receipts from other processes under 

the PWD assumption.  Such an implementation can-
not replay an execution that is subjected to other 
forms of nondeterministic events such as asynchro-
nous interrupts.  The range of events covered under 
the PWD assumption is an implementation issue and 
is covered in Section 5.7. 
A state interval is recoverable if there is sufficient 
information to replay the execution up to that state 
interval despite any future failures in the system.  
Also, a state interval is stable if the determinant of 
the nondeterministic event that started it is logged on 
stable storage [Johnson and Zwaenepoel 1990].  A 
recoverable state interval is always stable, but the 
opposite is not always true [Johnson 1989]. 
Figure 4 shows an execution in which the only non-
deterministic events are message deliveries.  Suppose 
that processes P1 and P2 fail before logging the de-
terminants corresponding to the deliveries of m6 and 
m5, respectively, while all other determinants survive 
the failure.  Message m7 becomes an orphan message 
because process P2 cannot guarantee the regeneration 
of the same m6 during recovery, and P1 cannot guar-
antee the regeneration of the same m7 without the 
original m6.  As a result, the surviving process P0 
becomes an orphan process and is forced to roll back 
as well.  States X, Y and Z form the maximum recov-
erable state [Johnson 1989], i.e., the most recent re-
coverable consistent system state.  Processes P0 and 
P2 roll back to checkpoints A and C, respectively, and 
replay the deliveries of messages m4 and m2, respec-
tively, to reach states X and Z.  Process P1 rolls back 
to checkpoint B and replays the deliveries of m1 and 
m3 in their original order to reach state Y. 
During recovery, log-based rollback-recovery proto-
cols force the execution of the system to be identical 
to the one that occurred before the failure, up to the 
maximum recoverable state.  Therefore, the system 

Maximum recoverable state 
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Z
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Y 

m5 and m6 lost upon failure 

m1 m0 m4

m2 m3 m6 

m7 

m5 

P0 

P1 

P2 

Figure 4. Message logging for deterministic replay. 
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always recovers to a state that is consistent with the 
input and output interactions that occurred up to the 
maximum recoverable state. 

2.6 Stable Storage 
Rollback recovery uses stable storage to save check-
points, event logs, and other recovery-related infor-
mation.  Stable storage in rollback recovery is only 
an abstraction, although it is often confused with the 
disk storage used to implement it.  Stable storage 
must ensure that the recovery data persist through the 
tolerated failures and their corresponding recoveries.  
This requirement can lead to different implementa-
tion styles of stable storage: 
• In a system that tolerates only a single failure, 

stable storage may consist of the volatile mem-
ory of another process [Borg et al. 1989; Johnson 
and Zwaenepoel 1987]. 

• In a system that wishes to tolerate an arbitrary 
number of transient failures, stable storage may 
consist of a local disk in each host. 

• In a system that tolerates non-transient failures, 
stable storage must consist of a persistent me-
dium outside the host on which a process is run-
ning.  A replicated file system is a possible im-
plementation in such systems [Lampson and 
Sturgis 1979]. 

2.7 Garbage Collection 
Checkpoints and event logs consume storage re-
sources.  As the application progresses and more re-
covery information is collected, a subset of the stored 
information may become useless for recovery.  Gar-
bage collection is the deletion of such useless recov-
ery information.  A common approach to garbage 
collection is to identify the most recent consistent set 
of checkpoints, which is called the recovery line 
[Randell 1975], and discard all information relating 
to events that occurred before that line.  For example, 
processes that coordinate their checkpoints to form 
consistent states will always restart from the most 
recent checkpoint of each process, and so all previous 
checkpoints can be discarded.  While it has received 
little attention in the literature, garbage collection is 
an important pragmatic issue in rollback-recovery 
protocols, because running a special algorithm to 
discard useless information incurs overhead.  Fur-
thermore, recovery-protocols differ in the amount and 
nature of the recovery information they need to store 
on stable storage, and therefore differ in the complex-
ity and invocation frequency of their garbage collec-
tion algorithms. 

3. CHECKPOINT-BASED ROLLBACK RE-
COVERY 

Upon a failure, checkpoint-based rollback recovery 
restores the system state to the most recent consistent 
set of checkpoints, i.e. the recovery line [Randell 
1975].  It does not rely on the PWD assumption, and 
so does not need to detect, log, or replay nondeter-
ministic events.  Checkpoint-based protocols are 
therefore less restrictive and simpler to implement 
than log-based rollback recovery.  But checkpoint-
based rollback recovery does not guarantee that pre-
failure execution can be deterministically regenerated 
after a rollback.  Therefore, checkpoint-based roll-
back recovery is ill suited for applications that re-
quire frequent interactions with the outside world, 
since such interactions require that the observable 
behavior of the system through failures and recover-
ies be the same as during a failure-free execution.  
Checkpoint-based rollback-recovery techniques can 
be classified into three categories: uncoordinated 
checkpointing, coordinated checkpointing, and com-
munication-induced checkpointing.  We examine 
each category in detail. 

3.1 Uncoordinated Checkpointing 
3.1.1 Overview 
Uncoordinated checkpointing allows each process the 
maximum autonomy in deciding when to take check-
points.  The main advantage of this autonomy is that 
each process may take a checkpoint when it is most 
convenient.  For example, a process may reduce the 
overhead by taking checkpoints when the amount of 
state information to be saved is small [Wang 1993].  
But there are several disadvantages.  First, there is the 
possibility of the domino effect, which may cause the 
loss of a large amount of useful work, possibly all the 
way back to the beginning of the computation.  Sec-
ond, a process may take a useless checkpoint that will 
never be part of a global consistent state.  Useless 
checkpoints are undesirable because they incur over-
head and do not contribute to advancing the recovery 
line.  Third, uncoordinated checkpointing forces each 
process to maintain multiple checkpoints, and to in-
voke periodically a garbage collection algorithm to 
reclaim the checkpoints that are no longer useful.  
Fourth, it is not suitable for applications with fre-
quent output commits because these require global 
coordination to compute the recovery line, negating 
much of the advantage of autonomy. 
In order to determine a consistent global checkpoint 
during recovery, the processes record the dependen-
cies among their checkpoints during failure-free op-
eration using the following technique [Bhargava and 
Lian 1988].  Let ci,x be the xth checkpoint of process 
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Pi.  We call x the checkpoint index.  Let Ii,x denote the 
checkpoint interval or simply interval between 
checkpoints ci,x-1 and ci,x.   As illustrated in Figure 5, 
if process Pi at interval Ii,x sends a message m to Pj, it 
will piggyback the pair (i,x) on m.  When Pj receives 
m during interval Ij,y, it records the dependency from 
Ii,x to Ij,y, which is later saved onto stable storage 
when Pj takes checkpoint cj,y. 
If a failure occurs, the recovering process initiates 
rollback by broadcasting a dependency request mes-
sage to collect all the dependency information main-
tained by each process.  When a process receives this 
message, it stops its execution and replies with the 
dependency information saved on stable storage as 
well as with the dependency information, if any, 
which is associated with its current state.  The initia-
tor then calculates the recovery line based on the 
global dependency information and broadcasts a roll-
back request message containing the recovery line.  
Upon receiving this message, a process whose cur-
rent state belongs to the recovery line simply resumes 
execution; otherwise it rolls back to an earlier check-
point as indicated by the recovery line. 
 
3.1.2 Dependency Graphs and Recovery Line 

Calculation 
There are two approaches proposed in the literature 
to determine the recovery line in checkpoint-based 
recovery.  The first approach is based on a rollback-
dependency graph [Bhargava and Lian 1988] in 
which each node represents a checkpoint and a di-
rected edge is drawn from ci,x to cj,y if either: 
(1) i g j, and a message m is sent from Ii,x and re-

ceived in Ij,y, or 
(2) i = j and y = x + 1.   
The name “rollback-dependency graph” comes from 
the observation that if there is an edge from ci,x to cj,y 
and a failure forces Ii,x  to be rolled back, then Ij,y 
must also be rolled back.   

Figure 6(b) shows the rollback dependency graph for 
the execution in Figure 6(a).  The algorithm used to 
compute the recovery line first marks the graph nodes 
corresponding to the states of processes P0 and P1 at 
the failure point (shown in figure in dark ellipses).  It 
then uses reachability analysis [Bhargava and Lian 
1988] to mark all reachable nodes from any of the 
initially marked nodes.  The union of the last un-
marked nodes over the entire system forms the re-
covery line, as shown in Figure 6(b). 
The second approach is based on the checkpoint 
graph [Wang 1993].  Checkpoint graphs are similar 
to rollback-dependency graphs except that, when a 
message is sent from Ii,x and received in Ij,y, a directed 
edge is drawn from ci,x-1 to cj,y (instead of ci,x to cj,y), 
as shown in Figure 6(c).  The recovery line can be 
calculated by first removing both the nodes corre-
sponding to the states of the failed processes at the 
point of failures and the edges incident on them, and 
then applying the rollback propagation algorithm 
[Wang 1993] on the checkpoint graph.  Both the roll-
back-dependency graph and the checkpoint graph 
approaches are equivalent, in that they always pro-
duce the same recovery line (as indeed they do in the 
example).  These methods form the basis for per-
forming garbage collection in independent check-
pointing, by determining the most advanced recovery 
line and removing the checkpoints that precede it 
[Wang 1993].  Additionally, some checkpoints taken 
independently by a process may never be part of a 
consistent state and therefore will be useless for re-
covery purposes. These checkpoints also can be re-
moved using the algorithm described in [Wang 
1993]. Finally, it can be shown under independent 
checkpointing that the maximum number of useful 
checkpoints that must be kept on stable storage can-
not exceed (N (N +1)/2) [Wang et al. 1995a]. 

ci,1 

m 

Pj 

Pi 

Figure 5.  Checkpoint index and checkpoint interval.  
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3.1.3 The Domino Effect 
While simple to implement, uncoordinated check-
pointing can lead to the domino effect [Randell 1975].  
For example, Figure 7 shows an execution in which 
processes take their checkpoints—represented by 
black bars—without coordinating with each other.  
Each process starts its execution with an initial 
checkpoint.  Suppose process P2 fails and rolls back 
to checkpoint C.  The rollback “invalidates” the send-
ing of message m6, and so P1 must roll back to 
checkpoint B to “invalidate” the receipt of that mes-
sage.  Thus, the invalidation of message m6 propa-
gates the rollback of process P2 to process P1, which 
in turn “invalidates” message m7 and forces P0 to roll 
back as well. 
This cascaded rollback may continue and eventually 
may lead to the domino effect, which causes the sys-
tem to roll back to the beginning of the computation, 
in spite of all the saved checkpoints.  In the example 
shown in Figure 7, cascading rollbacks due to the 

single failure of process P2 forces the system to re-
start from the initial set of checkpoints, effectively 
causing the loss of all the work done by all processes.   

3.2 Coordinated Checkpointing 
3.2.1 Overview 
Coordinated checkpointing requires processes to or-
chestrate their checkpoints in order to form a consis-
tent global state.  Coordinated checkpointing simpli-
fies recovery and is not susceptible to the domino 
effect, since every process always restarts from its 
most recent checkpoint.  Also, coordinated check-
pointing requires each process to maintain only one 
permanent checkpoint on stable storage, reducing 
storage overhead and eliminating the need for gar-
bage collection.  Its main disadvantage, however, is 
the large latency involved in committing output, 
since a global checkpoint is needed before messages 
can be sent to OWP. 
A straightforward approach to coordinated check-
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Figure 6.  (a) Example execution; (b) rollback-dependency graph; (c) checkpoint graph. 
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pointing is to block communications while the 
checkpointing protocol executes [Tamir and Sequin 
1984].  A coordinator takes a checkpoint and broad-
casts a request message to all processes, asking them 
to take a checkpoint.  When a process receives this 
message, it stops its execution, flushes all the com-
munication channels, takes a tentative checkpoint, 
and sends an acknowledgment message back to the 
coordinator.  After the coordinator receives acknowl-
edgments from all processes, it broadcasts a commit 
message that completes the two-phase checkpointing 
protocol.  After receiving the commit message, each 
process removes the old permanent checkpoint and 
atomically makes the tentative checkpoint permanent.  
The process is then free to resume execution and ex-
change messages with other processes.  This straight-
forward approach, however, can result in large over-
head, and therefore non-blocking checkpointing 
schemes are preferable [Elnozahy et al. 1992]. 
 
3.2.2 Non-blocking Checkpoint Coordination 
A fundamental problem in coordinated checkpointing 
is to prevent a process from receiving application 

messages that could make the checkpoint inconsis-
tent.  Consider the example in Figure 8(a), in which 
message m is sent by P0 after receiving a checkpoint 
request from the checkpoint coordinator.  Now, as-
sume that m reaches P1 before the checkpoint request.  
This situation results in an inconsistent checkpoint 
since checkpoint c1,x shows the receipt of message m 
from P0, while checkpoint c0,x does not show it being 
sent from P0.  If channels are FIFO, this problem can 
be avoided by preceding the first post-checkpoint 
message on each channel by a checkpoint request, 
and forcing each process to take a checkpoint upon 
receiving the first checkpoint-request message, as 
illustrated in Figure 8(b).  An example of a non-
blocking checkpoint coordination protocol using this 
idea is the distributed snapshot [Chandy and Lamport 
1985], in which markers play the role of the check-
point-request messages.  In this protocol, the initiator 
takes a checkpoint and broadcasts a marker (a check-
point request) to all processes.  Each process takes a 
checkpoint upon receiving the first marker and re-
broadcasts the marker to all processes before sending 
any application message.  The protocol works assum-

m 
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P0 

checkpoint request 
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checkpoint request 
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Figure 8.  Non-blocking coordinated checkpointing:  (a) checkpoint inconsistency; (b) with FIFO channels; 
(c) non-FIFO channels (short dashed line represents piggybacked checkpoint request).  
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ing the channels are reliable and FIFO.  If the chan-
nels are non-FIFO, the marker can be piggybacked on 
every post-checkpoint message as in Figure 8(c) [Lai 
and Yang 1987].  Alternatively, checkpoint indices 
can serve the same role as markers, where a check-
point is triggered when the receiver's local checkpoint 
index is lower than the piggybacked checkpoint index 
[Elnozahy, et al. 1992; Silva 1997]. 

3.2.3 Checkpointing with Synchronized Clocks 
Loosely synchronized clocks can facilitate check-
point coordination [Cristian and Jahanian 1991; Tong 
et al. 1992].  More specifically, loosely synchronized 
clocks can trigger the local checkpointing actions of 
all participating processes at approximately the same 
time without a checkpoint initiator [Cristian and Ja-
hanian 1991].  A process takes a checkpoint and 
waits for a period that equals the sum of the maxi-
mum deviation between clocks and the maximum 
time to detect a failure in another process in the sys-
tem.  The process can be assured that all checkpoints 
belonging to the same coordination session have been 
taken without the need of exchanging any messages.  
If a failure occurs, it is detected within the specified 
time and the protocol is aborted.   
 
3.2.4 Checkpointing and Communication Reli-

ability 
Depending on the assumption of reliability of the 
communication channel (Section 2.4), the protocol 
may require some messages to be saved as part of the 
checkpoint.  Consider the case where reliable chan-
nels are assumed. Suppose process p sends a message 
m before taking a checkpoint, and that message m 
arrives at the intended destination at process q after q 
has taken its checkpoint.  In this case, the recorded 
state of p would show message m to have been sent, 
while q’s state would show that the message has not 
been received.  If a failure were to force p and q to 
roll back to these checkpoints, it would be impossible 
to guarantee the reliable delivery of m after recovery. 
To avoid this problem, the protocol requires that all 
in-transit messages be saved by their intended desti-
nations as part of their recorded state. However, if 
reliable channels are not assumed, then in-transit 
messages need not be saved, as the recorded state in 
this case would still be consistent with the assump-
tion of the communication channels (in this case, the 
loss of message m if the system fails and restarts 
would be equivalent to its loss due to a communica-
tion failure in a legal execution).  

3.2.5 Minimal Checkpoint Coordination 
Coordinated checkpointing requires all processes to 
participate in every checkpoint.  This requirement 
generates valid concerns about its scalability.  It is 
desirable to reduce the number of processes involved 
in a coordinated checkpointing session.  This can be 
done since the processes that need to take new 
checkpoints are only those that have communicated 
with the checkpoint initiator either directly or indi-
rectly since the last checkpoint [Koo and Toueg 
1987].  
The following two-phase protocol achieves minimal 
checkpoint coordination [Koo and Toueg 1987].  
During the first phase, the checkpoint initiator identi-
fies all processes with which it has communicated 
since the last checkpoint and sends them a request.  
Upon receiving the request, each process in turn iden-
tifies all processes it has communicated with since 
the last checkpoints and sends them a request, and so 
on, until no more processes can be identified.  During 
the second phase, all processes identified in the first 
phase take a checkpoint.  The result is a consistent 
checkpoint that involves only the participating proc-
esses.  In this protocol, after a process takes a check-
point, it cannot send any message until the second 
phase terminates successfully, although receiving a 
message after the checkpoint has been taken is al-
lowed.  

3.3 Communication-induced Checkpointing 
3.3.1 Overview 
Communication-induced checkpointing (CIC) proto-
cols avoid the domino effect without requiring all 
checkpoints to be coordinated. In these protocols, 
processes take two kinds of checkpoints, local and 
forced. Local checkpoints can be taken independ-
ently, while forced checkpoint must be taken to guar-
antee the eventual progress of the recovery line. In 
particular, CIC protocols take forced checkpoint to 
prevent the creation of useless checkpoints, i.e. 
checkpoints (such as c2,2 in Figure 9) that will never 
be part of a consistent global state. Useless check-
points are not desirable because they do not contrib-
ute to the recovery of the system from failures, but 
they consume resources and cause performance over-
head. 
As opposed to coordinated checkpointing, CIC proto-
cols do not exchange any special coordination mes-
sages to determine when forced checkpoints should 
be taken: instead, they piggyback protocol-specific 
information on each application message; the re-
ceiver then uses this information to decide if it should 
take a forced checkpoint. Informally, this decision is 
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based on the receiver determining if past commu-
nication and checkpoint patterns can lead to the crea-
tion of useless checkpoints: a forced checkpoint is 
then taken to break these patterns. This intuition has 
been formalized in an elegant theory based on the 
notions of Z-path and Z-cycle. 
A Z-path (zigzag path) is a special sequence of mes-
sages that connects two checkpoints [Netzer and Xu 
1995].  Let x denote Lamport's happen-before rela-
tion [Lamport 1978].  Let ci,x denote the xth check-
point of process Pi.  Also, define the execution por-
tion between two consecutive checkpoints on the 
same process to be the checkpoint interval starting 
with the earlier checkpoint.  Given two checkpoints 
ci,x and cj,y, a Z-path exists between ci,x and cj,y if and 
only if one of the following two conditions holds: 

1. x < y and i = j; or 
2. There exists a sequence of messages [m0, 
m1,…, mn], n m 0, such that: 

• ci,x x sendi(m0); 
• ≤ l < n, either deliverk(ml) and 
sendk(ml+1) are in the same checkpoint inter-
val, or deliverk(ml) x sendk(ml+1); and  
• deliverj(mn) x cj,y 

where sendi and deliveri are communication events 
executed by process Pi.  In Figure 9, [m1, m2] and 
[m3, m4] are examples of Z-paths between check-
points c0,1 and c2,2.  
A Z-cycle is a Z-path that begins and ends with the 
same checkpoint.  In Figure 9, the Z-path [m5, m3, m4] 
is a Z-cycle that starts and ends at checkpoint c2,2.  Z-
cycles are interesting in the context of CIC protocols 
because it can be proved that a checkpoint is useless 
if and only if it is part of a Z-cycle [Netzer and Xu 
1995]. Hence, one way to avoid useless checkpoints 
is to make sure that no Z-path ever becomes a Z-
cycle.  

Traditionally, CIC protocols have been classified in 
one of two types. Model-based checkpointing proto-
cols maintain checkpoint and communication struc-
tures that prevent useless checkpoints or achieve 
some even stronger properties [Wang 1997]. Index-
based coordination protocols assign timestamps to 
local and forced checkpoints such that checkpoints 
with the same timestamp at all processes form a con-
sistent state. Recently, it has been proved that the two 
types are fundamentally equivalent [Hélary et al. 
1997a], although in practice, there may be some evi-
dence that index-based coordination results in fewer 
forced checkpoints [Alvisi et al. 1999]. 
 
3.3.2 Model-based Protocols 
Model-based checkpointing relies on preventing pat-
terns of communications and checkpoints that could 
result in Z-cycles and useless checkpoints.  A model 
is set up to detect the possibility that such patterns 
could be forming within the system, according to 
some heuristic.  A checkpoint is usually forced to 
prevent the undesirable patterns from occurring. The 
decision to force a checkpoint is done locally using 
the information piggybacked on application mes-
sages.  Therefore, under this style of checkpointing it 
is possible that multiple processes detect the potential 
for inconsistent checkpoints and independently force 
local checkpoints to prevent the formation of unde-
sirable patterns that may never actually materialize or 
that could be prevented by a single forced check-
point.  Thus, model-based checkpointing always errs 
on the conservative side by taking more forced 
checkpoints than is probably necessary, because 
without explicit coordination, no process has com-
plete information about the global system state. 
The literature contains several domino-effect-free 
checkpoint and communication models.  The MRS 
model [Russell 1980] avoids the domino effect by 
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Figure 9. Z-paths and Z cycles. 
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ensuring that within every checkpoint interval all 
message-receiving events precede all message-
sending events.  This model can be maintained by 
taking an additional checkpoint before every mes-
sage-receiving event that is not separated from its 
previous message-sending event by a checkpoint 
[Wang 1997].  Another way to prevent the domino 
effect is to avoid rollback propagation completely by 
taking a checkpoint immediately before every mes-
sage-sending event [Bartlett 1981].  Recent work has 
focused on ensuring that every checkpoint can belong 
to a consistent global checkpoint and therefore is not 
useless [Baldoni et al. 1998; Hélary, et al. 1997a; 
Hélary et al. 1997b; Netzer and Xu 1995]. 

3.3.3 Index-based Protocols 
Index-based CIC protocols guarantee, through forced 
checkpoints if necessary, that (1) if there are two 
checkpoints ci,m and cj,n such that ci,m x cj,n, then 
ts(cj,n) ≥ ts(ci,m), where ts(c) is the timestamp associ-
ated with checkpoint c; and (2) consecutive local 
checkpoints of a process have increasing timestamps. 
The timestamps are piggybacked on application mes-
sages to help receivers decide when they should force 
a checkpoint. For instance, the protocol by Briatico et 
al forces a process to take a checkpoint upon receiv-
ing a message with a piggybacked index greater than 
the local index, and guarantees that the checkpoints 
having the same index at different processes form a 
consistent state [Briatico et al. 1984]. Hélary et al 
instead rely on the observation that if checkpoints' 
timestamps always increase along a Z-path (as op-
posed as simply non-decreasing, as required by rule 
(1) above), then no Z-cycle can ever form [Hélary, et 
al. 1997b]. More sophisticated protocols piggyback 
more information on top of application messages to 
minimize the number of forced checkpoints [Hélary, 
et al. 1997b]. 
CIC protocols can potentially have several perform-
ance advantages over other styles of checkpointing. 
Because CIC allows considerable autonomy in decid-
ing when to take checkpoints, processes can take lo-
cal checkpoints when their state is small and saving it 
incurs a small overhead [Li and Fuchs 1990; Plank et 
al. 1995b].  CIC protocols may also, in theory, scale 
up well in systems with a large number of processes, 
since they do not require processes to participate in a 
globally coordinated checkpoint. We discuss the de-
gree to which these advantages materialize in practice 
in Section 5. 

4. LOG-BASED ROLLBACK RECOVERY 
As opposed to checkpoint-based rollback recovery, 
log-based rollback recovery makes explicit use of the 

fact that a process execution can be modeled as a 
sequence of deterministic state intervals, each starting 
with the execution of a nondeterministic event [Strom 
and Yemini 1985].  Such an event can be the receipt 
of a message from another process or an event inter-
nal to the process.  Sending a message, however, is 
not a nondeterministic event.  For example, in Figure 
7, the execution of process P0 is a sequence of four 
deterministic intervals.  The first one starts with the 
creation of the process, while the remaining three 
start with the receipt of messages m0, m3, and m7, 
respectively.  Sending message m2 is uniquely deter-
mined by the initial state of P0 and by the receipt of 
message m0, and is therefore not a nondeterministic 
event. 
Log-based rollback recovery assumes that all nonde-
terministic events can be identified and their corre-
sponding determinants can be logged to stable stor-
age.  During failure-free operation, each process logs 
the determinants of all the nondeterministic events 
that it observes onto stable storage.  Additionally, 
each process also takes checkpoints to reduce the 
extent of rollback during recovery.  After a failure 
occurs, the failed processes recover by using the 
checkpoints and logged determinants to replay the 
corresponding nondeterministic events precisely as 
they occurred during the pre-failure execution.  Be-
cause execution within each deterministic interval 
depends only on the sequence of nondeterministic 
events that preceded the interval's beginning, the pre-
failure execution of a failed process can be recon-
structed during recovery up to the first nondetermin-
istic event whose determinant is not logged. 
Log-based rollback-recovery protocols have been 
traditionally called “message logging protocols.”  
The association of nondeterministic events with mes-
sages is rooted in the earliest systems that proposed 
and implemented this style of recovery [Bartlett 
1981; Borg, et al. 1989; Strom and Yemini 1985].  
These systems translated nondeterministic events into 
deterministic message receipt events. 
Log-based rollback-recovery protocols guarantee that 
upon recovery of all failed processes, the system does 
not contain any orphan process, i.e., a process whose 
state depends on a nondeterministic event that cannot 
be reproduced during recovery.  The way in which a 
specific protocol implements this condition affects 
the protocol's failure-free performance overhead, 
latency of output commit, and simplicity of recovery 
and garbage collection, as well as its potential for 
rolling back correct processes.  There are three fla-
vors of these protocols: 
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• Pessimistic log-based rollback-recovery proto-
cols guarantee that orphans are never created due 
to a failure.  These protocols simplify recovery, 
garbage collection and output commit, at the ex-
pense of higher failure-free performance over-
head. 

• Optimistic log-based rollback-recovery protocols 
reduce the failure-free performance overhead, 
but allow orphans to be created due to failures.  
The possibility of having orphans complicates 
recovery, garbage collection and output commit. 

• Causal log-based rollback-recovery protocols 
attempt to combine the advantages of low per-
formance overhead and fast output commit, but 
they may require complex recovery and garbage 
collection. 

We present log-based rollback-recovery protocols by 
first specifying a property that guarantees that no 
orphans are created during an execution, and then by 
discussing how the three major classes of log-based 
rollback-recovery protocols implement this consis-
tency condition.

4.1 The No-Orphans Consistency Condition 
Let e be a nondeterministic event that occurs at proc-
ess p, we define: 
• Depend(e), the set of processes that are affected 

by a nondeterministic event e.  This set consists 
of p, and any process whose state depends on the 
event e according to Lamport's happened before 
relation [Lamport 1978]. 

• Log(e), the set of processes that have logged a 
copy of e’s determinant in their volatile memory. 

• Stable(e), a predicate that is true if e’s determi-
nant is logged on stable storage. 

A process p becomes an orphan when p itself does 
not fail and p’s state depends on the execution of a 
nondeterministic event e whose determinant cannot 
be recovered from stable storage or from the volatile 
memory of a surviving process.  Formally [Alvisi 
1996]:

 
≤ e: ¥ Stable(e)  e Depend(e) ` Log(e) 

 
We call this property the always-no-orphans condi-
tion.  It stipulates that if any surviving process de-
pends on an event e, that either the event is logged on 
stable storage, or the process has a copy of the deter-
minant of event e.  If neither condition is true, then 
the process is an orphan because it depends on an 
event e that cannot be generated during recovery 
since its determinant has been lost.  

4.2 Pessimistic Logging 
4.2.1 Overview 
Pessimistic logging protocols are designed under the 
assumption that a failure can occur after any nonde-
terministic event in the computation.  This assump-
tion is “pessimistic” since in reality failures are rare.  
In their most straightforward form, pessimistic proto-
cols log to stable storage the determinant of each 
nondeterministic event before the event is allowed to 
affect the computation.  These pessimistic protocols 
implement the following property, often referred to 
as synchronous logging, which is a strengthening of 
the always-no-orphans condition:
 

≤ e: ¥ Stable(e)  e xDepend(e)x = 0 
 

This property stipulates that if an event has not been 
logged on stable storage, then no process can depend 
on it.    
In addition to logging determinants, processes also 
take periodic checkpoints to limit the amount of work 
that has to be repeated in execution replay during 
recovery.  Should a failure occur, the application 
program is restarted from the most recent checkpoint 
and the logged determinants are used during recovery 
to recreate the pre-failure execution. 
Consider the example in Figure 10.  During failure-
free operation the logs of processes P0, P1 and P2 
contain the determinants needed to replay messages 
[m0, m4, m7], [m1, m3, m6] and [m2, m5], respectively.  
Suppose processes P1 and P2 fail as shown, restart 
from checkpoints B and C, and roll forward using 
their determinant logs to deliver again the same se-
quence of messages as in the pre-failure execution.  
This guarantees that P1 and P2 will repeat exactly 
their pre-failure execution and re-send the same mes-
sages.  Hence, once recovery is complete, both proc-
esses will be consistent with the state of P0 that in-
cludes the receipt of message m7 from P1. 
In a pessimistic logging system, the observable state 
of each process is always recoverable.  This property 
has four advantages: 
1. Processes can send messages to the outside 

world without running a special protocol. 
2. Processes restart from their most recent check-

point upon a failure, therefore limiting the extent 
of execution that has to be replayed.  Thus, the 
frequency of checkpoints can be determined by 
trading off the desired runtime performance with 
the desired protection of the on-going execution. 

3. Recovery is simplified because the effects of a 
failure are confined only to the processes that 
fail.  Functioning processes continue to operate 



 

 - 15 - 

and never become orphans because a process al-
ways recovers to the state that included its most 
recent interaction with any other process includ-
ing OWP.  This is highly desirable in practical 
systems [Huang and Wang 1995]. 

4. Garbage collection is simple.  Older checkpoints 
and determinants of nondeterministic events that 
occurred before the most recent checkpoint can 
be reclaimed because they will never be needed 
for recovery.

The price to be paid for these advantages is a per-
formance penalty incurred by synchronous logging.  
Implementations of pessimistic logging must there-
fore resort to special techniques to reduce the effects 
of synchronous logging on performance.  Some pro-
tocols rely on special hardware to facilitate logging 
[Borg, et al. 1989], while others may limit the num-
ber of tolerated failures to improve performance 
[Johnson and Zwaenepoel 1987; Juang and Venkate-
san 1991]. 

4.2.2 Techniques for Reducing Performance 
Overhead 

Synchronous logging can potentially result in a high 
performance overhead.  This overhead can be low-
ered using special hardware.  For example, fast non-
volatile semiconductor memory can be used to im-
plement stable storage [Banâtre et al. 1988].  Syn-
chronous logging in such an implementation is orders 
of magnitude cheaper than with a traditional imple-
mentation of stable storage that uses magnetic disk 
devices.  Another form of hardware support uses a 
special bus to guarantee atomic logging of all mes-
sages exchanged in the system [Borg, et al. 1989].  
Such hardware support ensures that the log of one 
machine is automatically stored on a designated 
backup without blocking the execution of the applica-
tion program.  This scheme, however, requires that 
all nondeterministic events be converted into external 

messages [Bartlett 1981; Borg, et al. 1989]. 
Some pessimistic logging systems reduce the over-
head of synchronous logging without relying on 
hardware.  For example, the Sender-Based Message 
Logging (SBML) protocol keeps the determinants 
corresponding to the delivery of each message m in 
the volatile memory of its sender [Johnson and 
Zwaenepoel 1987].  The determinant of m, which 
consists of its content and the order in which it was 
delivered, is logged in two steps.  First, before send-
ing m, the sender logs its content in volatile memory.  
Then, when the receiver of m responds with an ac-
knowledgment that includes the order in which the 
message was delivered, the sender adds to the deter-
minant the ordering information.  SBML avoids the 
overhead of accessing stable storage but tolerates 
only one failure and cannot handle nondeterministic 
events internal to a process.  Extensions to this tech-
nique can tolerate more than one failure in special 
network topologies [Juang and Venkatesan 1991]. 
 
4.2.3 Relaxing Logging Atomicity 
The performance overhead of pessimistic logging can 
be reduced by delivering a message or an event and 
deferring its logging until the receiver communicates 
with any other process, including OWP [Johnson and 
Zwaenepoel 1987].  In the example of Figure 10, 
process P0 may defer the logging of messages m4 and 
m7 until it communicates with another process or the 
outside world.  Process P0 implements the following 
weaker property, which still guarantees the always-
no-orphans condition: 

≤ e: ¥ Stable(e)  e xDepend(e)x [ 1 

This property relaxes the condition of pessimistic 
logging by allowing a single process to be affected by 
an event that has yet to be logged, provided that the 
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Figure 10.  Pessimistic logging. 
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process does not externalize the effect of this de-
pendency to other processes including OWP.  Thus, 
messages m4 and m7 are allowed to affect process P0, 
but this effect is local – no other process or the out-
side world can see it until the messages are logged.   
The observed behavior of each process is the same as 
with an implementation that logs events before deliv-
ering them to applications.  Event logging and deliv-
ery are not performed in one atomic operation in this 
variation of pessimistic logging.  This scheme re-
duces overhead because several events can be logged 
in one operation, reducing the frequency of synchro-
nous access to stable storage.  Latency of interprocess 
communication and output commit are not reduced 
since a logging operation may often be needed before 
sending a message. 
Systems that separate logging of an event from its 
delivery may lose the last messages delivered before 
a failure.  This may be a problem for applications that 
assume that processes communicate through reliable 
channels.  Consider one of these applications going 
through the execution shown in Figure 10, and as-
sume that process P0 fails after delivering messages 
m4 and m7 but before the corresponding determi-
nants—containing the content and order of receipt of 
the messages—are logged.  Protocols in which the 
receiver logs the message content cannot guarantee 
that the recovered P0 will ever deliver m4 and m7, 
violating the assumption about reliable channels.  
This problem does not arise in protocols that log 
messages at the sender or do not assume reliable 
communication channels [Elnozahy 1993; Johnson 
1989; Johnson and Zwaenepoel 1987]. 

4.3 Optimistic Logging 
4.3.1 Overview 
In optimistic logging protocols, processes log deter-
minants asynchronously to stable storage [Strom and 
Yemini 1985].  These protocols make the optimistic 

assumption that logging will complete before a fail-
ure occurs.  Determinants are kept in a volatile log, 
which is periodically flushed to stable storage.  Thus, 
optimistic logging does not require the application to 
block waiting for the determinants to be actually 
written to stable storage, and therefore incurs little 
overhead during failure-free execution.  However, 
this advantage comes at the expense of more compli-
cated recovery and garbage collection, and slower 
output commit than in pessimistic logging.  If a proc-
ess fails, the determinants in its volatile log will be 
lost, and the state intervals that were started by the 
nondeterministic events corresponding to these de-
terminants cannot be recovered.  Furthermore, if the 
failed process sent a message during any of the state 
intervals that cannot be recovered, the receiver of the 
message becomes an orphan process and must roll 
back to undo the effects of receiving the message.  
Optimistic protocols do not implement the always-
no-orphans condition, and therefore permit the tem-
porary creation of orphan processes.  However, they 
require that the property holds by the time recovery is 
complete.  This is achieved during recovery by roll-
ing back orphan processes until their states do not 
depend on any message whose determinant has been 
lost.  For example, suppose process P2 in Figure 11 
fails before the determinant for m5 is logged to stable 
storage.  Process P1 then becomes an orphan process 
and must roll back to undo the effects of receiving 
the orphan message m6.  The rollback of P1 further 
forces P0 to roll back to undo the effects of receiving 
message m7.   
To perform these rollbacks correctly, optimistic log-
ging protocols track causal dependencies during fail-
ure-free execution.  Upon a failure, the dependency 
information is used to calculate and recover the latest 
global state of the pre-failure execution in which no 
process is in an orphan. 
The above example also illustrates why optimistic 
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logging protocols require a nontrivial garbage collec-
tion algorithm.  While pessimistic protocols need 
only keep the most recent checkpoint of each process, 
optimistic protocols may need to keep multiple 
checkpoints.  In the example, the failure of P2 forces 
P1 to restart from checkpoint B instead of its most 
recent checkpoint D.   
Finally, since determinants are logged asynchro-
nously, output commit in optimistic logging protocols 
generally requires multi-host coordination to ensure 
that no failure scenario can revoke the output.  For 
example, if process P0 needs to commit output at 
state X, it must log messages m4 and m7 to stable stor-
age and ask P2 to log m2 and m5. 

4.3.2 Synchronous vs. Asynchronous Recovery 
Recovery in optimistic logging protocols can be ei-
ther synchronous or asynchronous.  In synchronous 
recovery [Johnson 1989; Sistla and Welch 1989], all 
processes run a recovery protocol to compute the 
maximum recoverable system state based on depend-
ency and logged information, and then perform the 
actual rollbacks.  During failure-free execution, each 
process increments a state interval index at the be-
ginning of each state interval.  Dependency tracking 
can be either direct or transitive.   
In direct dependency tracking [Johnson 1989; Sistla 
and Welch 1989], the state interval index of the 
sender is piggybacked on each outgoing message to 
allow the receiver to record the dependency directly 
caused by the message.  These direct dependencies 
can then be assembled at recovery time to obtain 
complete dependency information.  Alternatively, 
transitive dependency tracking [Sistla and Welch 
1989; Strom and Yemini 1985] can be used: each 
process Pi maintains a size-N vector TDi, where 
TDi[i] is Pi’s current state interval index, and TDi[j], j 
g i, records the highest index of any state interval of 

Pj on which Pi depends.  Transitive dependency 
tracking generally incurs a higher failure-free over-
head for piggybacking and maintaining the depend-
ency vectors, but allows faster output commit and 
recovery. 
In asynchronous recovery, a failed process restarts by 
sending a rollback announcement broadcast or a re-
covery message broadcast to start a new incarnation 
[Strom and Yemini 1985].  Upon receiving a rollback 
announcement, a process rolls back if it detects that it 
has become an orphan with respect to that an-
nouncement, and then broadcasts its own rollback 
announcement.  Since rollback announcements from 
multiple incarnations of the same process may coex-
ist in the system, each process in general needs to 
track the dependency of its state on every incarnation 
of all processes to correctly detect orphaned states.  A 
way to limit dependency tracking to only one incar-
nation of each process is to force a process to delay 
its delivery of certain messages.  That is, before a 
process Pi can deliver any message carrying a de-
pendency on an unknown incarnation of process Pj, 
Pi must first receive rollback announcements from Pj 
to verify that Pi’s current state does not depend on 
any invalid state of Pj’s previous incarnations.  Pig-
gybacking all rollback announcements known to a 
process on every outgoing message can eliminate 
blocking, and the amount of piggybacked information 
can be further reduced to a provable minimum [Smith 
and Johnson 1996]. 
Another issue in asynchronous recovery protocols is 
the possibility of exponential rollbacks.  This phe-
nomenon occurs if a single failure causes a process to 
roll back an exponential number of times [Sistla and 
Welch 1989].  Figure 12 gives an example, where 
each integer pair (i,x) represents the xth state interval 
of the ith incarnation of a process.  Suppose P0 fails 
and loses its interval (1,2).  When P0’s rollback an-
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Figure 12.  Exponential rollbacks. 
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nouncement r0 reaches P1, the latter rolls back to in-
terval (2,3) and broadcasts another rollback an-
nouncement r1.  If r1 reaches P2 before r0 does, P2 
will first roll back to (4,5) in response to r1, and later 
roll back again to (4,4) upon receiving r0.  By gener-
alizing this example, we can construct scenarios in 
which process Pi, i > 0, rolls back 2i-1 times in re-
sponse to P0’s failure.   
Several approaches have been proposed to ensure that 
any process will roll back at most once in response to 
a single failure. Exponential rollbacks can be elimi-
nated by distinguishing failure announcements from 
rollback announcements and by broadcasting only the 
former [Sistla and Welch 1989].  Another possibility 
is to piggyback the original rollback announcement 
from the failed process on every subsequent rollback 
announcement that it triggers.  For example, in Fig-
ure 12, process P1 piggybacks r0 on r1. Exponential 
rollbacks can be avoided by piggybacking all roll-
back announcements on every application message 
[Smith and Johnson 1996]. 

4.4 Causal Logging 
4.4.1 Overview 
Causal logging has the failure-free performance ad-
vantages of optimistic logging while retaining most 

of the advantages of pessimistic logging [Alvisi 
1996; Elnozahy 1993].  Like optimistic logging, it 
avoids synchronous access to stable storage except 
during output commit.  Like pessimistic logging, it 
allows each process to commit output independently 
and never creates orphans, thereby isolating each 
process from the effects of failures that occur in other 
processes. Furthermore, causal logging limits the 
rollback of any failed process to the most recent 
checkpoint on stable storage.  This reduces the stor-
age overhead and the amount of work at risk.  These 
advantages come at the expense of a more complex 
recovery protocol. 
Causal logging protocols ensure the always-no-
orphans property by ensuring that the determinant of 
each nondeterministic event that causally precedes 
the state of a process is either stable or it is available 
locally to that process.  Consider the example in Fig-
ure 13(a).  While messages m5 and m6 may be lost 
upon the failure, process P0 at state X will have 
logged the determinants of the nondeterministic 
events that causally precede its state according to 
Lamport's happened-before relation [Lamport 1978].  
These events consist of the delivery of messages m0, 
m1, m2, m3 and m4.  The determinant of each of these 
nondeterministic events is either logged on stable 
storage or is available in the volatile log of process 
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Figure 13.  Causal logging. (a) Maximum recoverable states, and (b) antecedence graph of P0 at state X. 
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P0.  The determinant of each of these events contains 
the order in which its original receiver delivered the 
corresponding message.  The message sender, as in 
sender-based message logging, logs the message con-
tent.  Thus, process P0 will be able to “guide” the 
recovery of P1 and P2 since it knows the order in 
which P1 should replay messages m1 and m3 to reach 
the state from which P1 sends message m4.  Similarly, 
P0 has the order in which P2 should replay message 
m2 to be consistent with both P0 and P1. The content 
of these messages is obtained from the sender log of 
P0 or regenerated deterministically during the recov-
ery of P1 and P2.  Notice that information about m5 
and m6 is not available anywhere.  These messages 
may be replayed after recovery in a different order, if 
at all.  However, since they had no effect on a surviv-
ing process or the outside world, the resulting state is 
consistent.  The determinant log kept by each process 
acts as an insurance to protect it from the failures that 
occur in other processes.  It also allows the process to 
make its state recoverable by simply logging the in-
formation available locally.  Thus, a process does not 
need to run a multi-host protocol to commit output. 

4.4.2 Tracking Causality 
Causal logging protocols implements the always-no-
orphans condition by having processes piggyback the 
non-stable determinants in their volatile log on the 
messages they send to other processes.  On receiving 

a message, a process first adds any piggybacked de-
terminant to its volatile determinant log and then de-
livers the message to the application. 
The Manetho system propagates the causal informa-
tion in an antecedence graph [Elnozahy 1993].  The 
antecedence graph provides every process in the sys-
tem with a complete history of the nondeterministic 
events that have causal effects on its state.  The graph 
has a node representing each nondeterministic event 
that precedes the state of a process, and the edges 
correspond to the happened-before relation [Lamport 
1978].  Figure 13(b) shows the antecedence graph of 
process P0 of Figure 13(a) at state X.  During failure-
free operation, each process piggybacks on each ap-
plication message the determinants that contain the 
receipt orders of its direct and transitive antecedents, 
i.e., its local antecedence graph.  The receiver of the 
message records these receipt orders in its volatile 
log. 
In practice, carrying the entire graph on each applica-
tion message may lead to an unacceptable overhead.  
Fortunately, each message carries a graph that is a 
superset of the one piggybacked on the previous mes-
sage sent from the same host.  This fact can be used 
in practical implementations to reduce the amount of 
information carried on application messages.  Thus, 
any message between processes p and q carries only 
the difference between the graphs piggybacked on the 
previous message exchanged between these two 
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hosts.  Furthermore, if p has recently received a mes-
sage from q, it can exclude the graph portions that 
have been piggybacked on that message.  Process q 
already has the information in these excluded por-
tions, and therefore transmitting them serves no pur-
pose.  Other optimizations are also possible but de-
pend on the semantics of the communication proto-
col.  An implementation of this technique shows that 
it has very low overhead in practice [Elnozahy 1993]. 
Further reduction of the overhead is possible if the 
system is willing to tolerate a number of failures that 
is less than the total number of processes in the sys-
tem.  This observation is the basis of Family Based 
Logging protocols (FBL) that are parameterized by 
the number of tolerated failures [Alvisi 1996].  The 
basis of these protocols is that to tolerate f process 
failures, it is sufficient to log each nondeterministic 
event in the volatile store of f + 1 different hosts.  
Hence, the predicate Stable(e) holds as soon as 
|Log(e)| > f.  Sender-based logging is used to support 
message replay during recovery and determinants are 
piggybacked on application messages.  However, 
unlike Manetho, propagation of information about an 
event stops when it has been recorded in f + 1 proc-
esses.  For f < N, FBL protocols do not access stable 
storage except for checkpointing.  Reducing access to 
stable storage in turn reduces performance overhead 
and implementation complexity.  Applications pay 
only the overhead that corresponds to the number of 
failures they are willing to tolerate.  An implementa-
tion for the protocol with f = 1 confirms that the per-
formance overhead is very small [Alvisi 1996].  The 
Manetho protocol is an FBL protocol corresponding 
to the case of f = N. 

4.5 Comparison 
Different rollback-recovery protocols offer different 
tradeoffs with respect to performance overhead, la-
tency of output commit, storage overhead, ease of 
garbage collection, simplicity of recovery, freedom 
from domino effect, freedom from orphan processes, 
and the extent of rollback.  Table 1 summarizes a 
comparison between the different variations of roll-
back-recovery protocols.   
Since garbage collection and recovery both involve 
calculating a recovery line, they can be performed by 
simple procedures under coordinated checkpointing 
and pessimistic logging, both of which have a prede-
termined recovery line during failure-free execution.  
The extent of any potential rollback determines the 
maximum number of checkpoints each process needs 
to retain.  Uncoordinated checkpointing can have 
unbounded rollbacks, and a process may need to re-

tain up to N checkpoints if the optimal garbage col-
lection algorithm is used [Wang et al. 1995b].  Also, 
several checkpoints may need to be kept under opti-
mistic logging, depending on the specifics of the log-
ging scheme.  Note that we do not include failure-
free overhead as a factor in the comparison.  Several 
studies have shown that these protocols perform rea-
sonably well in practice, and that several factors such 
as checkpointing frequency, machine speed, and sta-
ble storage bandwidth play more important roles than 
the fundamental aspects of a particular protocol 
[Alvisi 1996; Elnozahy 1993; Elnozahy, et al. 1992; 
Huang and Kintala 1993; Johnson 1989; Muller et al. 
1994; Plank 1993; Plank, et al. 1995b; Ruffin 1992] 
[Silva 1997].  

5. IMPLEMENTATION ISSUES 

5.1 Overview  
While there is a rich body of research on the algo-
rithmic aspects of rollback-recovery protocols, re-
ports on experimental prototypes or commercial im-
plementations are relatively scarce.  The few experi-
mental studies available have shown that building 
rollback-recovery protocols with low failure-free 
overhead is feasible.  These studies also provide am-
ple evidence that the main difficulty in implementing 
these protocols lies in the complexity of handling 
recovery [Elnozahy 1993].  It is interesting to note 
that all commercial implementations of message log-
ging use pessimistic logging because it simplifies 
recovery [Borg, et al. 1989; Huang and Wang 1995]. 
Several recent studies have also challenged some 
premises on which many rollback-recovery protocols 
rely.  Many of these protocols have been introduced 
in the 1980's, when processor speed and network 
bandwidth were such that communication overhead 
was deemed too high, especially when compared to 
the cost of stable storage access [Bhargava et al. 
1990].  In such platforms, multi-host coordination 
incurs a large overhead because of the necessary con-
trol messages.  A protocol that does not require a 
large communication overhead at the expense of 
more stable storage accesses performs better in such 
platforms.  Recently, processor speed and network 
bandwidth have increased dramatically, while the 
speed of stable storage access has remained relatively 
the same.2  This change in the equation suggests a 

                                                           
2 While semiconductor-based stable storage is becoming 
more widely available, the size-cost ratio is too low com-
pared to disk-based stable storage.  It appears that for some 
time to come, disk-based systems will continue to be the 
medium of choice for storing the large files that are needed 
in checkpointing and logging systems. 
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fresh look at the premises of many rollback-recovery 
protocols and recent results have shown that [Alvisi 
1996; Elnozahy 1993; Johnson 1989; Muller, et al. 
1994; Plank 1993; Silva 1997; Slye and Elnozahy 
1998]: 
• Stable storage access is now the major source of 

overhead in checkpointing or message logging 
systems.  Communication overhead is much 
lower in comparison.  Such changes favor coor-
dinated checkpointing schemes over message 
logging or uncoordinated checkpointing systems, 
as they require less access to stable storage and 
are simpler to implement. 

• The case for message logging has become the 
ability to interact with the outside world, instead 
of reducing the overhead of multi-process coor-
dination [Elnozahy and Zwaenepoel 1994].  
Message logging systems can implement effi-
cient protocols for committing output and log-
ging input that are not possible in checkpoint-
only systems. 

• Recent advances have shown that arbitrary forms 
of nondeterminism can be supported at a very 
low overhead in logging systems.  Nondetermin-
ism was deemed one of the complexities inherent 
in message logging systems. 

In the remainder of this section, we address these and 
other issues in some detail. 

5.2 Checkpointing Implementation 
All available studies have shown that writing the 
state of a process to stable storage is the largest con-
tributor to the performance overhead [Plank 1993].  
The simplest way to save the state of a process is to 
suspend execution, save the process’s address space 
on stable storage, and then resume execution [Tamir 
and Sequin 1984].  This scheme can be costly for 
programs with large address spaces if stable storage 
is implemented using magnetic disks, as it is the cus-
tom.  Several techniques exist to reduce this over-
head. 
 
5.2.1 Concurrent Checkpointing 
All available studies show that concurrent check-
pointing greatly reduces the overhead of saving the 
state of a process [Goldberg et al. 1990; Plank 1993].  
Concurrent checkpointing relies on the memory pro-
tection hardware available in modern computer archi-
tectures to continue the execution of the process 
while its checkpoint is being saved on stable storage.  
The address space is protected from further modifica-
tion at the start of a checkpoint and the memory 
pages are saved to disk concurrently with the pro-
gram execution.  If the program attempts to modify a 
page, it incurs a protection violation.  The check-

pointing system copies the page into a separate buffer 
from which it is saved on stable storage.  The original 
page is unprotected and the application program is 
allowed to resume.  Implementations that do not in-
corporate concurrent checkpointing may pay a heavy 
performance overhead unless the checkpointing in-
terval is set to a large value, which in turn would in-
crease the time for rollback. 
 
5.2.2 Incremental Checkpointing 
Adding incremental checkpointing [Feldman and 
Brown 1989] to concurrent checkpointing can further 
reduce the overhead [Elnozahy, et al. 1992].  Incre-
mental checkpointing avoids rewriting portions of the 
process states that do not change between consecu-
tive checkpoints.  It can be implemented by using the 
dirty-bit of the memory protection hardware or by 
emulating a dirty-bit in software [Babaoglu and Joy 
1981].  A public domain package implementing this 
technique along with concurrent checkpointing is 
available [Plank, et al. 1995b]. 
Incremental checkpointing can also be extended over 
several processes.  In this technique, the system saves 
the computed parity or some function of the memory 
pages that are modified across several processes 
[Plank and Li 1994].  This technique is very similar 
to parity computation in RAID disk systems.  The 
parity pages can be saved in volatile memory of some 
other processes thereby avoiding the need to access 
stable storage.  The storage overhead of this method 
is very low, and it can be adjusted depending on how 
many failures the system is willing to tolerate. 
Another technique for implementing incremental 
checkpointing is to directly compare the program’s 
state with the previous checkpoint in software, and 
writing the difference in a new checkpoint [Plank et 
al. 1995a].  The required storage and computation 
overhead to perform such a comparison may waste 
the benefit of incremental checkpointing.  Another 
variation on this technique is to use probabilistic 
checkpointing [Nam et al. 1997].  The unit of check-
pointing in this scheme is a memory block that is 
typically much smaller than a memory page.  
Changes to a memory block are detected by comput-
ing a signature and comparing it to the corresponding 
signature in the previous checkpoint.  Probabilistic 
checkpointing is portable, and has lower storage and 
computation requirements than required by compar-
ing the checkpoints directly.  On the downside, com-
puting a signature to detect changes opens the door 
for aliasing.  This problem occurs when the computed 
signature does not differ from the corresponding one 
in the previous checkpoint, even though the associ-
ated memory block has changed.  In such a situation, 
the memory block is excluded from the new check-
point, which therefore becomes erroneous.  A prob-



 

 - 22 - 

abilistic analysis has shown that the likelihood of 
aliasing in practice is negligible, but an experimental 
evaluation has shown that probabilistic checkpointing 
could be unsafe in practice [Elnozahy 1998]. 
 
5.2.3 System-level versus User-level Imple-

mentations 
Support for checkpointing can be implemented in the 
kernel [Bartlett 1981; Borg, et al. 1989; Elnozahy 
1993; Johnson 1989], or it can be implemented by a 
library linked with the user program [Alvisi 1996; 
Goldberg, et al. 1990; Huang and Kintala 1993; 
Plank, et al. 1995b].  Kernel-level implementations 
are more powerful because they can also capture ker-
nel data structures that support the user process.  
However, these implementations are necessarily not 
portable. 
Checkpointing can also be implemented in user level.  
System calls that manipulate memory protection such 
as mprotect of UNIX can emulate concurrent and 
incremental checkpointing.  The fork system call of 
UNIX can implement concurrent checkpointing if the 
operating system implements fork using copy-on-
write protection [Goldberg, et al. 1990].  User-level 
implementations, however, cannot access kernel's 
data structures that belong to the process, such as 
open file descriptors and message buffers, but these 
data structures can be emulated at user level [Huang 
and Kintala 1993]. 
 
5.2.4 Compiler Support 
A compiler can be instrumented to generate code that 
supports checkpointing [Li and Fuchs 1990].  The 
compiled program contains code that decides when 
and what to checkpoint.  The advantage of this tech-
nique is that the compiler can decide on the variables 
that must be saved, therefore avoiding unnecessary 
data.  For example, dead variables within a program 
are not saved in a checkpoint though they have been 
modified.  Furthermore, the compiler may decide the 
points during program execution where the amount of 
state to be saved is small. 
Despite these promising advantages, there are diffi-
culties with this approach.  It is generally undecidable 
to find the point in program execution most suitable 
to take a checkpoint.  There are, however, several 
heuristics that can be used.  The programmer can 
provide hints to the compiler about where check-
points should be inserted or what data variables 
should be stored [Beguelin et al. 1997; Plank, et al. 
1995b].  The compiler may also be trained by run-
ning the application in an iterative manner and by 
observing its behavior [Li and Fuchs 1990].  The 
observed behavior could help decide the execution 
points where it would be appropriate to insert check-
points.  Compiler support could also be simplified in 

languages that support automatic garbage collection 
[Appel 1989].  The execution point after each major 
garbage collection provides a convenient place to 
take a checkpoint at a minimum cost. 
 
5.2.5 Checkpoint Placement 
A large amount of work has been devoted to analyz-
ing and deriving the optimal checkpointing frequency 
and placement [Chandy and Ramamoorthy 1972].  
The problem is usually formulated as an optimization 
problem subject to constraints.  For instance, a sys-
tem may attempt to reduce the number of taken 
checkpoints subject to a certain limit on the amount 
of expected rollback.  Generally, it has been observed 
in practice that the overhead of checkpointing is usu-
ally negligible unless the checkpointing interval is 
relatively small, and therefore the optimality of 
checkpoint placement is rarely an issue in practical 
systems [Elnozahy, et al. 1992]. 

5.3 Checkpointing Protocols in Comparison 
Many checkpointing protocols were introduced at a 
time where the communication overhead far ex-
ceeded the overhead of accessing stable storage.  Fur-
thermore, the memory available to run processes 
tended to be small.  These tradeoffs naturally favored 
uncoordinated checkpointing schemes over coordi-
nated ones. Current technological trends however 
have reversed this tradeoff. 
In modern systems, the overhead of coordinating 
checkpoints is negligible compared to the overhead 
of saving the states [Alvisi 1996; Elnozahy 1993; 
Johnson 1989; Muller, et al. 1994; Plank 1993; Silva 
1997].  Using concurrent and incremental check-
pointing, the overhead of either coordinated or unco-
ordinated checkpointing is essentially the same.  
Therefore, uncoordinated checkpointing is not likely 
to be an attractive technique in practice given the 
negligible performance gains.  These gains do not 
justify the complexities of finding a consistent recov-
ery line after the failure, the susceptibility to the 
domino effect, the high storage overhead of saving 
multiple checkpoints of each process, and the over-
head of garbage collection.  It follows that coordi-
nated checkpointing is superior to uncoordinated 
checkpointing when all aspects are considered on the 
balance. 
A recent study has also shed some light on the behav-
ior of communication-induced checkpointing [Alvisi, 
et al. 1999].  It presents an analysis of these protocols 
based on a prototype implementation and validated 
simulations, showing that communication-induced 
checkpointing does not scale well as the number of 
processes increases.  The occurrence of forced 
checkpoints at random points within the execution 
due to communication messages makes it very diffi-
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cult to predict the required amount of stable storage 
for a particular application run.  Also, this unpredict-
ability affects the policy for placing local checkpoints 
and makes communication-induced protocols cum-
bersome to use in practice.  Furthermore, the study 
shows that the benefit of autonomy in allowing proc-
esses to take local checkpoints at their convenience 
does not seem to hold.  In all experiments, a process 
takes at least twice as many forced checkpoints as 
local, autonomous ones.   

5.4 Communication Protocols 
Rollback recovery complicates the implementation of 
protocols used for inter-process communications.  
Some protocols offer the abstraction of reliable 
communication channels such as connection-based 
protocols (e.g. TCP, RPC).  Alternatively, other pro-
tocols offer the abstraction of an unreliable datagram 
service (e.g. UDP).  Each type of abstraction requires 
additional support to operate properly across failures 
and recoveries. 
 
5.4.1 Location-Independent Identities and Redi-

rection 
For all communication protocols, a rollback-recovery 
system must mask the actual identity and location of 
processes or remote ports from the application pro-
gram.  This masking is necessary to prevent any ap-
plication program from acquiring a dependency on 
the location of a certain process, making it impossible 
to restart the process on a different machine after a 
failure.  A solution to this problem is to assign a logi-
cal, location-independent identifier to each process in 
the system.  This scheme also allows the system to 
redirect communication appropriately to a restarting 
process after a failure [Elnozahy 1993]. 
 
5.4.2 Reliable Channel Protocols 
After a failure, identity masking and communication 
redirection are sufficient for communication proto-
cols that offer the abstraction of an unreliable chan-
nel.  Protocols that offer the abstraction of reliable 
channels require additional support.  These protocols 
usually generate a timeout upcall to the application 
program if the process at the other end of the channel 
has failed.  These timeouts should be masked since 
the failed program will soon restart and resume com-
putation.  If such upcalls are allowed to affect the 
application, then the abstraction of a reliable system 
is no longer upheld.  The application will have to 
encode the necessary support to communicate with 
the failed process after it recovers. 
Masking timeouts should also be coupled with the 
ability of the protocol implementation to reestablish 
the connection with the restarting process (possibly 

restarting on a different machine).  This support in-
cludes the ability to clean up the old connection in an 
orderly manner, and to establish a new connection 
with the restarting host.  Furthermore, messages re-
transmitted as part of the execution replay of the re-
mote host must be identified and, if necessary, sup-
pressed. This requires the protocol implementation to 
include a form of sequence number that is only used 
for this purpose. 
Recovering in-transit messages that are lost because 
of a failure is another problem for reliable communi-
cation protocols.  In TCP/IP communication style, for 
instance, a message is considered delivered once an 
acknowledgment is received from the remote host.  
The message itself may linger in the kernel's buffer 
for a while before the receiving process consumes it.  
If this process fails, the in-transit messages must be 
resent to preserve the semantics of the reliable com-
munication channel.  Messages must be saved at the 
sender side for possible retransmission during recov-
ery.  This step can be combined in a system that per-
forms sender-based message logging as part of the 
log maintenance.  In other systems that do not log 
messages or log messages at the receiver, the copying 
of each message at the sender side introduces over-
head and complexity.  The complexity is due to the 
need for executing some garbage collection algorithm 
with other sites to reclaim the volatile storage. 

5.5 Log-based Recovery 
5.5.1 Message Logging Overhead 
Message logging introduces three sources of over-
head.  First, each message must in general be copied 
to the local memory of the process.  Second, the vola-
tile log is regularly flushed to stable storage to free 
up space.  Third, message logging nearly doubles the 
communication bandwidth required to run the appli-
cation for systems that implement stable storage via a 
highly available file system accessible through the 
network.  The first source of overhead may directly 
affect communication throughput and latency.  This 
is especially true if the copying occurs in the critical 
path of the inter-process communication protocol.  In 
this respect, sender-based logging is considered more 
efficient than receiver-based logging because the 
copying can take place after sending the message 
over the network.  Additionally, the system may 
combine the logging of messages with the implemen-
tation of the communication protocol and share the 
message log with the transmission buffers. This 
scheme avoids the extra copying of the message.  
Logging at the receiver is more expensive because it 
is in the critical path of the communication protocol.  
Another optimization for sender-based logging sys-
tems is to use copy-on-write to avoid making extra-
copying [Elnozahy and Zwaenepoel 1994].  This 
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scheme works well in systems where broadcast mes-
sages are implemented using several point-to-point 
messages.  In this case, copy-on-write will allow the 
system to have one copy for identical messages and 
thus reduce the storage and performance overhead of 
logging.  No similar optimization can be performed 
in receiver-based systems [Elnozahy and Zwaenepoel 
1994]. 
 
5.5.2 Combining Log-Based Recovery with Co-

ordinated Checkpointing 
Log-based recovery has been traditionally presented 
as a mechanism to allow the use of uncoordinated 
checkpointing with no domino effect.  But a system 
may also combine event logging with coordinated 
checkpointing, yielding several benefits with respect 
to performance and simplicity [Elnozahy and Zwae-
nepoel 1994].  These benefits include those of coor-
dinated checkpointing—such as the simplicity of 
recovery and garbage collection—and those of log-
based recovery—such as fast output commit.  Most 
prominently, this combination obviates the need for 
flushing the volatile message logs to stable storage in 
a sender-based logging implementation.  Thus, there 
is no need for maintaining large logs on stable stor-
age, resulting lower performance overhead and sim-
pler implementations.  The combination of coordi-
nated checkpointing and message logging has been 
shown to outperform one with uncoordinated check-
pointing and message logging [Elnozahy and Zwae-
nepoel 1994].  Therefore, the purpose of logging 
should no longer be to allow uncoordinated check-
pointing.  Rather, it should be the desire for enabling 
fast output commit for those applications that need 
this feature. 

5.6 Stable Storage 
Magnetic disks have been the medium of choice for 
implementing stable storage [Lampson and Sturgis 
1979].  Although they are slow, their storage capacity 
and low cost combination cannot be matched by 
other alternatives.  An implementation of a stable 
storage abstraction on top of a conventional file sys-
tem may not be the best choice, however.  Such an 
implementation will not generally give the perform-
ance or reliability needed to implement stable storage 
[Banâtre, et al. 1988; Elnozahy 1993; Ruffin 1992].  
Modern file systems tend to be optimized for the pat-
tern of access expected in workstation or personal 
computing environments.  Furthermore, these file 
systems are often accessed through a network via a 
protocol that is optimized for small file accesses and 
not for the large file accesses that are more common 
in checkpointing and logging. 

An implementation of stable storage should bypass 
the file system layer and access the disk directly.  
One such implementation is the KitLog package, 
which offers a log abstraction that can support 
checkpointing and message logging [Ruffin 1992].  
The package runs in conventional UNIX systems and 
bypasses the file system by accessing the disk in raw 
mode.  There have been also several attempts at im-
plementing stable storage using non-volatile semi-
conductor memory [Banâtre, et al. 1988].  Such im-
plementations do not have the performance problems 
associated with disks, but the price and the small 
storage capacity remain two problems that limit their 
wide acceptance. 

5.7 Support for Nondeterminism 
Nondeterminism occurs when the application pro-
gram interacts with the operating system through 
system calls and upcalls (asynchronous events).  In 
log-based recovery, these nondeterministic events 
must be logged on stable storage so that they can be 
replayed during recovery.  Log-based recovery sys-
tems differ in the range of actual events that can be 
covered. 
 
5.7.1 System Calls 
System calls in general can be classified into three 
types [Borg, et al. 1989; Elnozahy 1993; Goldberg, et 
al. 1990].  Idempotent system calls are those that 
return deterministic values whenever executed.  Ex-
amples include calls that return the user identifier of 
the process owner.  These calls do not need to be 
logged.  A second class of calls consists of those that 
must be logged during failure-free operation but 
should not be re-executed during execution replay.  
The result from these calls should simply be replayed 
to the application program.  These calls include those 
that inquire about the environment, such as getting 
the current time of day.  Re-executing these calls 
during recovery might return a different value that is 
inconsistent with the pre-failure execution.  The last 
type of system calls includes those that must be 
logged during failure-free operation and re-executed 
during execution replay.  These calls generally mod-
ify the environment and therefore they must be re-
executed to re-establish the environment changes.  
Examples include calls that allocate memory or cre-
ate processes.  Ensuring that these calls return the 
same values and generate the same effect during re-
execution can be very complex. 
 
5.7.2 Asynchronous Signals 
Nondeterminism results from asynchronous signals 
available in the form of software interrupts under 
various operating systems.  Such signals must be 
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applied at the same execution points during replay to 
reproduce the same result.  Log-based rollback re-
covery can cover this form of nondeterminism by 
taking a checkpoint after the occurrence of each sig-
nal, but this can be very expensive [Bartlett 1981].  
Alternatively, the system may convert these asyn-
chronous signals to synchronous messages such as in 
Targon/32 [Borg, et al. 1989], or it may queue the 
signals until the application polls for them.  Both 
alternatives convert asynchronous event notifications 
into synchronous ones, which may not be suitable or 
efficient for many applications.  Such solutions also 
may require substantial modifications to the operat-
ing system or the application program. 
Another example of nondeterminism that is difficult 
to track is shared memory manipulation in multi-
threaded applications.  Reconstructing the same exe-
cution during replay requires the same interleaving of 
shared memory accesses by the various threads as in 
the pre-failure execution.  Systems that support this 
form of nondeterminism supply their own sets of 
locking primitives, and require applications to use 
them for protecting access to shared memory 
[Goldberg, et al. 1990].  The primitives are instru-
mented to insert an entry in the log identifying the 
calling thread and the nature of the synchronization 
operation.  However, this technique has several prob-
lems.  It makes shared memory access expensive, and 
may generate a large volume of data in the log.  Fur-
thermore, if the application does not adhere to the 
synchronization model (because of a programmer's 
error, for instance), execution replay may not be pos-
sible. 
A technique for tracking nondeterminism due to 
asynchronous signals and interleaved memory access 
on single processor systems is to use instruction 
counters [Bressoud and Schneider 1995].  An instruc-
tion counter is a register that decrements by one upon 
the execution of each instruction, leading the hard-
ware to generate an exception when the register con-
tents become 0.  An instruction counter can thus be 
used in two modes.  In one mode, the register is 
loaded with the number of instructions to be executed 
before a breakpoint occurs.  After the CPU executes 
the specified number of instructions, the counter 
reaches 0 and the hardware generates an exception.  
The operating system fields the exception and exe-
cutes a pre-specified handler.  This mode is useful in 
setting breakpoints efficiently, such as during debug-
ging.  In the second mode, the instruction counter is 
loaded with the maximum value it can hold.  Execu-
tion proceeds until an event of interest occurs, at 
which time the content of the counter is sampled, and 
the number of instructions executed since the time 
the counter was set is computed and logged.  The use 
of instruction counters has been suggested for debug-

ging shared memory parallel programs [Mellor-
Crummey and LeBlanc 1989]. 
Instruction counters can be used in rollback recovery 
to track the number of instructions that occur be-
tween asynchronous interrupts [Slye and Elnozahy 
1998].  These instruction counts are logged as part of 
the log that describes the nondeterministic events.  
During recovery, the system recovers the instruction 
counts from the log and uses them to regenerate the 
software interrupts at the same execution points 
within the application as before the failure.  The ap-
plication therefore goes through the same set of asyn-
chronous events precisely as it did before the failure, 
and therefore it can reconstruct its execution.   
An instruction counter can be implemented in hard-
ware, as in the PA-RISC precision architecture where 
it has been used to augment the hypervisor of a vir-
tual-machine manager and coordinate a primary vir-
tual machine with its backup [Bressoud and Schnei-
der 1995]. It also can be emulated in software 
[Mellor-Crummey and LeBlanc 1989].  An imple-
mentation study shows that the overhead of program 
instrumentation and tracking nondeterminism is less 
than 6% for a variety of user programs and synthetic 
benchmarks [Slye and Elnozahy 1998]. 

5.8 Dependency Tracking 
Rollback-recovery protocols vary in the ways they 
track inter-process dependencies.  Some protocols 
require tagging only an index or a sequence number 
on every application messages [Briatico, et al. 1984], 
while some require the propagation of a vector of 
timestamps [Strom and Yemini 1985].  At an ex-
treme, some protocols require the propagation of a 
graph describing the history of the computation 
[Elnozahy 1993], or matrices containing bit or time-
stamp vectors [Baldoni, et al. 1998].   
Tagging a message with an index or a sequence num-
ber on an application message is simple and does not 
cause any measurable overhead.  When dependency 
tracking, however, requires more complex structures, 
there are techniques for reducing the amount of ac-
tual data that need to be transferred on top of each 
message.  All these techniques revolve around two 
themes.  First, only incremental changes need to be 
sent.  If some elements of a vector or a graph haven’t 
changed since process p has sent a message to proc-
ess q, then p need only include those elements that 
have changed.  Implementation of this optimization is 
straightforward in systems that assume FIFO com-
munication channels.  When lossy channels are as-
sumed, this optimization is still possible, but at the 
expense of more processing overhead [Elnozahy 
1993]. 
The other technique for reducing the overhead of 
dependency tracking exploits the semantics of the 
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applications and the communication patterns 
[Elnozahy 1993].  For instance, if it can be inferred 
from the dependency information available to process 
p that process q already knows parts of the informa-
tion that is to be piggybacked on a message outgoing 
to q, then process p can exclude this information.  
Surprisingly, implementing this optimization is sim-
ple and yields good performance [Elnozahy 1993].  
Regardless of the particular method used to track 
inter-process dependencies, various prototype im-
plementations have shown that the overhead resulting 
from dependency tracking is negligible compared to 
the overhead of checkpointing or logging [Alvisi 
1996; Alvisi, et al. 1999; Bhargava and Lian 1988; 
Borg, et al. 1989; Elnozahy 1993; Goldberg, et al. 
1990; Johnson 1989] [Silva 1997]. 

5.9 Recovery 
Handling execution restart and replay is a difficult 
part of implementing a rollback-recovery system 
[Borg, et al. 1989].  The major challenge is reinte-
grating the recovered process in a computation envi-
ronment that may or may not be the same as the one 
in which the process was executing before failure.   
 
5.9.1 Reinstating a Process in its Environment 
Implanting a process in a different environment dur-
ing recovery can create difficulties if its state depends 
on the pre-failure environment.  For example, the 
process may need to access files that exist on the lo-
cal disk of the machine.  The simplest solution to this 
problem is to attempt to restart the program on the 
same host.  If this is not feasible, then the system 
must insulate the process from environment-specific 
variables [Elnozahy 1993].  This can be done for in-
stance by intercepting system calls that return envi-
ronment-specific results and replacing them with 
abstract values under the control of the recovery sys-
tem.  Also, file access could be made highly available 
by placing all files in network-wide highly available 
file servers or by using dual-ported disks. 
Another problem in implementing recovery is the 
need to reconstruct the auxiliary state within the op-
erating system kernel that supports the recovering 
process [Elnozahy 1993; Huang and Kintala 1993; 
Johnson 1989; Plank 1993].  This state is usually 
outside of the recovery protocol’s control during fail-
ure-free operation, unless the protocol is imple-
mented inside the operating system.  For protocols 
implemented outside the operating system, the roll-
back-recovery system must emulate these data struc-
tures and log sufficient information to be able to rec-
reate them during recovery.  For example, the recov-
ery system may create a data structure to shadow the 
open file table of a particular process by intercepting 
all file manipulation calls from the process itself.  

Then, the recovery system records some information 
that would enable it to issue requests to the operating 
system during recovery in order to force the operat-
ing system to recreate these data structure indirectly.  
Obviously, not all state within the operating system 
kernel can be emulated this way, and therefore, out-
of-kernel implementations must have stricter cover-
age of the system’s state that must be emulated.  
Since most of the applications that benefit from roll-
back recovery seem to be in the realm of scientific 
computing where no sophisticated state is maintained 
by the kernel on behalf of the processes, this problem 
does not seem to be severe in that particular context 
[Plank, et al. 1995b]. 
 
5.9.2 Behavior During Recovery 
Previous studies have outlined several characteristics 
of rollback-recovery systems during recovery 
[Elnozahy 1993; Rao et al. 1998]. For example, it has 
been observed that for log-based recovery systems, 
the messages and determinants available in the logs 
are replayed at a considerably higher speed during 
recovery than during normal execution.  This is be-
cause during normal execution a process may have to 
block waiting for messages or synchronization 
events, while during recovery these messages or 
events can be immediately replayed.   
Also, it has been observed that sender-based logging 
protocols typically slow down recovery if there are 
multiple failures, because of the need to re-execute 
some of the processes under control to regenerate the 
messages.  Moreover, some of these protocols may 
require sympathetic rollbacks [Strom and Yemini 
1985], which increase the overhead of synchronizing 
the processes during recovery.  This experimental 
evidence seems to confirm the tradeoff between pro-
tocols that perform well during failure-free execu-
tions, such as causal and optimistic logging, and pro-
tocols that perform well during recovery, such as 
pessimistic logging [Rao, et al. 1998].  It is possible 
to address this tradeoff by performing logging both at 
the sender and receivers [Strom and Yemini 1985], 
such that the sender log is volatile and is kept only 
until the receiver flushes its volatile logs to stable 
storage. 

5.10 Checkpointing and Mobility 
Several studies have examined the issues of check-
pointing, logging, and rollback recovery in mobile 
computing [Prakash and Singhal 1996].  The funda-
mental concepts of distributed checkpointing, consis-
tency, and rollback are identical to those in traditional 
distributed systems, but special considerations must 
be made for issues inherent to mobile computing, 
such as energy constraints, intermittent communica-
tions, and low-performance processors.  These issues 
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favor checkpointing protocols that allow maximum 
autonomy to participating processes, require low 
overhead in resources, and can function with the 
minimum possible number of message exchanges.  
Therefore, independent checkpointing and communi-
cation-induced checkpointing tend to be more appro-
priate for these environments than coordinated 
checkpointing. Also, log-based recovery protocols 
that allow a high degree of autonomy during recovery 
such as receiver-based optimistic or pessimistic log-
ging tend to be more appropriate for these environ-
ments than those protocols that require global com-
munication during recovery.  Nevertheless, check-
pointing and rollback recovery have yet to prove use-
ful for mobile hosts.  The applications in the mobile 
domain tend to be structured as client-server interac-
tions for which transaction processing on the server is 
most appropriate. Also, it is often the case for these 
applications that high availability is more important 
than fault tolerance or recoverability, favoring some 
form of replicated server that can continue to func-
tion despite a failure of some of its replicas.  Finally, 
there is an emerging generation of handheld devices 
that are meant to serve as enhanced input-output de-
vices for remote computations, with little processing 
or storage capacity to support checkpointing or re-
covery.  Whether this situation changes will depend 
on whether rollback-recovery proves to be useful 
outside the scientific and engineering computing do-
main in which it has proved very successful. 

5.11 Rollback Recovery in Practice 
Despite the wealth of research in the area of rollback 
recovery in distributed systems, very few commercial 
systems actually have adopted them.  Difficulties in 
implementing recovery perhaps are the main reason 
why these protocols have not been widely adopted.  
Additionally, the range of applications that benefit 
from these protocols tend to be in the realm of long-
running, scientific programs, which are relatively 
few.  Many of these, in fact, are written to run on 
supercomputers where some facility exists for check-
pointing the entire system’s state.  For the few that 
run in a distributed system, public domain libraries 
that implement checkpointing have proved adequate 
[Plank, et al. 1995b]. 
Log-based recovery seemed to have less success than 
checkpoint-only systems.  A commercial implemen-
tation of pessimistic logging did not fare well, al-
though the reasons are not clear [Borg, et al. 1989].  
One could conjecture that the complex modifications 
made to the operating system and the special-purpose 
hardware that was used to mitigate performance 
overhead made the machine expensive.  Some other 
usage of log-based recovery has been reported in 
telecommunication applications [Huang and Kintala 

1993], although there are no reports on how they 
fared.  Interestingly, both commercial implementa-
tions used pessimistic logging, and were used for 
applications where the performance overhead of this 
form of logging could be tolerated.  We are unaware, 
however, of any use of optimistic or causal logging 
rollback-recovery protocols in commercial systems.   

6. CONCLUDING REMARKS 
We have reviewed and compared different ap-
proaches to rollback recovery with respect to a set of 
properties including the assumption of piecewise 
determinism, performance overhead, storage over-
head, ease of output commit, ease of garbage collec-
tion, ease of recovery, freedom from domino effect, 
freedom from orphan processes, and the extent of 
rollback.  These approaches fall into two broad cate-
gories: checkpointing protocols and log-based recov-
ery protocols.   
Checkpointing protocols require the processes to take 
periodic checkpoints with varying degrees of coordi-
nation.  At one end of the spectrum, coordinated 
checkpointing requires the processes to coordinate 
their checkpoints to form global consistent system 
states.  Coordinated checkpointing generally simpli-
fies recovery and garbage collection, and yields good 
performance in practice.  At the other end of the 
spectrum, uncoordinated checkpointing does not re-
quire the processes to coordinate their checkpoints, 
but it suffers from potential domino effect, compli-
cates recovery, and still requires coordination to per-
form output commit or garbage collection.  Between 
these two ends are communication-induced check-
pointing schemes that depend on the communication 
patterns of the applications to trigger checkpoints.  
These schemes do not suffer from the domino effect 
and do not require coordination.  Recent studies, 
however, have shown that the nondeterministic na-
ture of these protocols complicates garbage collection 
and degrades performance. 
Log-based rollback recovery is often a natural choice 
for applications that frequently interact with the out-
side world.  It allows efficient output commit, and 
has three flavors, pessimistic, optimistic, and causal.  
The simplicity of pessimistic logging makes it attrac-
tive for practical applications where a high failure-
free overhead is tolerable.  This form of logging sim-
plifies recovery, output commit, and protects surviv-
ing processes from having to roll back.  These advan-
tages have made pessimistic logging attractive in 
commercial environment where simplicity and ro-
bustness are necessary.  Causal logging reduces the 
overhead while still preserving the properties of fast 
output commit and orphan-free recovery.  Alterna-
tively, optimistic logging reduces the overhead fur-
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ther at the expense of complicating recovery and in-
creasing the extent of rollback upon a failure. 
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