

 - 1 -

A Survey of Rollback-Recovery Protocols in Message-Passing
Systems

E.N. (MOOTAZ) ELNOZAHY
IBM Research

LORENZO ALVISI
The University of Texas at Austin

YI-MIN WANG
Microsoft Research

AND

DAVID B. JOHNSON
Rice University

This survey covers rollback-recovery techniques that do not require special language constructs. In the first part of the survey we
classify rollback-recovery protocols into checkpoint-based and log-based. Checkpoint-based protocols rely solely on checkpointing
for system state restoration. Checkpointing can be coordinated, uncoordinated, or communication-induced. Log-based protocols
combine checkpointing with logging of nondeterministic events, encoded in tuples called determinants. Depending on how determi-
nants are logged, log-based protocols can be pessimistic, optimistic, or causal. Throughout the survey, we highlight the research is-
sues that are at the core of rollback recovery and present the solutions that currently address them. We also compare the performance
of different rollback-recovery protocols with respect to a series of desirable properties and discuss the issues that arise in the practical
implementations of these protocols.
Categories and Subject Descriptors: D.4.5 [Software]: Reliability---checkpoint/restart; fault tolerance; D.4.7 [Software]: Organiza-
tion and Design---distributed systems; D.2.8 [Software]: Metrics---performance measures;
General Terms: Design, Reliability, Performance.
Additional Keywords and Phrases: message logging, rollback-recovery.

 Mootaz Elnozahy started this work while at Carnegie Mellon University, where he was supported in part by the National Science Foundation
through a Research Initiation Award under contract CCR 9410116 and a CAREER Award under contract CCR 9502933. Lorenzo Alvisi was
supported in part by an NSF CAREER award (CCR-9734185), an Alfred P. Sloan Fellowship, an IBM Faculty Partnership award,
DARPA/SPAWAR grant N66001-98-8911, and a grant of the Texas Advanced Research Program.
Authors’ addresses: E.N. (Mootaz) Elnozahy, IBM Austin Research Lab., M/S 904-6C-020, 11501 Burnet Rd., Austin, TX 78578; email:
mootaz@us.ibm.com; Lorenzo Alvisi, Department of Computer Sciences, Taylor Hall 2.124 The University of Texas at Austin, Austin, TX
78712-1188; email: lorenzo@cs.utexas.edu; Yi-Min Wang, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052; email:
ymwang@microsoft.com; David B. Johnson, Rice University, Department of Computer Science, 6100 Main St., MS 132, Houston, TX 77005-
1892; email: dbj@cs.rice.edu.
Permission to make digital/hard copy of part of this work for personal or classroom use is granted without fee provided that the copies are not
made or distributed for profit or commercial advantage, the copyright notice, the title of the publication, and its date of appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior spe-
cific permission and/or a fee.

1. INTRODUCTION
Distributed systems today are ubiquitous and enable
many applications, including client-server systems,
transaction processing, World Wide Web, and scien-
tific computing, among many others. The vast com-
puting potential of these systems is often hampered
by their susceptibility to failures. Therefore, many
techniques have been developed to add reliability and
high availability to distributed systems. These tech-

niques include transactions, group communication,
and rollback recovery, and have different tradeoffs
and focuses. For example, transactions focus on
data-oriented applications, while group communica-
tion offers an abstraction of an ideal communication
system that simplifies the development of reliable
applications. This survey covers transparent rollback
recovery, which focuses on long-running applications
such as scientific computing and telecommunication
applications [Huang and Kintala 1993; Plank 1993].

 - 2 -

Rollback recovery treats a distributed system as a
collection of application processes that communicate
through a network. The processes have access to a
stable storage device that survives all tolerated fail-
ures. Processes achieve fault tolerance by using this
device to save recovery information periodically dur-
ing failure-free execution. Upon a failure, a failed
process uses the saved information to restart the
computation from an intermediate state, thereby re-
ducing the amount of lost computation. The recovery
information includes at a minimum the states of the
participating processes, called checkpoints. Other
recovery protocols may require additional informa-
tion, such as logs of the interactions with input and
output devices, events that occur to each process, and
messages exchanged among the processes.
Rollback recovery has many flavors. For example, a
system may rely on the application to decide when
and what to save on stable storage. Or, it may pro-
vide the application programmer with linguistic con-
structs to structure the application [Randell 1975].
We focus in this survey on transparent techniques,
which do not require any intervention on the part of
the application or the programmer. The system
automatically takes checkpoints according to some
specified policy, and recovers automatically from
failures if they occur. This approach has the advan-
tages of relieving the application programmers from
the complex and error-prone chores of implementing
fault tolerance and of offering fault tolerance to exist-
ing applications written without consideration to reli-
ability concerns.
Rollback recovery has been studied in various forms
and in connection with many fields of research.
Thus, it is perhaps impossible to provide an extensive
coverage of all the issues related to rollback recovery
within the scope of one article. This survey concen-
trates on the definitions, fundamental concepts, and
implementation issues of rollback-recovery protocols
in distributed systems. The coverage excludes the
use of rollback recovery in many related fields such
hardware-level instruction retry, distributed shared
memory [Morin and Puaut 1997], real-time systems,
and debugging [Mellor-Crummey and LeBlanc
1989]. The coverage also excludes the issues of us-
ing rollback recovery when failures could include
Byzantine modes or are not restricted to the fail-stop
model [Schlichting and Schneider 1983]. Also ex-
cluded are rollback-recovery techniques that rely on
special language constructs such as recovery blocks
[Randell 1975] and transactions. Finally, the section
on implementation exposes many relevant issues re-
lated to implementing checkpointing on uniproces-
sors, although the coverage is by no means an ex-

haustive one because of the large number of issues
involved.
Message-passing systems complicate rollback recov-
ery because messages induce inter-process dependen-
cies during failure-free operation. Upon a failure of
one or more processes in a system, these dependen-
cies may force some of the processes that did not fail
to roll back, creating what is commonly called roll-
back propagation. To see why rollback propagation
occurs, consider the situation where a sender of a
message m rolls back to a state that precedes the
sending of m. The receiver of m must also roll back
to a state that precedes m’s receipt; otherwise, the
states of the two processes would be inconsistent
because they would show that message m was re-
ceived without being sent, which is impossible in any
correct failure-free execution. Under some scenarios,
rollback propagation may extend back to the initial
state of the computation, losing all the work per-
formed before a failure. This situation is known as
the domino effect [Randell 1975].
The domino effect may occur if each process takes its
checkpoints independently—an approach known as
independent or uncoordinated checkpointing. It is
obviously desirable to avoid the domino effect and
therefore several techniques have been developed to
prevent it. One such technique is to perform coordi-
nated checkpointing in which processes coordinate
their checkpoints in order to save a system-wide con-
sistent state [Chandy and Lamport 1985]. This con-
sistent set of checkpoints can then be used to bound
rollback propagation. Alternatively, communication-
induced checkpointing forces each process to take
checkpoints based on information piggybacked on
the application messages received from other proc-
esses [Russell 1980]. Checkpoints are taken such
that a system-wide consistent state always exists on
stable storage, thereby avoiding the domino effect.
The approaches discussed so far implement check-
point-based rollback recovery, which relies only on
checkpoints to achieve fault-tolerance. In contrast,
log-based rollback recovery combines checkpointing
with logging of nondeterministic events.1 Log-based
rollback recovery relies on the piecewise determinis-
tic (PWD) assumption [Strom and Yemini 1985],
which postulates that all nondeterministic events that
a process executes can be identified and that the in-

1 Earlier papers in this area have assumed a model in which
the occurrence of a nondeterministic event is modeled as a
message receipt. In this model, nondeterministic-event
logging reduces to message logging. In this paper, we use
the terms event logging and message logging interchangea-
bly.

 - 3 -

formation necessary to replay each event during re-
covery can be logged in the event’s determinant
[Alvisi 1996; Alvisi and Marzullo 1998]. By logging
and replaying the nondeterministic events in their
exact original order, a process can deterministically
recreate its pre-failure state even if this state has not
been checkpointed. Log-based rollback recovery in
general enables a system to recover beyond the most
recent set of consistent checkpoints. It is therefore
particularly attractive for applications that frequently
interact with the outside world, which consists of all
input and output devices that cannot roll back. Log-
based rollback recovery has three flavors, depending
on how the determinants are logged to stable storage.
In pessimistic logging, the application has to block
waiting for the determinant of each nondeterministic
event to be stored on stable storage before the effects
of that event can be seen by other processes or the
outside world. Pessimistic logging simplifies recov-
ery but hurts failure-free performance. In optimistic
logging, the application does not block, and determi-
nants are spooled to stable storage asynchronously.
Optimistic logging reduces the failure-free overhead,
but complicates recovery. Finally, in causal logging,
low failure-free overhead and simpler recovery are
combined by striking a balance between optimistic
and pessimistic logging. The three flavors also differ
in their requirements for garbage collection and their
interactions with the outside world, as will be ex-
plained later.
The outline of the rest of the survey is as follows:
• Section 2: System model, terminology and ge-

neric issues in rollback recovery.
• Section 3: Checkpoint-based rollback-recovery

protocols.
• Section 4: Log-based rollback-recovery proto-

cols.
• Section 5: Implementation issues.
• Section 6: Conclusions.

2. BACKGROUND AND DEFINITIONS

2.1 System Model
A message-passing system consists of a fixed number
of processes that communicate only through mes-
sages. Throughout this survey, we use N to denote
the total number of processes in a system. Processes
cooperate to execute a distributed application pro-
gram and interact with the outside world by receiving
and sending input and output messages, respectively.
Figure 1 shows a sample system consisting of three
processes, where horizontal lines extending toward
the right-hand side represent the execution of each
process, and arrows between processes represent
messages.
Rollback-recovery protocols generally assume that
the communication network is immune to partition-
ing but differ in the assumptions they make about
network reliability. Some protocols assume that the
communication subsystem delivers messages relia-
bly, in First-In-First-Out (FIFO) order [Chandy and
Lamport 1985], while other protocols assume that the
communication subsystem can lose, duplicate, or
reorder messages [Johnson 1989]. The choice be-
tween these two assumptions usually affects the
complexity of recovery and its implementation in
different ways. Generally, assuming a reliable net-
work simplifies the design of the recovery protocol
but introduces implementation complexities that will
be described in Sections 2.3, 2.4 and 5.4.2.
A process execution is a sequence of state intervals,
each started by a nondeterministic event. Execution
during each state interval is deterministic, such that if
a process starts from the same state and is subjected
to the same nondeterministic events at the same loca-
tions within the execution, it will always yield the
same output. A concept related to the state interval is
the piecewise deterministic assumption (PWD). This
assumption states that the system can detect and cap-

Figure 1. An example of a message-passing system with three processes.

Outside world

Message-passing system

Output message
Input message

P0

P1

P2

m1

m2

 - 4 -

ture sufficient information about the nondeterministic
events that initiate the state intervals.
A process may fail, in which case it loses its volatile
state and stops execution according to the fail-stop
model [Schlichting and Schneider 1983]. Processes
have access to a stable storage device that survives
failures, such that state information saved on this
device during failure-free execution can be used for
recovery. The number of tolerated process failures
may vary from 1 to N, and the recovery protocol
needs to be designed accordingly. Furthermore,
some protocols may not tolerate failures that occur
during recovery.
A generic correctness condition for rollback-recovery
can be defined as follows: “A system recovers cor-
rectly if its internal state is consistent with the ob-
servable behavior of the system before the failure”
[Strom and Yemini 1985]. Rollback-recovery proto-
cols therefore must maintain information about the
internal interactions among processes and also the
external interactions with the outside world. A de-
scription of the notion of consistency and the interac-
tions with the outside world follow.

2.2 Consistent System States
A global state of a message-passing system is a col-
lection of the individual states of all participating
processes and of the states of the communication
channels. Intuitively, a consistent global state is one
that may occur during a failure-free, correct execu-
tion of a distributed computation. More precisely, a
consistent system state is one in which if a process’s
state reflects a message receipt, then the state of the
corresponding sender reflects sending that message
[Chandy and Lamport 1985]. For example, Figure 2
shows two examples of global states—a consistent

state in Figure 2(a), and an inconsistent state in Fig-
ure 2(b). Note that the consistent state in Figure 2(a)
shows message m1 to have been sent but not yet re-
ceived. This state is consistent, because it represents
a situation in which the message has left the sender
and is still traveling across the network. On the other
hand, the state in Figure 2(b) is inconsistent because
process P2 is shown to have received m2 but the state
of process P1 does not reflect sending it. Such a state
is impossible in any failure-free, correct computation.
Inconsistent states occur because of failures. For
example, the situation shown in part (b) of Figure 2
may occur if process P1 fails after sending message
m2 to P2 and then restarts at the state shown in the
figure.
A fundamental goal of any rollback-recovery proto-
col is to bring the system into a consistent state when
inconsistencies occur because of a failure. The re-
constructed consistent state is not necessarily one that
has occurred before the failure. It is sufficient that
the reconstructed state be one that could have oc-
curred before the failure in a failure-free, correct exe-
cution, provided that it be consistent with the interac-
tions that the system had with the outside world. We
describe these interactions next.

2.3 Interactions with the Outside World
A message-passing system often interacts with the
outside world to receive input data or show the out-
come of a computation. If a failure occurs, the out-
side world cannot be relied on to roll back [Pausch
1988]. For example, a printer cannot roll back the
effects of printing a character, and an automatic teller
machine cannot recover the money that it dispensed
to a customer. To simplify the presentation of how
rollback-recovery protocols interact with the outside

(b)(a)

P0

P1

P2

m1

m2

P0

P1

P2

m1

m2

Consistent state Inconsistent state

Figure 2. An example of a consistent and inconsistent state.

 - 5 -

world, we model the latter as a special process that
interacts with the rest of the system through message
passing. This special process cannot fail, and it can-
not maintain state or participate in the recovery pro-
tocol. Furthermore, since this special process models
irreversible effects in the outside world, it cannot roll
back. We call this special process the “outside world
process” (OWP).
It is necessary that the outside world perceive a con-
sistent behavior of the system despite failures. Thus,
before sending a message (output) to OWP, the sys-
tem must ensure that the state from which the mes-
sage is sent will be recovered despite any future fail-
ure. This is commonly called the output commit
problem [Strom and Yemini 1985]. Similarly, input
messages that a system receives from the outside
world may not be reproducible during recovery, be-
cause it may not be possible for OWP to regenerate
them. Thus, recovery protocols must arrange to save
these input messages so that they can be retrieved
when needed for execution replay after a failure. A
common approach is to save each input message on
stable storage before allowing the application pro-
gram to process it.
Rollback-recovery protocols, therefore, must provide
special treatment for interactions with the outside
world. There are two metrics that express the impact
of this special treatment, namely the latency of in-
put/output and the resulting slowdown of system’s
execution during input/output. The first metric repre-
sents the time it takes for an output message to be
released to OWP after it has been issued by the sys-
tem, or the time it takes a process to consume an in-
put message after it has been sent from OWP. The
second metric represents the overhead that the system
incurs to ensure that its state will remain consistent
with the messages exchanged with the OWP despite
future failures.

2.4 In-Transit Messages
In Figure 2(a), the global state shows that message m1
has been sent but not yet received. We call such a
message an in-transit message. When in-transit mes-
sages are part of a global system state, they do not
cause any inconsistency. However, depending on
whether the system model assumes reliable commu-
nication channels, rollback-recovery protocols may
have to guarantee the delivery of in-transit messages
when failures occur. For example, the rollback-
recovery protocol in Figure 3(a) assumes reliable
communications, and therefore it must be imple-
mented on top of a reliable communication protocol
layer. In contrast, the rollback-recovery protocol in
Figure 3(b) does not assume reliable communica-
tions.

Reliable communication protocols ensure the reliabil-
ity of message delivery during failure-free execu-
tions. They cannot, however, ensure by themselves
the reliability of message delivery in the presence of
process failures. For instance, if an in-transit mes-
sage is lost because the intended receiver has failed,
conventional communication protocols will generate
a timeout and inform the sender that the message
cannot be delivered. In a rollback-recovery system,
however, the receiver will eventually recover. There-
fore, the system must mask the timeout from the ap-
plication program at the sender process and must
make in-transit messages available to the intended
receiver process after it recovers, in order to ensure a
consistent view of the reliable system. On the other
hand, if a system model assumes unreliable commu-
nication channels, as in Figure 3(b), then the recovery
protocol need not handle in-transit messages in any
special way. Indeed, in-transit messages lost because
of process failures cannot be distinguished from those
lost because of communication failures in an unreli-

Rollback-recovery
protocol

User applications

Reliable communication
protocol

Unreliable communica-
tion channel

(a)

Rollback-recovery
protocol

User applications

Reliable communication
protocol

Unreliable communica-
tion channel

(b)

Figure 3. Implementation of rollback-recovery (a) on top of a reliable communication protocol; (b) directly on
top of unreliable communication channels.

 - 6 -

able communication channel. Therefore, the loss of
in-transit messages due to either communication or
process failure is an event that can occur in any fail-
ure-free, correct execution of the system.

2.5 Logging Protocols
Log-based rollback recovery uses checkpointing and
logging to enable processes to replay their execution
after a failure beyond the most recent checkpoint.
This is useful when interactions with the outside
world are frequent, since it enables a process to re-
peat its execution and be consistent with messages
sent to OWP without having to take expensive
checkpoints before sending such messages. Addi-
tionally, log-based recovery generally is not suscepti-
ble to the domino effect, thereby allowing processes
to use uncoordinated checkpointing if desired.
Log-based recovery relies on the piecewise determi-
nistic (PWD) assumption [Strom and Yemini 1985].
Under this assumption, the rollback recovery protocol
can identify all the nondeterministic events executed
by each process, and for each such event, logs a de-
terminant that contains all information necessary to
replay the event should it be necessary during recov-
ery. If the PWD assumption holds, log-based roll-
back-recovery protocols can recover a failed process
and replay its execution as it occurred before the fail-
ure.
Examples of nondeterministic events include receiv-
ing messages, receiving input from the outside world,
or undergoing an internal state transfer within a proc-
ess based on some nondeterministic action such as
the receipt of an interrupt. Rollback-recovery im-
plementations differ in the range of actual nondeter-
ministic events that are covered under this model.
For instance, a particular implementation may only
cover message receipts from other processes under

the PWD assumption. Such an implementation can-
not replay an execution that is subjected to other
forms of nondeterministic events such as asynchro-
nous interrupts. The range of events covered under
the PWD assumption is an implementation issue and
is covered in Section 5.7.
A state interval is recoverable if there is sufficient
information to replay the execution up to that state
interval despite any future failures in the system.
Also, a state interval is stable if the determinant of
the nondeterministic event that started it is logged on
stable storage [Johnson and Zwaenepoel 1990]. A
recoverable state interval is always stable, but the
opposite is not always true [Johnson 1989].
Figure 4 shows an execution in which the only non-
deterministic events are message deliveries. Suppose
that processes P1 and P2 fail before logging the de-
terminants corresponding to the deliveries of m6 and
m5, respectively, while all other determinants survive
the failure. Message m7 becomes an orphan message
because process P2 cannot guarantee the regeneration
of the same m6 during recovery, and P1 cannot guar-
antee the regeneration of the same m7 without the
original m6. As a result, the surviving process P0
becomes an orphan process and is forced to roll back
as well. States X, Y and Z form the maximum recov-
erable state [Johnson 1989], i.e., the most recent re-
coverable consistent system state. Processes P0 and
P2 roll back to checkpoints A and C, respectively, and
replay the deliveries of messages m4 and m2, respec-
tively, to reach states X and Z. Process P1 rolls back
to checkpoint B and replays the deliveries of m1 and
m3 in their original order to reach state Y.
During recovery, log-based rollback-recovery proto-
cols force the execution of the system to be identical
to the one that occurred before the failure, up to the
maximum recoverable state. Therefore, the system

Maximum recoverable state

C

A

B

Z

X

Y

m5 and m6 lost upon failure

m1 m0 m4

m2 m3 m6

m7

m5

P0

P1

P2

Figure 4. Message logging for deterministic replay.

 - 7 -

always recovers to a state that is consistent with the
input and output interactions that occurred up to the
maximum recoverable state.

2.6 Stable Storage
Rollback recovery uses stable storage to save check-
points, event logs, and other recovery-related infor-
mation. Stable storage in rollback recovery is only
an abstraction, although it is often confused with the
disk storage used to implement it. Stable storage
must ensure that the recovery data persist through the
tolerated failures and their corresponding recoveries.
This requirement can lead to different implementa-
tion styles of stable storage:
• In a system that tolerates only a single failure,

stable storage may consist of the volatile mem-
ory of another process [Borg et al. 1989; Johnson
and Zwaenepoel 1987].

• In a system that wishes to tolerate an arbitrary
number of transient failures, stable storage may
consist of a local disk in each host.

• In a system that tolerates non-transient failures,
stable storage must consist of a persistent me-
dium outside the host on which a process is run-
ning. A replicated file system is a possible im-
plementation in such systems [Lampson and
Sturgis 1979].

2.7 Garbage Collection
Checkpoints and event logs consume storage re-
sources. As the application progresses and more re-
covery information is collected, a subset of the stored
information may become useless for recovery. Gar-
bage collection is the deletion of such useless recov-
ery information. A common approach to garbage
collection is to identify the most recent consistent set
of checkpoints, which is called the recovery line
[Randell 1975], and discard all information relating
to events that occurred before that line. For example,
processes that coordinate their checkpoints to form
consistent states will always restart from the most
recent checkpoint of each process, and so all previous
checkpoints can be discarded. While it has received
little attention in the literature, garbage collection is
an important pragmatic issue in rollback-recovery
protocols, because running a special algorithm to
discard useless information incurs overhead. Fur-
thermore, recovery-protocols differ in the amount and
nature of the recovery information they need to store
on stable storage, and therefore differ in the complex-
ity and invocation frequency of their garbage collec-
tion algorithms.

3. CHECKPOINT-BASED ROLLBACK RE-
COVERY

Upon a failure, checkpoint-based rollback recovery
restores the system state to the most recent consistent
set of checkpoints, i.e. the recovery line [Randell
1975]. It does not rely on the PWD assumption, and
so does not need to detect, log, or replay nondeter-
ministic events. Checkpoint-based protocols are
therefore less restrictive and simpler to implement
than log-based rollback recovery. But checkpoint-
based rollback recovery does not guarantee that pre-
failure execution can be deterministically regenerated
after a rollback. Therefore, checkpoint-based roll-
back recovery is ill suited for applications that re-
quire frequent interactions with the outside world,
since such interactions require that the observable
behavior of the system through failures and recover-
ies be the same as during a failure-free execution.
Checkpoint-based rollback-recovery techniques can
be classified into three categories: uncoordinated
checkpointing, coordinated checkpointing, and com-
munication-induced checkpointing. We examine
each category in detail.

3.1 Uncoordinated Checkpointing
3.1.1 Overview
Uncoordinated checkpointing allows each process the
maximum autonomy in deciding when to take check-
points. The main advantage of this autonomy is that
each process may take a checkpoint when it is most
convenient. For example, a process may reduce the
overhead by taking checkpoints when the amount of
state information to be saved is small [Wang 1993].
But there are several disadvantages. First, there is the
possibility of the domino effect, which may cause the
loss of a large amount of useful work, possibly all the
way back to the beginning of the computation. Sec-
ond, a process may take a useless checkpoint that will
never be part of a global consistent state. Useless
checkpoints are undesirable because they incur over-
head and do not contribute to advancing the recovery
line. Third, uncoordinated checkpointing forces each
process to maintain multiple checkpoints, and to in-
voke periodically a garbage collection algorithm to
reclaim the checkpoints that are no longer useful.
Fourth, it is not suitable for applications with fre-
quent output commits because these require global
coordination to compute the recovery line, negating
much of the advantage of autonomy.
In order to determine a consistent global checkpoint
during recovery, the processes record the dependen-
cies among their checkpoints during failure-free op-
eration using the following technique [Bhargava and
Lian 1988]. Let ci,x be the xth checkpoint of process

 - 8 -

Pi. We call x the checkpoint index. Let Ii,x denote the
checkpoint interval or simply interval between
checkpoints ci,x-1 and ci,x. As illustrated in Figure 5,
if process Pi at interval Ii,x sends a message m to Pj, it
will piggyback the pair (i,x) on m. When Pj receives
m during interval Ij,y, it records the dependency from
Ii,x to Ij,y, which is later saved onto stable storage
when Pj takes checkpoint cj,y.
If a failure occurs, the recovering process initiates
rollback by broadcasting a dependency request mes-
sage to collect all the dependency information main-
tained by each process. When a process receives this
message, it stops its execution and replies with the
dependency information saved on stable storage as
well as with the dependency information, if any,
which is associated with its current state. The initia-
tor then calculates the recovery line based on the
global dependency information and broadcasts a roll-
back request message containing the recovery line.
Upon receiving this message, a process whose cur-
rent state belongs to the recovery line simply resumes
execution; otherwise it rolls back to an earlier check-
point as indicated by the recovery line.

3.1.2 Dependency Graphs and Recovery Line

Calculation
There are two approaches proposed in the literature
to determine the recovery line in checkpoint-based
recovery. The first approach is based on a rollback-
dependency graph [Bhargava and Lian 1988] in
which each node represents a checkpoint and a di-
rected edge is drawn from ci,x to cj,y if either:
(1) i g j, and a message m is sent from Ii,x and re-

ceived in Ij,y, or
(2) i = j and y = x + 1.
The name “rollback-dependency graph” comes from
the observation that if there is an edge from ci,x to cj,y
and a failure forces Ii,x to be rolled back, then Ij,y
must also be rolled back.

Figure 6(b) shows the rollback dependency graph for
the execution in Figure 6(a). The algorithm used to
compute the recovery line first marks the graph nodes
corresponding to the states of processes P0 and P1 at
the failure point (shown in figure in dark ellipses). It
then uses reachability analysis [Bhargava and Lian
1988] to mark all reachable nodes from any of the
initially marked nodes. The union of the last un-
marked nodes over the entire system forms the re-
covery line, as shown in Figure 6(b).
The second approach is based on the checkpoint
graph [Wang 1993]. Checkpoint graphs are similar
to rollback-dependency graphs except that, when a
message is sent from Ii,x and received in Ij,y, a directed
edge is drawn from ci,x-1 to cj,y (instead of ci,x to cj,y),
as shown in Figure 6(c). The recovery line can be
calculated by first removing both the nodes corre-
sponding to the states of the failed processes at the
point of failures and the edges incident on them, and
then applying the rollback propagation algorithm
[Wang 1993] on the checkpoint graph. Both the roll-
back-dependency graph and the checkpoint graph
approaches are equivalent, in that they always pro-
duce the same recovery line (as indeed they do in the
example). These methods form the basis for per-
forming garbage collection in independent check-
pointing, by determining the most advanced recovery
line and removing the checkpoints that precede it
[Wang 1993]. Additionally, some checkpoints taken
independently by a process may never be part of a
consistent state and therefore will be useless for re-
covery purposes. These checkpoints also can be re-
moved using the algorithm described in [Wang
1993]. Finally, it can be shown under independent
checkpointing that the maximum number of useful
checkpoints that must be kept on stable storage can-
not exceed (N (N +1)/2) [Wang et al. 1995a].

ci,1

m

Pj

Pi

Figure 5. Checkpoint index and checkpoint interval.

ci,0 ci,x-1 ci,x

(i,x)

cj,y-1 cj,y cj,1 cj,0

 Ij,y

 Ii,x

 - 9 -

3.1.3 The Domino Effect
While simple to implement, uncoordinated check-
pointing can lead to the domino effect [Randell 1975].
For example, Figure 7 shows an execution in which
processes take their checkpoints—represented by
black bars—without coordinating with each other.
Each process starts its execution with an initial
checkpoint. Suppose process P2 fails and rolls back
to checkpoint C. The rollback “invalidates” the send-
ing of message m6, and so P1 must roll back to
checkpoint B to “invalidate” the receipt of that mes-
sage. Thus, the invalidation of message m6 propa-
gates the rollback of process P2 to process P1, which
in turn “invalidates” message m7 and forces P0 to roll
back as well.
This cascaded rollback may continue and eventually
may lead to the domino effect, which causes the sys-
tem to roll back to the beginning of the computation,
in spite of all the saved checkpoints. In the example
shown in Figure 7, cascading rollbacks due to the

single failure of process P2 forces the system to re-
start from the initial set of checkpoints, effectively
causing the loss of all the work done by all processes.

3.2 Coordinated Checkpointing
3.2.1 Overview
Coordinated checkpointing requires processes to or-
chestrate their checkpoints in order to form a consis-
tent global state. Coordinated checkpointing simpli-
fies recovery and is not susceptible to the domino
effect, since every process always restarts from its
most recent checkpoint. Also, coordinated check-
pointing requires each process to maintain only one
permanent checkpoint on stable storage, reducing
storage overhead and eliminating the need for gar-
bage collection. Its main disadvantage, however, is
the large latency involved in committing output,
since a global checkpoint is needed before messages
can be sent to OWP.
A straightforward approach to coordinated check-

Failure

(b) (c)

P0

P1

P2

P3

P0

P1

P2

P3

c0,0 c0,1

c1,0 c1,1

c0,0 c0,1

c1,0 c1,1

Marked

Recovery
line

Marked
Recovery

line
Initially
marked

P0

P1

P2

P3

Checkpoint

c0,1 c0,2 c0,0

c1,0 c1,1

(a)

Figure 6. (a) Example execution; (b) rollback-dependency graph; (c) checkpoint graph.

 - 10 -

pointing is to block communications while the
checkpointing protocol executes [Tamir and Sequin
1984]. A coordinator takes a checkpoint and broad-
casts a request message to all processes, asking them
to take a checkpoint. When a process receives this
message, it stops its execution, flushes all the com-
munication channels, takes a tentative checkpoint,
and sends an acknowledgment message back to the
coordinator. After the coordinator receives acknowl-
edgments from all processes, it broadcasts a commit
message that completes the two-phase checkpointing
protocol. After receiving the commit message, each
process removes the old permanent checkpoint and
atomically makes the tentative checkpoint permanent.
The process is then free to resume execution and ex-
change messages with other processes. This straight-
forward approach, however, can result in large over-
head, and therefore non-blocking checkpointing
schemes are preferable [Elnozahy et al. 1992].

3.2.2 Non-blocking Checkpoint Coordination
A fundamental problem in coordinated checkpointing
is to prevent a process from receiving application

messages that could make the checkpoint inconsis-
tent. Consider the example in Figure 8(a), in which
message m is sent by P0 after receiving a checkpoint
request from the checkpoint coordinator. Now, as-
sume that m reaches P1 before the checkpoint request.
This situation results in an inconsistent checkpoint
since checkpoint c1,x shows the receipt of message m
from P0, while checkpoint c0,x does not show it being
sent from P0. If channels are FIFO, this problem can
be avoided by preceding the first post-checkpoint
message on each channel by a checkpoint request,
and forcing each process to take a checkpoint upon
receiving the first checkpoint-request message, as
illustrated in Figure 8(b). An example of a non-
blocking checkpoint coordination protocol using this
idea is the distributed snapshot [Chandy and Lamport
1985], in which markers play the role of the check-
point-request messages. In this protocol, the initiator
takes a checkpoint and broadcasts a marker (a check-
point request) to all processes. Each process takes a
checkpoint upon receiving the first marker and re-
broadcasts the marker to all processes before sending
any application message. The protocol works assum-

m

Initiator

c1,x

c0,x

P1

P0

checkpoint request

(a)

checkpoint request

m

Initiator

c1,x

c0,x

P1

P0

(b)

m

Initiator

c1,x

c0,x

P1

P0

(c)

checkpoint request

Figure 8. Non-blocking coordinated checkpointing: (a) checkpoint inconsistency; (b) with FIFO channels;
(c) non-FIFO channels (short dashed line represents piggybacked checkpoint request).

P0

P1

P2 Failure

A

B

C

Checkpoint
Recovery line

m6

m7 m5

m4

m3
m2

m1

m0

Figure 7. Rollback propagation, recovery line and the domino effect.

 - 11 -

ing the channels are reliable and FIFO. If the chan-
nels are non-FIFO, the marker can be piggybacked on
every post-checkpoint message as in Figure 8(c) [Lai
and Yang 1987]. Alternatively, checkpoint indices
can serve the same role as markers, where a check-
point is triggered when the receiver's local checkpoint
index is lower than the piggybacked checkpoint index
[Elnozahy, et al. 1992; Silva 1997].

3.2.3 Checkpointing with Synchronized Clocks
Loosely synchronized clocks can facilitate check-
point coordination [Cristian and Jahanian 1991; Tong
et al. 1992]. More specifically, loosely synchronized
clocks can trigger the local checkpointing actions of
all participating processes at approximately the same
time without a checkpoint initiator [Cristian and Ja-
hanian 1991]. A process takes a checkpoint and
waits for a period that equals the sum of the maxi-
mum deviation between clocks and the maximum
time to detect a failure in another process in the sys-
tem. The process can be assured that all checkpoints
belonging to the same coordination session have been
taken without the need of exchanging any messages.
If a failure occurs, it is detected within the specified
time and the protocol is aborted.

3.2.4 Checkpointing and Communication Reli-

ability
Depending on the assumption of reliability of the
communication channel (Section 2.4), the protocol
may require some messages to be saved as part of the
checkpoint. Consider the case where reliable chan-
nels are assumed. Suppose process p sends a message
m before taking a checkpoint, and that message m
arrives at the intended destination at process q after q
has taken its checkpoint. In this case, the recorded
state of p would show message m to have been sent,
while q’s state would show that the message has not
been received. If a failure were to force p and q to
roll back to these checkpoints, it would be impossible
to guarantee the reliable delivery of m after recovery.
To avoid this problem, the protocol requires that all
in-transit messages be saved by their intended desti-
nations as part of their recorded state. However, if
reliable channels are not assumed, then in-transit
messages need not be saved, as the recorded state in
this case would still be consistent with the assump-
tion of the communication channels (in this case, the
loss of message m if the system fails and restarts
would be equivalent to its loss due to a communica-
tion failure in a legal execution).

3.2.5 Minimal Checkpoint Coordination
Coordinated checkpointing requires all processes to
participate in every checkpoint. This requirement
generates valid concerns about its scalability. It is
desirable to reduce the number of processes involved
in a coordinated checkpointing session. This can be
done since the processes that need to take new
checkpoints are only those that have communicated
with the checkpoint initiator either directly or indi-
rectly since the last checkpoint [Koo and Toueg
1987].
The following two-phase protocol achieves minimal
checkpoint coordination [Koo and Toueg 1987].
During the first phase, the checkpoint initiator identi-
fies all processes with which it has communicated
since the last checkpoint and sends them a request.
Upon receiving the request, each process in turn iden-
tifies all processes it has communicated with since
the last checkpoints and sends them a request, and so
on, until no more processes can be identified. During
the second phase, all processes identified in the first
phase take a checkpoint. The result is a consistent
checkpoint that involves only the participating proc-
esses. In this protocol, after a process takes a check-
point, it cannot send any message until the second
phase terminates successfully, although receiving a
message after the checkpoint has been taken is al-
lowed.

3.3 Communication-induced Checkpointing
3.3.1 Overview
Communication-induced checkpointing (CIC) proto-
cols avoid the domino effect without requiring all
checkpoints to be coordinated. In these protocols,
processes take two kinds of checkpoints, local and
forced. Local checkpoints can be taken independ-
ently, while forced checkpoint must be taken to guar-
antee the eventual progress of the recovery line. In
particular, CIC protocols take forced checkpoint to
prevent the creation of useless checkpoints, i.e.
checkpoints (such as c2,2 in Figure 9) that will never
be part of a consistent global state. Useless check-
points are not desirable because they do not contrib-
ute to the recovery of the system from failures, but
they consume resources and cause performance over-
head.
As opposed to coordinated checkpointing, CIC proto-
cols do not exchange any special coordination mes-
sages to determine when forced checkpoints should
be taken: instead, they piggyback protocol-specific
information on each application message; the re-
ceiver then uses this information to decide if it should
take a forced checkpoint. Informally, this decision is

 - 12 -

based on the receiver determining if past commu-
nication and checkpoint patterns can lead to the crea-
tion of useless checkpoints: a forced checkpoint is
then taken to break these patterns. This intuition has
been formalized in an elegant theory based on the
notions of Z-path and Z-cycle.
A Z-path (zigzag path) is a special sequence of mes-
sages that connects two checkpoints [Netzer and Xu
1995]. Let x denote Lamport's happen-before rela-
tion [Lamport 1978]. Let ci,x denote the xth check-
point of process Pi. Also, define the execution por-
tion between two consecutive checkpoints on the
same process to be the checkpoint interval starting
with the earlier checkpoint. Given two checkpoints
ci,x and cj,y, a Z-path exists between ci,x and cj,y if and
only if one of the following two conditions holds:

1. x < y and i = j; or
2. There exists a sequence of messages [m0,
m1,…, mn], n m 0, such that:

• ci,x x sendi(m0);
• ≤ l < n, either deliverk(ml) and
sendk(ml+1) are in the same checkpoint inter-
val, or deliverk(ml) x sendk(ml+1); and
• deliverj(mn) x cj,y

where sendi and deliveri are communication events
executed by process Pi. In Figure 9, [m1, m2] and
[m3, m4] are examples of Z-paths between check-
points c0,1 and c2,2.
A Z-cycle is a Z-path that begins and ends with the
same checkpoint. In Figure 9, the Z-path [m5, m3, m4]
is a Z-cycle that starts and ends at checkpoint c2,2. Z-
cycles are interesting in the context of CIC protocols
because it can be proved that a checkpoint is useless
if and only if it is part of a Z-cycle [Netzer and Xu
1995]. Hence, one way to avoid useless checkpoints
is to make sure that no Z-path ever becomes a Z-
cycle.

Traditionally, CIC protocols have been classified in
one of two types. Model-based checkpointing proto-
cols maintain checkpoint and communication struc-
tures that prevent useless checkpoints or achieve
some even stronger properties [Wang 1997]. Index-
based coordination protocols assign timestamps to
local and forced checkpoints such that checkpoints
with the same timestamp at all processes form a con-
sistent state. Recently, it has been proved that the two
types are fundamentally equivalent [Hélary et al.
1997a], although in practice, there may be some evi-
dence that index-based coordination results in fewer
forced checkpoints [Alvisi et al. 1999].

3.3.2 Model-based Protocols
Model-based checkpointing relies on preventing pat-
terns of communications and checkpoints that could
result in Z-cycles and useless checkpoints. A model
is set up to detect the possibility that such patterns
could be forming within the system, according to
some heuristic. A checkpoint is usually forced to
prevent the undesirable patterns from occurring. The
decision to force a checkpoint is done locally using
the information piggybacked on application mes-
sages. Therefore, under this style of checkpointing it
is possible that multiple processes detect the potential
for inconsistent checkpoints and independently force
local checkpoints to prevent the formation of unde-
sirable patterns that may never actually materialize or
that could be prevented by a single forced check-
point. Thus, model-based checkpointing always errs
on the conservative side by taking more forced
checkpoints than is probably necessary, because
without explicit coordination, no process has com-
plete information about the global system state.
The literature contains several domino-effect-free
checkpoint and communication models. The MRS
model [Russell 1980] avoids the domino effect by

m4

m1

m5 m0 m2

 P2

 P1

 P0

c0,0 c0,1 c0,2

c1,0 c1,1 c1,2 c1,3

c2,0 c2,1 c2,2 c2,3

Figure 9. Z-paths and Z cycles.

m3

 - 13 -

ensuring that within every checkpoint interval all
message-receiving events precede all message-
sending events. This model can be maintained by
taking an additional checkpoint before every mes-
sage-receiving event that is not separated from its
previous message-sending event by a checkpoint
[Wang 1997]. Another way to prevent the domino
effect is to avoid rollback propagation completely by
taking a checkpoint immediately before every mes-
sage-sending event [Bartlett 1981]. Recent work has
focused on ensuring that every checkpoint can belong
to a consistent global checkpoint and therefore is not
useless [Baldoni et al. 1998; Hélary, et al. 1997a;
Hélary et al. 1997b; Netzer and Xu 1995].

3.3.3 Index-based Protocols
Index-based CIC protocols guarantee, through forced
checkpoints if necessary, that (1) if there are two
checkpoints ci,m and cj,n such that ci,m x cj,n, then
ts(cj,n) ≥ ts(ci,m), where ts(c) is the timestamp associ-
ated with checkpoint c; and (2) consecutive local
checkpoints of a process have increasing timestamps.
The timestamps are piggybacked on application mes-
sages to help receivers decide when they should force
a checkpoint. For instance, the protocol by Briatico et
al forces a process to take a checkpoint upon receiv-
ing a message with a piggybacked index greater than
the local index, and guarantees that the checkpoints
having the same index at different processes form a
consistent state [Briatico et al. 1984]. Hélary et al
instead rely on the observation that if checkpoints'
timestamps always increase along a Z-path (as op-
posed as simply non-decreasing, as required by rule
(1) above), then no Z-cycle can ever form [Hélary, et
al. 1997b]. More sophisticated protocols piggyback
more information on top of application messages to
minimize the number of forced checkpoints [Hélary,
et al. 1997b].
CIC protocols can potentially have several perform-
ance advantages over other styles of checkpointing.
Because CIC allows considerable autonomy in decid-
ing when to take checkpoints, processes can take lo-
cal checkpoints when their state is small and saving it
incurs a small overhead [Li and Fuchs 1990; Plank et
al. 1995b]. CIC protocols may also, in theory, scale
up well in systems with a large number of processes,
since they do not require processes to participate in a
globally coordinated checkpoint. We discuss the de-
gree to which these advantages materialize in practice
in Section 5.

4. LOG-BASED ROLLBACK RECOVERY
As opposed to checkpoint-based rollback recovery,
log-based rollback recovery makes explicit use of the

fact that a process execution can be modeled as a
sequence of deterministic state intervals, each starting
with the execution of a nondeterministic event [Strom
and Yemini 1985]. Such an event can be the receipt
of a message from another process or an event inter-
nal to the process. Sending a message, however, is
not a nondeterministic event. For example, in Figure
7, the execution of process P0 is a sequence of four
deterministic intervals. The first one starts with the
creation of the process, while the remaining three
start with the receipt of messages m0, m3, and m7,
respectively. Sending message m2 is uniquely deter-
mined by the initial state of P0 and by the receipt of
message m0, and is therefore not a nondeterministic
event.
Log-based rollback recovery assumes that all nonde-
terministic events can be identified and their corre-
sponding determinants can be logged to stable stor-
age. During failure-free operation, each process logs
the determinants of all the nondeterministic events
that it observes onto stable storage. Additionally,
each process also takes checkpoints to reduce the
extent of rollback during recovery. After a failure
occurs, the failed processes recover by using the
checkpoints and logged determinants to replay the
corresponding nondeterministic events precisely as
they occurred during the pre-failure execution. Be-
cause execution within each deterministic interval
depends only on the sequence of nondeterministic
events that preceded the interval's beginning, the pre-
failure execution of a failed process can be recon-
structed during recovery up to the first nondetermin-
istic event whose determinant is not logged.
Log-based rollback-recovery protocols have been
traditionally called “message logging protocols.”
The association of nondeterministic events with mes-
sages is rooted in the earliest systems that proposed
and implemented this style of recovery [Bartlett
1981; Borg, et al. 1989; Strom and Yemini 1985].
These systems translated nondeterministic events into
deterministic message receipt events.
Log-based rollback-recovery protocols guarantee that
upon recovery of all failed processes, the system does
not contain any orphan process, i.e., a process whose
state depends on a nondeterministic event that cannot
be reproduced during recovery. The way in which a
specific protocol implements this condition affects
the protocol's failure-free performance overhead,
latency of output commit, and simplicity of recovery
and garbage collection, as well as its potential for
rolling back correct processes. There are three fla-
vors of these protocols:

 - 14 -

• Pessimistic log-based rollback-recovery proto-
cols guarantee that orphans are never created due
to a failure. These protocols simplify recovery,
garbage collection and output commit, at the ex-
pense of higher failure-free performance over-
head.

• Optimistic log-based rollback-recovery protocols
reduce the failure-free performance overhead,
but allow orphans to be created due to failures.
The possibility of having orphans complicates
recovery, garbage collection and output commit.

• Causal log-based rollback-recovery protocols
attempt to combine the advantages of low per-
formance overhead and fast output commit, but
they may require complex recovery and garbage
collection.

We present log-based rollback-recovery protocols by
first specifying a property that guarantees that no
orphans are created during an execution, and then by
discussing how the three major classes of log-based
rollback-recovery protocols implement this consis-
tency condition.

4.1 The No-Orphans Consistency Condition
Let e be a nondeterministic event that occurs at proc-
ess p, we define:
• Depend(e), the set of processes that are affected

by a nondeterministic event e. This set consists
of p, and any process whose state depends on the
event e according to Lamport's happened before
relation [Lamport 1978].

• Log(e), the set of processes that have logged a
copy of e’s determinant in their volatile memory.

• Stable(e), a predicate that is true if e’s determi-
nant is logged on stable storage.

A process p becomes an orphan when p itself does
not fail and p’s state depends on the execution of a
nondeterministic event e whose determinant cannot
be recovered from stable storage or from the volatile
memory of a surviving process. Formally [Alvisi
1996]:

≤ e: ¥ Stable(e) e Depend(e) ` Log(e)

We call this property the always-no-orphans condi-
tion. It stipulates that if any surviving process de-
pends on an event e, that either the event is logged on
stable storage, or the process has a copy of the deter-
minant of event e. If neither condition is true, then
the process is an orphan because it depends on an
event e that cannot be generated during recovery
since its determinant has been lost.

4.2 Pessimistic Logging
4.2.1 Overview
Pessimistic logging protocols are designed under the
assumption that a failure can occur after any nonde-
terministic event in the computation. This assump-
tion is “pessimistic” since in reality failures are rare.
In their most straightforward form, pessimistic proto-
cols log to stable storage the determinant of each
nondeterministic event before the event is allowed to
affect the computation. These pessimistic protocols
implement the following property, often referred to
as synchronous logging, which is a strengthening of
the always-no-orphans condition:

≤ e: ¥ Stable(e) e xDepend(e)x = 0

This property stipulates that if an event has not been
logged on stable storage, then no process can depend
on it.
In addition to logging determinants, processes also
take periodic checkpoints to limit the amount of work
that has to be repeated in execution replay during
recovery. Should a failure occur, the application
program is restarted from the most recent checkpoint
and the logged determinants are used during recovery
to recreate the pre-failure execution.
Consider the example in Figure 10. During failure-
free operation the logs of processes P0, P1 and P2
contain the determinants needed to replay messages
[m0, m4, m7], [m1, m3, m6] and [m2, m5], respectively.
Suppose processes P1 and P2 fail as shown, restart
from checkpoints B and C, and roll forward using
their determinant logs to deliver again the same se-
quence of messages as in the pre-failure execution.
This guarantees that P1 and P2 will repeat exactly
their pre-failure execution and re-send the same mes-
sages. Hence, once recovery is complete, both proc-
esses will be consistent with the state of P0 that in-
cludes the receipt of message m7 from P1.
In a pessimistic logging system, the observable state
of each process is always recoverable. This property
has four advantages:
1. Processes can send messages to the outside

world without running a special protocol.
2. Processes restart from their most recent check-

point upon a failure, therefore limiting the extent
of execution that has to be replayed. Thus, the
frequency of checkpoints can be determined by
trading off the desired runtime performance with
the desired protection of the on-going execution.

3. Recovery is simplified because the effects of a
failure are confined only to the processes that
fail. Functioning processes continue to operate

 - 15 -

and never become orphans because a process al-
ways recovers to the state that included its most
recent interaction with any other process includ-
ing OWP. This is highly desirable in practical
systems [Huang and Wang 1995].

4. Garbage collection is simple. Older checkpoints
and determinants of nondeterministic events that
occurred before the most recent checkpoint can
be reclaimed because they will never be needed
for recovery.

The price to be paid for these advantages is a per-
formance penalty incurred by synchronous logging.
Implementations of pessimistic logging must there-
fore resort to special techniques to reduce the effects
of synchronous logging on performance. Some pro-
tocols rely on special hardware to facilitate logging
[Borg, et al. 1989], while others may limit the num-
ber of tolerated failures to improve performance
[Johnson and Zwaenepoel 1987; Juang and Venkate-
san 1991].

4.2.2 Techniques for Reducing Performance
Overhead

Synchronous logging can potentially result in a high
performance overhead. This overhead can be low-
ered using special hardware. For example, fast non-
volatile semiconductor memory can be used to im-
plement stable storage [Banâtre et al. 1988]. Syn-
chronous logging in such an implementation is orders
of magnitude cheaper than with a traditional imple-
mentation of stable storage that uses magnetic disk
devices. Another form of hardware support uses a
special bus to guarantee atomic logging of all mes-
sages exchanged in the system [Borg, et al. 1989].
Such hardware support ensures that the log of one
machine is automatically stored on a designated
backup without blocking the execution of the applica-
tion program. This scheme, however, requires that
all nondeterministic events be converted into external

messages [Bartlett 1981; Borg, et al. 1989].
Some pessimistic logging systems reduce the over-
head of synchronous logging without relying on
hardware. For example, the Sender-Based Message
Logging (SBML) protocol keeps the determinants
corresponding to the delivery of each message m in
the volatile memory of its sender [Johnson and
Zwaenepoel 1987]. The determinant of m, which
consists of its content and the order in which it was
delivered, is logged in two steps. First, before send-
ing m, the sender logs its content in volatile memory.
Then, when the receiver of m responds with an ac-
knowledgment that includes the order in which the
message was delivered, the sender adds to the deter-
minant the ordering information. SBML avoids the
overhead of accessing stable storage but tolerates
only one failure and cannot handle nondeterministic
events internal to a process. Extensions to this tech-
nique can tolerate more than one failure in special
network topologies [Juang and Venkatesan 1991].

4.2.3 Relaxing Logging Atomicity
The performance overhead of pessimistic logging can
be reduced by delivering a message or an event and
deferring its logging until the receiver communicates
with any other process, including OWP [Johnson and
Zwaenepoel 1987]. In the example of Figure 10,
process P0 may defer the logging of messages m4 and
m7 until it communicates with another process or the
outside world. Process P0 implements the following
weaker property, which still guarantees the always-
no-orphans condition:

≤ e: ¥ Stable(e) e xDepend(e)x [1

This property relaxes the condition of pessimistic
logging by allowing a single process to be affected by
an event that has yet to be logged, provided that the

Maximum recoverable state

C

A

B

Z

X

Y

m1 m0 m4

m2 m3 m6

m7

m5

P0

P1

P2

Figure 10. Pessimistic logging.

 - 16 -

process does not externalize the effect of this de-
pendency to other processes including OWP. Thus,
messages m4 and m7 are allowed to affect process P0,
but this effect is local – no other process or the out-
side world can see it until the messages are logged.
The observed behavior of each process is the same as
with an implementation that logs events before deliv-
ering them to applications. Event logging and deliv-
ery are not performed in one atomic operation in this
variation of pessimistic logging. This scheme re-
duces overhead because several events can be logged
in one operation, reducing the frequency of synchro-
nous access to stable storage. Latency of interprocess
communication and output commit are not reduced
since a logging operation may often be needed before
sending a message.
Systems that separate logging of an event from its
delivery may lose the last messages delivered before
a failure. This may be a problem for applications that
assume that processes communicate through reliable
channels. Consider one of these applications going
through the execution shown in Figure 10, and as-
sume that process P0 fails after delivering messages
m4 and m7 but before the corresponding determi-
nants—containing the content and order of receipt of
the messages—are logged. Protocols in which the
receiver logs the message content cannot guarantee
that the recovered P0 will ever deliver m4 and m7,
violating the assumption about reliable channels.
This problem does not arise in protocols that log
messages at the sender or do not assume reliable
communication channels [Elnozahy 1993; Johnson
1989; Johnson and Zwaenepoel 1987].

4.3 Optimistic Logging
4.3.1 Overview
In optimistic logging protocols, processes log deter-
minants asynchronously to stable storage [Strom and
Yemini 1985]. These protocols make the optimistic

assumption that logging will complete before a fail-
ure occurs. Determinants are kept in a volatile log,
which is periodically flushed to stable storage. Thus,
optimistic logging does not require the application to
block waiting for the determinants to be actually
written to stable storage, and therefore incurs little
overhead during failure-free execution. However,
this advantage comes at the expense of more compli-
cated recovery and garbage collection, and slower
output commit than in pessimistic logging. If a proc-
ess fails, the determinants in its volatile log will be
lost, and the state intervals that were started by the
nondeterministic events corresponding to these de-
terminants cannot be recovered. Furthermore, if the
failed process sent a message during any of the state
intervals that cannot be recovered, the receiver of the
message becomes an orphan process and must roll
back to undo the effects of receiving the message.
Optimistic protocols do not implement the always-
no-orphans condition, and therefore permit the tem-
porary creation of orphan processes. However, they
require that the property holds by the time recovery is
complete. This is achieved during recovery by roll-
ing back orphan processes until their states do not
depend on any message whose determinant has been
lost. For example, suppose process P2 in Figure 11
fails before the determinant for m5 is logged to stable
storage. Process P1 then becomes an orphan process
and must roll back to undo the effects of receiving
the orphan message m6. The rollback of P1 further
forces P0 to roll back to undo the effects of receiving
message m7.
To perform these rollbacks correctly, optimistic log-
ging protocols track causal dependencies during fail-
ure-free execution. Upon a failure, the dependency
information is used to calculate and recover the latest
global state of the pre-failure execution in which no
process is in an orphan.
The above example also illustrates why optimistic

C

A

B

X
m1 m0 m4

m2 m3 m6

m7

m5

P0

P1

P2

D

Figure 11. Optimistic logging.

 - 17 -

logging protocols require a nontrivial garbage collec-
tion algorithm. While pessimistic protocols need
only keep the most recent checkpoint of each process,
optimistic protocols may need to keep multiple
checkpoints. In the example, the failure of P2 forces
P1 to restart from checkpoint B instead of its most
recent checkpoint D.
Finally, since determinants are logged asynchro-
nously, output commit in optimistic logging protocols
generally requires multi-host coordination to ensure
that no failure scenario can revoke the output. For
example, if process P0 needs to commit output at
state X, it must log messages m4 and m7 to stable stor-
age and ask P2 to log m2 and m5.

4.3.2 Synchronous vs. Asynchronous Recovery
Recovery in optimistic logging protocols can be ei-
ther synchronous or asynchronous. In synchronous
recovery [Johnson 1989; Sistla and Welch 1989], all
processes run a recovery protocol to compute the
maximum recoverable system state based on depend-
ency and logged information, and then perform the
actual rollbacks. During failure-free execution, each
process increments a state interval index at the be-
ginning of each state interval. Dependency tracking
can be either direct or transitive.
In direct dependency tracking [Johnson 1989; Sistla
and Welch 1989], the state interval index of the
sender is piggybacked on each outgoing message to
allow the receiver to record the dependency directly
caused by the message. These direct dependencies
can then be assembled at recovery time to obtain
complete dependency information. Alternatively,
transitive dependency tracking [Sistla and Welch
1989; Strom and Yemini 1985] can be used: each
process Pi maintains a size-N vector TDi, where
TDi[i] is Pi’s current state interval index, and TDi[j], j
g i, records the highest index of any state interval of

Pj on which Pi depends. Transitive dependency
tracking generally incurs a higher failure-free over-
head for piggybacking and maintaining the depend-
ency vectors, but allows faster output commit and
recovery.
In asynchronous recovery, a failed process restarts by
sending a rollback announcement broadcast or a re-
covery message broadcast to start a new incarnation
[Strom and Yemini 1985]. Upon receiving a rollback
announcement, a process rolls back if it detects that it
has become an orphan with respect to that an-
nouncement, and then broadcasts its own rollback
announcement. Since rollback announcements from
multiple incarnations of the same process may coex-
ist in the system, each process in general needs to
track the dependency of its state on every incarnation
of all processes to correctly detect orphaned states. A
way to limit dependency tracking to only one incar-
nation of each process is to force a process to delay
its delivery of certain messages. That is, before a
process Pi can deliver any message carrying a de-
pendency on an unknown incarnation of process Pj,
Pi must first receive rollback announcements from Pj
to verify that Pi’s current state does not depend on
any invalid state of Pj’s previous incarnations. Pig-
gybacking all rollback announcements known to a
process on every outgoing message can eliminate
blocking, and the amount of piggybacked information
can be further reduced to a provable minimum [Smith
and Johnson 1996].
Another issue in asynchronous recovery protocols is
the possibility of exponential rollbacks. This phe-
nomenon occurs if a single failure causes a process to
roll back an exponential number of times [Sistla and
Welch 1989]. Figure 12 gives an example, where
each integer pair (i,x) represents the xth state interval
of the ith incarnation of a process. Suppose P0 fails
and loses its interval (1,2). When P0’s rollback an-

(1,2)

(2,4) (2,3)

(4,5) (4,6) (4,4)

r0

r1

m2 m1

m3

P0

P1

P2

Figure 12. Exponential rollbacks.

 - 18 -

nouncement r0 reaches P1, the latter rolls back to in-
terval (2,3) and broadcasts another rollback an-
nouncement r1. If r1 reaches P2 before r0 does, P2
will first roll back to (4,5) in response to r1, and later
roll back again to (4,4) upon receiving r0. By gener-
alizing this example, we can construct scenarios in
which process Pi, i > 0, rolls back 2i-1 times in re-
sponse to P0’s failure.
Several approaches have been proposed to ensure that
any process will roll back at most once in response to
a single failure. Exponential rollbacks can be elimi-
nated by distinguishing failure announcements from
rollback announcements and by broadcasting only the
former [Sistla and Welch 1989]. Another possibility
is to piggyback the original rollback announcement
from the failed process on every subsequent rollback
announcement that it triggers. For example, in Fig-
ure 12, process P1 piggybacks r0 on r1. Exponential
rollbacks can be avoided by piggybacking all roll-
back announcements on every application message
[Smith and Johnson 1996].

4.4 Causal Logging
4.4.1 Overview
Causal logging has the failure-free performance ad-
vantages of optimistic logging while retaining most

of the advantages of pessimistic logging [Alvisi
1996; Elnozahy 1993]. Like optimistic logging, it
avoids synchronous access to stable storage except
during output commit. Like pessimistic logging, it
allows each process to commit output independently
and never creates orphans, thereby isolating each
process from the effects of failures that occur in other
processes. Furthermore, causal logging limits the
rollback of any failed process to the most recent
checkpoint on stable storage. This reduces the stor-
age overhead and the amount of work at risk. These
advantages come at the expense of a more complex
recovery protocol.
Causal logging protocols ensure the always-no-
orphans property by ensuring that the determinant of
each nondeterministic event that causally precedes
the state of a process is either stable or it is available
locally to that process. Consider the example in Fig-
ure 13(a). While messages m5 and m6 may be lost
upon the failure, process P0 at state X will have
logged the determinants of the nondeterministic
events that causally precede its state according to
Lamport's happened-before relation [Lamport 1978].
These events consist of the delivery of messages m0,
m1, m2, m3 and m4. The determinant of each of these
nondeterministic events is either logged on stable
storage or is available in the volatile log of process

Maximum recoverable state

C

A

B

Z

X

Y

m1 m0 m4

m2 m3 m6m5

P0

P1

P2

m1

m2 m3

m4

P1

P0

P2

m0

(a)

(b)

Figure 13. Causal logging. (a) Maximum recoverable states, and (b) antecedence graph of P0 at state X.

 - 19 -

P0. The determinant of each of these events contains
the order in which its original receiver delivered the
corresponding message. The message sender, as in
sender-based message logging, logs the message con-
tent. Thus, process P0 will be able to “guide” the
recovery of P1 and P2 since it knows the order in
which P1 should replay messages m1 and m3 to reach
the state from which P1 sends message m4. Similarly,
P0 has the order in which P2 should replay message
m2 to be consistent with both P0 and P1. The content
of these messages is obtained from the sender log of
P0 or regenerated deterministically during the recov-
ery of P1 and P2. Notice that information about m5
and m6 is not available anywhere. These messages
may be replayed after recovery in a different order, if
at all. However, since they had no effect on a surviv-
ing process or the outside world, the resulting state is
consistent. The determinant log kept by each process
acts as an insurance to protect it from the failures that
occur in other processes. It also allows the process to
make its state recoverable by simply logging the in-
formation available locally. Thus, a process does not
need to run a multi-host protocol to commit output.

4.4.2 Tracking Causality
Causal logging protocols implements the always-no-
orphans condition by having processes piggyback the
non-stable determinants in their volatile log on the
messages they send to other processes. On receiving

a message, a process first adds any piggybacked de-
terminant to its volatile determinant log and then de-
livers the message to the application.
The Manetho system propagates the causal informa-
tion in an antecedence graph [Elnozahy 1993]. The
antecedence graph provides every process in the sys-
tem with a complete history of the nondeterministic
events that have causal effects on its state. The graph
has a node representing each nondeterministic event
that precedes the state of a process, and the edges
correspond to the happened-before relation [Lamport
1978]. Figure 13(b) shows the antecedence graph of
process P0 of Figure 13(a) at state X. During failure-
free operation, each process piggybacks on each ap-
plication message the determinants that contain the
receipt orders of its direct and transitive antecedents,
i.e., its local antecedence graph. The receiver of the
message records these receipt orders in its volatile
log.
In practice, carrying the entire graph on each applica-
tion message may lead to an unacceptable overhead.
Fortunately, each message carries a graph that is a
superset of the one piggybacked on the previous mes-
sage sent from the same host. This fact can be used
in practical implementations to reduce the amount of
information carried on application messages. Thus,
any message between processes p and q carries only
the difference between the graphs piggybacked on the
previous message exchanged between these two

Uncoordinated
Checkpointing

Coordinated
Checkpointing

Comm. In-
duced Check-

pointing

Pessimistic
Logging

Optimistic
Logging

Causal Log-
ging

PWD as-
sumed? No No No Yes Yes Yes

Check-
point/proce
ss

Several 1 Several 1 Several 1

Domino
effect Possible No No No No No

Orphan
processes Possible No Possible No Possible No

Rollback
extent Unbounded

Last global
checkpoint

Possibly

sev-
eral

check-
points

Last

check-
point

Possibly

 several

 checkpoints

Last

check-
point

 Recovery
data Distributed Distributed Distributed

Distributed
or local

Distributed
or local

Distributed
Recovery
protocol Distributed

Distributed Distributed Local Distributed Distributed

Output
commit Not possible

Global coordi-
nation required

Global coordi-
nation required

Local deci-
sion

Global coor-
dination
required

Local deci-
sion

Table 1 A comparison between various flavors of rollback-recovery protocols.

 - 20 -

hosts. Furthermore, if p has recently received a mes-
sage from q, it can exclude the graph portions that
have been piggybacked on that message. Process q
already has the information in these excluded por-
tions, and therefore transmitting them serves no pur-
pose. Other optimizations are also possible but de-
pend on the semantics of the communication proto-
col. An implementation of this technique shows that
it has very low overhead in practice [Elnozahy 1993].
Further reduction of the overhead is possible if the
system is willing to tolerate a number of failures that
is less than the total number of processes in the sys-
tem. This observation is the basis of Family Based
Logging protocols (FBL) that are parameterized by
the number of tolerated failures [Alvisi 1996]. The
basis of these protocols is that to tolerate f process
failures, it is sufficient to log each nondeterministic
event in the volatile store of f + 1 different hosts.
Hence, the predicate Stable(e) holds as soon as
|Log(e)| > f. Sender-based logging is used to support
message replay during recovery and determinants are
piggybacked on application messages. However,
unlike Manetho, propagation of information about an
event stops when it has been recorded in f + 1 proc-
esses. For f < N, FBL protocols do not access stable
storage except for checkpointing. Reducing access to
stable storage in turn reduces performance overhead
and implementation complexity. Applications pay
only the overhead that corresponds to the number of
failures they are willing to tolerate. An implementa-
tion for the protocol with f = 1 confirms that the per-
formance overhead is very small [Alvisi 1996]. The
Manetho protocol is an FBL protocol corresponding
to the case of f = N.

4.5 Comparison
Different rollback-recovery protocols offer different
tradeoffs with respect to performance overhead, la-
tency of output commit, storage overhead, ease of
garbage collection, simplicity of recovery, freedom
from domino effect, freedom from orphan processes,
and the extent of rollback. Table 1 summarizes a
comparison between the different variations of roll-
back-recovery protocols.
Since garbage collection and recovery both involve
calculating a recovery line, they can be performed by
simple procedures under coordinated checkpointing
and pessimistic logging, both of which have a prede-
termined recovery line during failure-free execution.
The extent of any potential rollback determines the
maximum number of checkpoints each process needs
to retain. Uncoordinated checkpointing can have
unbounded rollbacks, and a process may need to re-

tain up to N checkpoints if the optimal garbage col-
lection algorithm is used [Wang et al. 1995b]. Also,
several checkpoints may need to be kept under opti-
mistic logging, depending on the specifics of the log-
ging scheme. Note that we do not include failure-
free overhead as a factor in the comparison. Several
studies have shown that these protocols perform rea-
sonably well in practice, and that several factors such
as checkpointing frequency, machine speed, and sta-
ble storage bandwidth play more important roles than
the fundamental aspects of a particular protocol
[Alvisi 1996; Elnozahy 1993; Elnozahy, et al. 1992;
Huang and Kintala 1993; Johnson 1989; Muller et al.
1994; Plank 1993; Plank, et al. 1995b; Ruffin 1992]
[Silva 1997].

5. IMPLEMENTATION ISSUES

5.1 Overview
While there is a rich body of research on the algo-
rithmic aspects of rollback-recovery protocols, re-
ports on experimental prototypes or commercial im-
plementations are relatively scarce. The few experi-
mental studies available have shown that building
rollback-recovery protocols with low failure-free
overhead is feasible. These studies also provide am-
ple evidence that the main difficulty in implementing
these protocols lies in the complexity of handling
recovery [Elnozahy 1993]. It is interesting to note
that all commercial implementations of message log-
ging use pessimistic logging because it simplifies
recovery [Borg, et al. 1989; Huang and Wang 1995].
Several recent studies have also challenged some
premises on which many rollback-recovery protocols
rely. Many of these protocols have been introduced
in the 1980's, when processor speed and network
bandwidth were such that communication overhead
was deemed too high, especially when compared to
the cost of stable storage access [Bhargava et al.
1990]. In such platforms, multi-host coordination
incurs a large overhead because of the necessary con-
trol messages. A protocol that does not require a
large communication overhead at the expense of
more stable storage accesses performs better in such
platforms. Recently, processor speed and network
bandwidth have increased dramatically, while the
speed of stable storage access has remained relatively
the same.2 This change in the equation suggests a

2 While semiconductor-based stable storage is becoming
more widely available, the size-cost ratio is too low com-
pared to disk-based stable storage. It appears that for some
time to come, disk-based systems will continue to be the
medium of choice for storing the large files that are needed
in checkpointing and logging systems.

 - 21 -

fresh look at the premises of many rollback-recovery
protocols and recent results have shown that [Alvisi
1996; Elnozahy 1993; Johnson 1989; Muller, et al.
1994; Plank 1993; Silva 1997; Slye and Elnozahy
1998]:
• Stable storage access is now the major source of

overhead in checkpointing or message logging
systems. Communication overhead is much
lower in comparison. Such changes favor coor-
dinated checkpointing schemes over message
logging or uncoordinated checkpointing systems,
as they require less access to stable storage and
are simpler to implement.

• The case for message logging has become the
ability to interact with the outside world, instead
of reducing the overhead of multi-process coor-
dination [Elnozahy and Zwaenepoel 1994].
Message logging systems can implement effi-
cient protocols for committing output and log-
ging input that are not possible in checkpoint-
only systems.

• Recent advances have shown that arbitrary forms
of nondeterminism can be supported at a very
low overhead in logging systems. Nondetermin-
ism was deemed one of the complexities inherent
in message logging systems.

In the remainder of this section, we address these and
other issues in some detail.

5.2 Checkpointing Implementation
All available studies have shown that writing the
state of a process to stable storage is the largest con-
tributor to the performance overhead [Plank 1993].
The simplest way to save the state of a process is to
suspend execution, save the process’s address space
on stable storage, and then resume execution [Tamir
and Sequin 1984]. This scheme can be costly for
programs with large address spaces if stable storage
is implemented using magnetic disks, as it is the cus-
tom. Several techniques exist to reduce this over-
head.

5.2.1 Concurrent Checkpointing
All available studies show that concurrent check-
pointing greatly reduces the overhead of saving the
state of a process [Goldberg et al. 1990; Plank 1993].
Concurrent checkpointing relies on the memory pro-
tection hardware available in modern computer archi-
tectures to continue the execution of the process
while its checkpoint is being saved on stable storage.
The address space is protected from further modifica-
tion at the start of a checkpoint and the memory
pages are saved to disk concurrently with the pro-
gram execution. If the program attempts to modify a
page, it incurs a protection violation. The check-

pointing system copies the page into a separate buffer
from which it is saved on stable storage. The original
page is unprotected and the application program is
allowed to resume. Implementations that do not in-
corporate concurrent checkpointing may pay a heavy
performance overhead unless the checkpointing in-
terval is set to a large value, which in turn would in-
crease the time for rollback.

5.2.2 Incremental Checkpointing
Adding incremental checkpointing [Feldman and
Brown 1989] to concurrent checkpointing can further
reduce the overhead [Elnozahy, et al. 1992]. Incre-
mental checkpointing avoids rewriting portions of the
process states that do not change between consecu-
tive checkpoints. It can be implemented by using the
dirty-bit of the memory protection hardware or by
emulating a dirty-bit in software [Babaoglu and Joy
1981]. A public domain package implementing this
technique along with concurrent checkpointing is
available [Plank, et al. 1995b].
Incremental checkpointing can also be extended over
several processes. In this technique, the system saves
the computed parity or some function of the memory
pages that are modified across several processes
[Plank and Li 1994]. This technique is very similar
to parity computation in RAID disk systems. The
parity pages can be saved in volatile memory of some
other processes thereby avoiding the need to access
stable storage. The storage overhead of this method
is very low, and it can be adjusted depending on how
many failures the system is willing to tolerate.
Another technique for implementing incremental
checkpointing is to directly compare the program’s
state with the previous checkpoint in software, and
writing the difference in a new checkpoint [Plank et
al. 1995a]. The required storage and computation
overhead to perform such a comparison may waste
the benefit of incremental checkpointing. Another
variation on this technique is to use probabilistic
checkpointing [Nam et al. 1997]. The unit of check-
pointing in this scheme is a memory block that is
typically much smaller than a memory page.
Changes to a memory block are detected by comput-
ing a signature and comparing it to the corresponding
signature in the previous checkpoint. Probabilistic
checkpointing is portable, and has lower storage and
computation requirements than required by compar-
ing the checkpoints directly. On the downside, com-
puting a signature to detect changes opens the door
for aliasing. This problem occurs when the computed
signature does not differ from the corresponding one
in the previous checkpoint, even though the associ-
ated memory block has changed. In such a situation,
the memory block is excluded from the new check-
point, which therefore becomes erroneous. A prob-

 - 22 -

abilistic analysis has shown that the likelihood of
aliasing in practice is negligible, but an experimental
evaluation has shown that probabilistic checkpointing
could be unsafe in practice [Elnozahy 1998].

5.2.3 System-level versus User-level Imple-

mentations
Support for checkpointing can be implemented in the
kernel [Bartlett 1981; Borg, et al. 1989; Elnozahy
1993; Johnson 1989], or it can be implemented by a
library linked with the user program [Alvisi 1996;
Goldberg, et al. 1990; Huang and Kintala 1993;
Plank, et al. 1995b]. Kernel-level implementations
are more powerful because they can also capture ker-
nel data structures that support the user process.
However, these implementations are necessarily not
portable.
Checkpointing can also be implemented in user level.
System calls that manipulate memory protection such
as mprotect of UNIX can emulate concurrent and
incremental checkpointing. The fork system call of
UNIX can implement concurrent checkpointing if the
operating system implements fork using copy-on-
write protection [Goldberg, et al. 1990]. User-level
implementations, however, cannot access kernel's
data structures that belong to the process, such as
open file descriptors and message buffers, but these
data structures can be emulated at user level [Huang
and Kintala 1993].

5.2.4 Compiler Support
A compiler can be instrumented to generate code that
supports checkpointing [Li and Fuchs 1990]. The
compiled program contains code that decides when
and what to checkpoint. The advantage of this tech-
nique is that the compiler can decide on the variables
that must be saved, therefore avoiding unnecessary
data. For example, dead variables within a program
are not saved in a checkpoint though they have been
modified. Furthermore, the compiler may decide the
points during program execution where the amount of
state to be saved is small.
Despite these promising advantages, there are diffi-
culties with this approach. It is generally undecidable
to find the point in program execution most suitable
to take a checkpoint. There are, however, several
heuristics that can be used. The programmer can
provide hints to the compiler about where check-
points should be inserted or what data variables
should be stored [Beguelin et al. 1997; Plank, et al.
1995b]. The compiler may also be trained by run-
ning the application in an iterative manner and by
observing its behavior [Li and Fuchs 1990]. The
observed behavior could help decide the execution
points where it would be appropriate to insert check-
points. Compiler support could also be simplified in

languages that support automatic garbage collection
[Appel 1989]. The execution point after each major
garbage collection provides a convenient place to
take a checkpoint at a minimum cost.

5.2.5 Checkpoint Placement
A large amount of work has been devoted to analyz-
ing and deriving the optimal checkpointing frequency
and placement [Chandy and Ramamoorthy 1972].
The problem is usually formulated as an optimization
problem subject to constraints. For instance, a sys-
tem may attempt to reduce the number of taken
checkpoints subject to a certain limit on the amount
of expected rollback. Generally, it has been observed
in practice that the overhead of checkpointing is usu-
ally negligible unless the checkpointing interval is
relatively small, and therefore the optimality of
checkpoint placement is rarely an issue in practical
systems [Elnozahy, et al. 1992].

5.3 Checkpointing Protocols in Comparison
Many checkpointing protocols were introduced at a
time where the communication overhead far ex-
ceeded the overhead of accessing stable storage. Fur-
thermore, the memory available to run processes
tended to be small. These tradeoffs naturally favored
uncoordinated checkpointing schemes over coordi-
nated ones. Current technological trends however
have reversed this tradeoff.
In modern systems, the overhead of coordinating
checkpoints is negligible compared to the overhead
of saving the states [Alvisi 1996; Elnozahy 1993;
Johnson 1989; Muller, et al. 1994; Plank 1993; Silva
1997]. Using concurrent and incremental check-
pointing, the overhead of either coordinated or unco-
ordinated checkpointing is essentially the same.
Therefore, uncoordinated checkpointing is not likely
to be an attractive technique in practice given the
negligible performance gains. These gains do not
justify the complexities of finding a consistent recov-
ery line after the failure, the susceptibility to the
domino effect, the high storage overhead of saving
multiple checkpoints of each process, and the over-
head of garbage collection. It follows that coordi-
nated checkpointing is superior to uncoordinated
checkpointing when all aspects are considered on the
balance.
A recent study has also shed some light on the behav-
ior of communication-induced checkpointing [Alvisi,
et al. 1999]. It presents an analysis of these protocols
based on a prototype implementation and validated
simulations, showing that communication-induced
checkpointing does not scale well as the number of
processes increases. The occurrence of forced
checkpoints at random points within the execution
due to communication messages makes it very diffi-

 - 23 -

cult to predict the required amount of stable storage
for a particular application run. Also, this unpredict-
ability affects the policy for placing local checkpoints
and makes communication-induced protocols cum-
bersome to use in practice. Furthermore, the study
shows that the benefit of autonomy in allowing proc-
esses to take local checkpoints at their convenience
does not seem to hold. In all experiments, a process
takes at least twice as many forced checkpoints as
local, autonomous ones.

5.4 Communication Protocols
Rollback recovery complicates the implementation of
protocols used for inter-process communications.
Some protocols offer the abstraction of reliable
communication channels such as connection-based
protocols (e.g. TCP, RPC). Alternatively, other pro-
tocols offer the abstraction of an unreliable datagram
service (e.g. UDP). Each type of abstraction requires
additional support to operate properly across failures
and recoveries.

5.4.1 Location-Independent Identities and Redi-

rection
For all communication protocols, a rollback-recovery
system must mask the actual identity and location of
processes or remote ports from the application pro-
gram. This masking is necessary to prevent any ap-
plication program from acquiring a dependency on
the location of a certain process, making it impossible
to restart the process on a different machine after a
failure. A solution to this problem is to assign a logi-
cal, location-independent identifier to each process in
the system. This scheme also allows the system to
redirect communication appropriately to a restarting
process after a failure [Elnozahy 1993].

5.4.2 Reliable Channel Protocols
After a failure, identity masking and communication
redirection are sufficient for communication proto-
cols that offer the abstraction of an unreliable chan-
nel. Protocols that offer the abstraction of reliable
channels require additional support. These protocols
usually generate a timeout upcall to the application
program if the process at the other end of the channel
has failed. These timeouts should be masked since
the failed program will soon restart and resume com-
putation. If such upcalls are allowed to affect the
application, then the abstraction of a reliable system
is no longer upheld. The application will have to
encode the necessary support to communicate with
the failed process after it recovers.
Masking timeouts should also be coupled with the
ability of the protocol implementation to reestablish
the connection with the restarting process (possibly

restarting on a different machine). This support in-
cludes the ability to clean up the old connection in an
orderly manner, and to establish a new connection
with the restarting host. Furthermore, messages re-
transmitted as part of the execution replay of the re-
mote host must be identified and, if necessary, sup-
pressed. This requires the protocol implementation to
include a form of sequence number that is only used
for this purpose.
Recovering in-transit messages that are lost because
of a failure is another problem for reliable communi-
cation protocols. In TCP/IP communication style, for
instance, a message is considered delivered once an
acknowledgment is received from the remote host.
The message itself may linger in the kernel's buffer
for a while before the receiving process consumes it.
If this process fails, the in-transit messages must be
resent to preserve the semantics of the reliable com-
munication channel. Messages must be saved at the
sender side for possible retransmission during recov-
ery. This step can be combined in a system that per-
forms sender-based message logging as part of the
log maintenance. In other systems that do not log
messages or log messages at the receiver, the copying
of each message at the sender side introduces over-
head and complexity. The complexity is due to the
need for executing some garbage collection algorithm
with other sites to reclaim the volatile storage.

5.5 Log-based Recovery
5.5.1 Message Logging Overhead
Message logging introduces three sources of over-
head. First, each message must in general be copied
to the local memory of the process. Second, the vola-
tile log is regularly flushed to stable storage to free
up space. Third, message logging nearly doubles the
communication bandwidth required to run the appli-
cation for systems that implement stable storage via a
highly available file system accessible through the
network. The first source of overhead may directly
affect communication throughput and latency. This
is especially true if the copying occurs in the critical
path of the inter-process communication protocol. In
this respect, sender-based logging is considered more
efficient than receiver-based logging because the
copying can take place after sending the message
over the network. Additionally, the system may
combine the logging of messages with the implemen-
tation of the communication protocol and share the
message log with the transmission buffers. This
scheme avoids the extra copying of the message.
Logging at the receiver is more expensive because it
is in the critical path of the communication protocol.
Another optimization for sender-based logging sys-
tems is to use copy-on-write to avoid making extra-
copying [Elnozahy and Zwaenepoel 1994]. This

 - 24 -

scheme works well in systems where broadcast mes-
sages are implemented using several point-to-point
messages. In this case, copy-on-write will allow the
system to have one copy for identical messages and
thus reduce the storage and performance overhead of
logging. No similar optimization can be performed
in receiver-based systems [Elnozahy and Zwaenepoel
1994].

5.5.2 Combining Log-Based Recovery with Co-

ordinated Checkpointing
Log-based recovery has been traditionally presented
as a mechanism to allow the use of uncoordinated
checkpointing with no domino effect. But a system
may also combine event logging with coordinated
checkpointing, yielding several benefits with respect
to performance and simplicity [Elnozahy and Zwae-
nepoel 1994]. These benefits include those of coor-
dinated checkpointing—such as the simplicity of
recovery and garbage collection—and those of log-
based recovery—such as fast output commit. Most
prominently, this combination obviates the need for
flushing the volatile message logs to stable storage in
a sender-based logging implementation. Thus, there
is no need for maintaining large logs on stable stor-
age, resulting lower performance overhead and sim-
pler implementations. The combination of coordi-
nated checkpointing and message logging has been
shown to outperform one with uncoordinated check-
pointing and message logging [Elnozahy and Zwae-
nepoel 1994]. Therefore, the purpose of logging
should no longer be to allow uncoordinated check-
pointing. Rather, it should be the desire for enabling
fast output commit for those applications that need
this feature.

5.6 Stable Storage
Magnetic disks have been the medium of choice for
implementing stable storage [Lampson and Sturgis
1979]. Although they are slow, their storage capacity
and low cost combination cannot be matched by
other alternatives. An implementation of a stable
storage abstraction on top of a conventional file sys-
tem may not be the best choice, however. Such an
implementation will not generally give the perform-
ance or reliability needed to implement stable storage
[Banâtre, et al. 1988; Elnozahy 1993; Ruffin 1992].
Modern file systems tend to be optimized for the pat-
tern of access expected in workstation or personal
computing environments. Furthermore, these file
systems are often accessed through a network via a
protocol that is optimized for small file accesses and
not for the large file accesses that are more common
in checkpointing and logging.

An implementation of stable storage should bypass
the file system layer and access the disk directly.
One such implementation is the KitLog package,
which offers a log abstraction that can support
checkpointing and message logging [Ruffin 1992].
The package runs in conventional UNIX systems and
bypasses the file system by accessing the disk in raw
mode. There have been also several attempts at im-
plementing stable storage using non-volatile semi-
conductor memory [Banâtre, et al. 1988]. Such im-
plementations do not have the performance problems
associated with disks, but the price and the small
storage capacity remain two problems that limit their
wide acceptance.

5.7 Support for Nondeterminism
Nondeterminism occurs when the application pro-
gram interacts with the operating system through
system calls and upcalls (asynchronous events). In
log-based recovery, these nondeterministic events
must be logged on stable storage so that they can be
replayed during recovery. Log-based recovery sys-
tems differ in the range of actual events that can be
covered.

5.7.1 System Calls
System calls in general can be classified into three
types [Borg, et al. 1989; Elnozahy 1993; Goldberg, et
al. 1990]. Idempotent system calls are those that
return deterministic values whenever executed. Ex-
amples include calls that return the user identifier of
the process owner. These calls do not need to be
logged. A second class of calls consists of those that
must be logged during failure-free operation but
should not be re-executed during execution replay.
The result from these calls should simply be replayed
to the application program. These calls include those
that inquire about the environment, such as getting
the current time of day. Re-executing these calls
during recovery might return a different value that is
inconsistent with the pre-failure execution. The last
type of system calls includes those that must be
logged during failure-free operation and re-executed
during execution replay. These calls generally mod-
ify the environment and therefore they must be re-
executed to re-establish the environment changes.
Examples include calls that allocate memory or cre-
ate processes. Ensuring that these calls return the
same values and generate the same effect during re-
execution can be very complex.

5.7.2 Asynchronous Signals
Nondeterminism results from asynchronous signals
available in the form of software interrupts under
various operating systems. Such signals must be

 - 25 -

applied at the same execution points during replay to
reproduce the same result. Log-based rollback re-
covery can cover this form of nondeterminism by
taking a checkpoint after the occurrence of each sig-
nal, but this can be very expensive [Bartlett 1981].
Alternatively, the system may convert these asyn-
chronous signals to synchronous messages such as in
Targon/32 [Borg, et al. 1989], or it may queue the
signals until the application polls for them. Both
alternatives convert asynchronous event notifications
into synchronous ones, which may not be suitable or
efficient for many applications. Such solutions also
may require substantial modifications to the operat-
ing system or the application program.
Another example of nondeterminism that is difficult
to track is shared memory manipulation in multi-
threaded applications. Reconstructing the same exe-
cution during replay requires the same interleaving of
shared memory accesses by the various threads as in
the pre-failure execution. Systems that support this
form of nondeterminism supply their own sets of
locking primitives, and require applications to use
them for protecting access to shared memory
[Goldberg, et al. 1990]. The primitives are instru-
mented to insert an entry in the log identifying the
calling thread and the nature of the synchronization
operation. However, this technique has several prob-
lems. It makes shared memory access expensive, and
may generate a large volume of data in the log. Fur-
thermore, if the application does not adhere to the
synchronization model (because of a programmer's
error, for instance), execution replay may not be pos-
sible.
A technique for tracking nondeterminism due to
asynchronous signals and interleaved memory access
on single processor systems is to use instruction
counters [Bressoud and Schneider 1995]. An instruc-
tion counter is a register that decrements by one upon
the execution of each instruction, leading the hard-
ware to generate an exception when the register con-
tents become 0. An instruction counter can thus be
used in two modes. In one mode, the register is
loaded with the number of instructions to be executed
before a breakpoint occurs. After the CPU executes
the specified number of instructions, the counter
reaches 0 and the hardware generates an exception.
The operating system fields the exception and exe-
cutes a pre-specified handler. This mode is useful in
setting breakpoints efficiently, such as during debug-
ging. In the second mode, the instruction counter is
loaded with the maximum value it can hold. Execu-
tion proceeds until an event of interest occurs, at
which time the content of the counter is sampled, and
the number of instructions executed since the time
the counter was set is computed and logged. The use
of instruction counters has been suggested for debug-

ging shared memory parallel programs [Mellor-
Crummey and LeBlanc 1989].
Instruction counters can be used in rollback recovery
to track the number of instructions that occur be-
tween asynchronous interrupts [Slye and Elnozahy
1998]. These instruction counts are logged as part of
the log that describes the nondeterministic events.
During recovery, the system recovers the instruction
counts from the log and uses them to regenerate the
software interrupts at the same execution points
within the application as before the failure. The ap-
plication therefore goes through the same set of asyn-
chronous events precisely as it did before the failure,
and therefore it can reconstruct its execution.
An instruction counter can be implemented in hard-
ware, as in the PA-RISC precision architecture where
it has been used to augment the hypervisor of a vir-
tual-machine manager and coordinate a primary vir-
tual machine with its backup [Bressoud and Schnei-
der 1995]. It also can be emulated in software
[Mellor-Crummey and LeBlanc 1989]. An imple-
mentation study shows that the overhead of program
instrumentation and tracking nondeterminism is less
than 6% for a variety of user programs and synthetic
benchmarks [Slye and Elnozahy 1998].

5.8 Dependency Tracking
Rollback-recovery protocols vary in the ways they
track inter-process dependencies. Some protocols
require tagging only an index or a sequence number
on every application messages [Briatico, et al. 1984],
while some require the propagation of a vector of
timestamps [Strom and Yemini 1985]. At an ex-
treme, some protocols require the propagation of a
graph describing the history of the computation
[Elnozahy 1993], or matrices containing bit or time-
stamp vectors [Baldoni, et al. 1998].
Tagging a message with an index or a sequence num-
ber on an application message is simple and does not
cause any measurable overhead. When dependency
tracking, however, requires more complex structures,
there are techniques for reducing the amount of ac-
tual data that need to be transferred on top of each
message. All these techniques revolve around two
themes. First, only incremental changes need to be
sent. If some elements of a vector or a graph haven’t
changed since process p has sent a message to proc-
ess q, then p need only include those elements that
have changed. Implementation of this optimization is
straightforward in systems that assume FIFO com-
munication channels. When lossy channels are as-
sumed, this optimization is still possible, but at the
expense of more processing overhead [Elnozahy
1993].
The other technique for reducing the overhead of
dependency tracking exploits the semantics of the

 - 26 -

applications and the communication patterns
[Elnozahy 1993]. For instance, if it can be inferred
from the dependency information available to process
p that process q already knows parts of the informa-
tion that is to be piggybacked on a message outgoing
to q, then process p can exclude this information.
Surprisingly, implementing this optimization is sim-
ple and yields good performance [Elnozahy 1993].
Regardless of the particular method used to track
inter-process dependencies, various prototype im-
plementations have shown that the overhead resulting
from dependency tracking is negligible compared to
the overhead of checkpointing or logging [Alvisi
1996; Alvisi, et al. 1999; Bhargava and Lian 1988;
Borg, et al. 1989; Elnozahy 1993; Goldberg, et al.
1990; Johnson 1989] [Silva 1997].

5.9 Recovery
Handling execution restart and replay is a difficult
part of implementing a rollback-recovery system
[Borg, et al. 1989]. The major challenge is reinte-
grating the recovered process in a computation envi-
ronment that may or may not be the same as the one
in which the process was executing before failure.

5.9.1 Reinstating a Process in its Environment
Implanting a process in a different environment dur-
ing recovery can create difficulties if its state depends
on the pre-failure environment. For example, the
process may need to access files that exist on the lo-
cal disk of the machine. The simplest solution to this
problem is to attempt to restart the program on the
same host. If this is not feasible, then the system
must insulate the process from environment-specific
variables [Elnozahy 1993]. This can be done for in-
stance by intercepting system calls that return envi-
ronment-specific results and replacing them with
abstract values under the control of the recovery sys-
tem. Also, file access could be made highly available
by placing all files in network-wide highly available
file servers or by using dual-ported disks.
Another problem in implementing recovery is the
need to reconstruct the auxiliary state within the op-
erating system kernel that supports the recovering
process [Elnozahy 1993; Huang and Kintala 1993;
Johnson 1989; Plank 1993]. This state is usually
outside of the recovery protocol’s control during fail-
ure-free operation, unless the protocol is imple-
mented inside the operating system. For protocols
implemented outside the operating system, the roll-
back-recovery system must emulate these data struc-
tures and log sufficient information to be able to rec-
reate them during recovery. For example, the recov-
ery system may create a data structure to shadow the
open file table of a particular process by intercepting
all file manipulation calls from the process itself.

Then, the recovery system records some information
that would enable it to issue requests to the operating
system during recovery in order to force the operat-
ing system to recreate these data structure indirectly.
Obviously, not all state within the operating system
kernel can be emulated this way, and therefore, out-
of-kernel implementations must have stricter cover-
age of the system’s state that must be emulated.
Since most of the applications that benefit from roll-
back recovery seem to be in the realm of scientific
computing where no sophisticated state is maintained
by the kernel on behalf of the processes, this problem
does not seem to be severe in that particular context
[Plank, et al. 1995b].

5.9.2 Behavior During Recovery
Previous studies have outlined several characteristics
of rollback-recovery systems during recovery
[Elnozahy 1993; Rao et al. 1998]. For example, it has
been observed that for log-based recovery systems,
the messages and determinants available in the logs
are replayed at a considerably higher speed during
recovery than during normal execution. This is be-
cause during normal execution a process may have to
block waiting for messages or synchronization
events, while during recovery these messages or
events can be immediately replayed.
Also, it has been observed that sender-based logging
protocols typically slow down recovery if there are
multiple failures, because of the need to re-execute
some of the processes under control to regenerate the
messages. Moreover, some of these protocols may
require sympathetic rollbacks [Strom and Yemini
1985], which increase the overhead of synchronizing
the processes during recovery. This experimental
evidence seems to confirm the tradeoff between pro-
tocols that perform well during failure-free execu-
tions, such as causal and optimistic logging, and pro-
tocols that perform well during recovery, such as
pessimistic logging [Rao, et al. 1998]. It is possible
to address this tradeoff by performing logging both at
the sender and receivers [Strom and Yemini 1985],
such that the sender log is volatile and is kept only
until the receiver flushes its volatile logs to stable
storage.

5.10 Checkpointing and Mobility
Several studies have examined the issues of check-
pointing, logging, and rollback recovery in mobile
computing [Prakash and Singhal 1996]. The funda-
mental concepts of distributed checkpointing, consis-
tency, and rollback are identical to those in traditional
distributed systems, but special considerations must
be made for issues inherent to mobile computing,
such as energy constraints, intermittent communica-
tions, and low-performance processors. These issues

 - 27 -

favor checkpointing protocols that allow maximum
autonomy to participating processes, require low
overhead in resources, and can function with the
minimum possible number of message exchanges.
Therefore, independent checkpointing and communi-
cation-induced checkpointing tend to be more appro-
priate for these environments than coordinated
checkpointing. Also, log-based recovery protocols
that allow a high degree of autonomy during recovery
such as receiver-based optimistic or pessimistic log-
ging tend to be more appropriate for these environ-
ments than those protocols that require global com-
munication during recovery. Nevertheless, check-
pointing and rollback recovery have yet to prove use-
ful for mobile hosts. The applications in the mobile
domain tend to be structured as client-server interac-
tions for which transaction processing on the server is
most appropriate. Also, it is often the case for these
applications that high availability is more important
than fault tolerance or recoverability, favoring some
form of replicated server that can continue to func-
tion despite a failure of some of its replicas. Finally,
there is an emerging generation of handheld devices
that are meant to serve as enhanced input-output de-
vices for remote computations, with little processing
or storage capacity to support checkpointing or re-
covery. Whether this situation changes will depend
on whether rollback-recovery proves to be useful
outside the scientific and engineering computing do-
main in which it has proved very successful.

5.11 Rollback Recovery in Practice
Despite the wealth of research in the area of rollback
recovery in distributed systems, very few commercial
systems actually have adopted them. Difficulties in
implementing recovery perhaps are the main reason
why these protocols have not been widely adopted.
Additionally, the range of applications that benefit
from these protocols tend to be in the realm of long-
running, scientific programs, which are relatively
few. Many of these, in fact, are written to run on
supercomputers where some facility exists for check-
pointing the entire system’s state. For the few that
run in a distributed system, public domain libraries
that implement checkpointing have proved adequate
[Plank, et al. 1995b].
Log-based recovery seemed to have less success than
checkpoint-only systems. A commercial implemen-
tation of pessimistic logging did not fare well, al-
though the reasons are not clear [Borg, et al. 1989].
One could conjecture that the complex modifications
made to the operating system and the special-purpose
hardware that was used to mitigate performance
overhead made the machine expensive. Some other
usage of log-based recovery has been reported in
telecommunication applications [Huang and Kintala

1993], although there are no reports on how they
fared. Interestingly, both commercial implementa-
tions used pessimistic logging, and were used for
applications where the performance overhead of this
form of logging could be tolerated. We are unaware,
however, of any use of optimistic or causal logging
rollback-recovery protocols in commercial systems.

6. CONCLUDING REMARKS
We have reviewed and compared different ap-
proaches to rollback recovery with respect to a set of
properties including the assumption of piecewise
determinism, performance overhead, storage over-
head, ease of output commit, ease of garbage collec-
tion, ease of recovery, freedom from domino effect,
freedom from orphan processes, and the extent of
rollback. These approaches fall into two broad cate-
gories: checkpointing protocols and log-based recov-
ery protocols.
Checkpointing protocols require the processes to take
periodic checkpoints with varying degrees of coordi-
nation. At one end of the spectrum, coordinated
checkpointing requires the processes to coordinate
their checkpoints to form global consistent system
states. Coordinated checkpointing generally simpli-
fies recovery and garbage collection, and yields good
performance in practice. At the other end of the
spectrum, uncoordinated checkpointing does not re-
quire the processes to coordinate their checkpoints,
but it suffers from potential domino effect, compli-
cates recovery, and still requires coordination to per-
form output commit or garbage collection. Between
these two ends are communication-induced check-
pointing schemes that depend on the communication
patterns of the applications to trigger checkpoints.
These schemes do not suffer from the domino effect
and do not require coordination. Recent studies,
however, have shown that the nondeterministic na-
ture of these protocols complicates garbage collection
and degrades performance.
Log-based rollback recovery is often a natural choice
for applications that frequently interact with the out-
side world. It allows efficient output commit, and
has three flavors, pessimistic, optimistic, and causal.
The simplicity of pessimistic logging makes it attrac-
tive for practical applications where a high failure-
free overhead is tolerable. This form of logging sim-
plifies recovery, output commit, and protects surviv-
ing processes from having to roll back. These advan-
tages have made pessimistic logging attractive in
commercial environment where simplicity and ro-
bustness are necessary. Causal logging reduces the
overhead while still preserving the properties of fast
output commit and orphan-free recovery. Alterna-
tively, optimistic logging reduces the overhead fur-

 - 28 -

ther at the expense of complicating recovery and in-
creasing the extent of rollback upon a failure.

ACKNOWLEDGMENTS The authors wish to
express their sincere thanks to Pi-Yu Chung, Om

Damani, W. Kent Fuchs, Yennun Huang, Chandra
Kintala, Andy Lowry, Keith Marzullo, James Plank,
Fred Schneider and Paulo Verissimo for valuable
discussions, encouragement and comments.

REFERENCES

ALVISI, L. 1996. Understanding the message logging

paradigm for masking process crashes.
Ph.D. Thesis, Cornell University, Depart-
ment of Computer Science.

ALVISI, L. AND MARZULLO, K. 1998. Message log-
ging: pessimistic, optimistic, causal and op-
timal. IEEE Transactions on Software Engi-
neering 24, 2, 149-159.

ALVISI, L., ELNOZAHY, E.N., RAO, S., HUSAIN, S.A.
and MEL, A.D. 1999. An analysis of com-
munication-induced checkpointing. In Di-
gest of Papers, FTCS-29, The Twenty Nineth
Annual International Symposium on Fault-
Tolerant Computing (Madison, Wisconsin),
242-249.

APPEL, A.W. 1989. A runtime system. Technical Re-
port CS-TR220-89, Department of Com-
puter Science, Princeton University.

BABAOGLU, O. AND JOY, W. 1981. Converting a
swap-based system to do paging in an archi-
tecture lacking page-reference bits. In Pro-
ceedings of the Eighth ACM Symposium on
Operating Systems Principles, 78-86.

BALDONI, R., QUAGLIA, F. AND CICIANI, B. 1998. A
VP-accordant checkpointing protocol pre-
venting useless checkpoints. In Proceedings,
Seventeenth Symposium on Reliable Distrib-
uted Systems, 61-67.

BANÂTRE, J.P., BANÂTRE, M. AND MULLER, G. 1988.
Ensuring data security and integrity with a
fast stable storage. In Proceedings of The
Fourth Conference on Data Engineering,
285-293.

BARTLETT, J.F. 1981. A Non Stop Kernel. In Pro-
ceedings of the Eighth ACM Symposium on
Operating Systems Principles, 22-29.

BEGUELIN, A., SELIGMAN, E. AND STEPHAN, P. 1997.
Application-level fault tolerance in hetero-
geneous networks of workstations. Journal
of Parallel and Distributed Computing 43,
2, 147-155.

BHARGAVA, B. AND LIAN, S.R. 1988. Independent
checkpointing and concurrent rollback for
recovery - An optimistic approach. In Pro-
ceedings, Seventh Symposium on Reliable
Distributed Systems, 3-12.

BHARGAVA, B., LIAN, S.R. AND LEU, P.J. 1990. Ex-
perimental evaluation of concurrent check-
pointing and rollback-recovery algorithms.
In Proceedings of the Sixth International
Conference on Data Engineering, 182-189.

BORG, A., BLAU, W., GRAETSCH, W., HERMANN, F.
AND OBERLE, W. 1989. Fault tolerance under
UNIX. ACM Transactions on Computing
Systems 7, 1, 1-24.

BRESSOUD, T.C. AND SCHNEIDER, F.B. 1995. Hyper-
visor-based fault tolerance. In Proceedings
of the Fifteenth ACM Symposium on Operat-
ing Systems Principles, 1-11.

BRIATICO, D., CIUFFOLETTI, A. AND SIMONCINI, L.
1984. A distributed domino-effect free re-
covery algorithm. In IEEE International
Symposium on Reliability, Distributed Soft-
ware, and Databases, 207-215.

CHANDY, M. AND RAMAMOORTHY, C.V. 1972. Roll-
back and recovery strategies for computer
programs. IEEE Transactions on Computers
21, 6, 546-556.

CHANDY, M. AND LAMPORT, L. 1985. Distributed
snapshots: Determining global states of dis-
tributed systems. ACM Transactions on
Computing Systems 31, 1, 63-75.

CRISTIAN, F. AND JAHANIAN, F. 1991. A timestamp-
based checkpointing protocol for long-lived
distributed computations. In Proceedings,
Tenth Symposium on Reliable Distributed
Systems, 12-20.

ELNOZAHY, E.N. 1993. Manetho: Fault tolerance in
distributed systems using rollback-recovery
and process replication. Ph.D. Thesis, Rice
University, Department of Computer Sci-
ence.

ELNOZAHY, E.N. 1998. How safe is probabilistic
checkpointing? In Digest of Papers, FTCS-
28, the Twenty Eight Annual International
Symposium on Fault-Tolerant Computing,
358-363.

ELNOZAHY, E.N. AND ZWAENEPOEL, W. 1994. On the
use and implementing of message logging.
In Digest of Papers, FTCS-24, The Twenty
Fourth International Symposium on Fault-
Tolerant Computing, 298-307.

 - 29 -

ELNOZAHY, E.N., JOHNSON, D.B. AND ZWAENEPOEL,
W. 1992. The performance of consistent
checkpointing. In Proceedings, Eleventh
Symposium on Reliable Distributed Systems,
39-47.

FELDMAN, S.I. AND BROWN, C.B. 1989. Igor: A sys-
tem for program debugging via reversible
execution. ACM SIGPLAN Notices, Work-
shop on Parallel and Distributed Debugging
24, 1, 112-123.

GOLDBERG, A., GOPAL, A., LI, K., STROM, R. AND
BACON, D. 1990. Transparent recovery of
Mach applications. In Usenix Mach Work-
shop Proceedings, 169-184.

HÉLARY, J.M., MOSTEFAOUI, A. AND RAYNAL, M.
1997a. Virtual precedence in asynchronous
systems: concepts and applications. In Pro-
ceedings of the 11th workshop on distributed
algorithms, WDAG'97.

HÉLARY, J.M., MOSTEFAOUI, A., NETZER, R.H. AND
RAYNAL, M. 1997b. Preventing useless
checkpoints in distributed computations. In
Proceedings, Sixteenth Symposium on Reli-
able Distributed Systems, 183-190.

HUANG, Y. AND KINTALA, C. 1993. Software imple-
mented fault tolerance: Technologies and
experience. In Digest of Papers, FTCS-23,
the Twenty Third Annual International Sym-
posium on Fault-Tolerant Computing, 2-9.

HUANG, Y. AND WANG, Y.-M. 1995. Why optimistic
message logging has not been used in tele-
communication systems. In Digest of Pa-
pers, FTCS-25, the Twenty Fifth Annual In-
ternational Symposium on Fault-Tolerant
Computing, 459-463.

JOHNSON, D.B. 1989. Distributed system fault toler-
ance using message logging and checkpoint-
ing. Ph.D. Thesis, Rice University, Depart-
ment of Computer Science.

JOHNSON, D.B. AND ZWAENEPOEL, W. 1987. Sender-
based message logging. In Digest of Papers,
FTCS-17, The Seventeenth Annual Interna-
tional Symposium on Fault-Tolerant Com-
puting, 14-19.

JOHNSON, D.B. AND ZWAENEPOEL, W. 1990. Recov-
ery in distributed systems using optimistic
message logging and checkpointing. Journal
of Algorithms 11, 3, 462-491.

JUANG, T.T.-Y. AND VENKATESAN, S. 1991. Crash
recovery with little overhead. In Proceed-
ings, The 11th International Conference on
Distributed Computing Systems, 454-461.

KOO, R. AND TOUEG, S. 1987. Checkpointing and
rollback-recovery for distributed systems.
IEEE Transactions on Software Engineering
13, 1, 23-31.

LAI, T.H. AND YANG, T.H. 1987. On distributed snap-
shots. Information Processing Letters 25,
153-158.

LAMPORT, L. 1978. Time, clocks, and the ordering of
events in a distributed system. Communica-
tions of the ACM 21, 7, 588-565.

LAMPSON, B.W. AND STURGIS, H.E. 1979. Crash re-
covery in a distributed data storage system.
Technical Report, Xerox Palo Alto Research
Center.

LI, C.C. AND FUCHS, W.K. 1990. CATCH: Compiler-
assisted techniques for checkpointing. In
Digest of Papers, FTCS-20, The Twentieth
Annual International Symposium on Fault-
Tolerant Computing, 74-81.

MELLOR-CRUMMEY, J. AND LEBLANC, T. 1989. A
software instruction counter. In Proceedings
of the Third International Conference on
Architectural Support for Programming
Languages and Operating Systems, 78-86.

MORIN, C. AND PUAUT, T. 1997. A survey of recover-
able distributed shared memory systems.
IEEE Transactions on Parallel and Distrib-
uted Systems 8, 9, 959-969.

MULLER, G., HUE, M. AND PEYROUZ, N. 1994. Per-
formance of consistent checkpointing in a
modular operating system: Results of the
FTM experiment. In Lecture Notes in Com-
puter Science: Dependable Computing,
EDDC-1, 491-508.

NAM, H.-C., KIM, J., HONG, S.J. AND LEE, S. 1997.
Probabilistic checkpointing. In Digest of
Papers, FTCS-27, The Twenty Seventh An-
nual International Symposium on Fault-
Tolerant Computing, 48-57.

NETZER, R.H. AND XU, J. 1995. Necessary and suffi-
cient conditions for consistent global snap-
shots. IEEE Transactions on Parallel and
Distributed Systems 6, 2, 165-169.

PAUSCH, R. 1988. Adding input and output to the
transactional model. Ph.D. Thesis, Carnegie
Mellon University, Department of Computer
Science.

PLANK, J.S. 1993. Efficient checkpointing on MIMD
architectures. Ph.D. Thesis, Princeton Uni-
versity, Department of Computer Science.

PLANK, J.S. AND LI, K. 1994. Faster checkpointing
with N+1 parity. In Digest of Papers, FTCS-
24, The Twenty Fourth Annual International
Symposium on Fault-Tolerant Computing,
288-297.

PLANK, J.S., XU, J. AND NETZER, R.H. 1995a. Com-
pressed differences: An algorithm for fast
incremental checkpointing. Technical Re-
port CS-95-302, University of Tennessee at
Knoxville.

 - 30 -

PLANK, J.S., BECK, M., KINGSLEY, G. AND LI, K.
1995b. Libckpt: Transparent checkpointing
under UNIX. In Proceedings of the USENIX
Winter 1995 Technical Conference, 213-
223.

PRAKASH, R. AND SINGHAL, M. 1996. Low-cost
checkpointing and failure recovery in mo-
bile computing systems. IEEE Transactions
on Parallel and Distributed Systems 7, 10,
1035-1048.

RANDELL, B. 1975. System structure for software
fault tolerance. IEEE Transactions on Soft-
ware Engineering 1, 2, 220-232.

RAO, S., ALVISI, L. AND VIN, H.M. 1998. The cost of
recovery in message logging protocols. In
Proceedings, Seventeenth Symposium on Re-
liable Distributed Systems, 10-18.

RUFFIN, M. 1992. KITLOG: A generic logging ser-
vice. In Proceedings, Eleventh Symposium
on Reliable Distributed Systems, 139-148.

RUSSELL, D.L. 1980. State restoration in systems of
communicating processes. IEEE Transac-
tions on Software Engineering 6, 2, 183-
194.

SCHLICHTING, R.D. AND SCHNEIDER, F.B. 1983. Fail-
stop processors: An approach to designing
fault-tolerant computing systems. ACM
Transactions on Computing Systems 1, 3,
222-238.

SILVA, L.M. 1997. Checkpointing mechanisms for
scientific parallel applications. Ph.D. The-
sis, University of Coimbra, Department of
Computer Science.

SISTLA, A. AND WELCH, J. 1989. Efficient distributed
recovery using message logging. In Pro-
ceedings of the 8th Annual ACM Symposium
on Principles of Distributed Computing
(PODC), 223-238.

SLYE, J.H. AND ELNOZAHY, E.N. 1998. Support for
software interrupts in log-based rollback-
recovery. IEEE Transactions on Computers
47, 10, 1113-1123.

SMITH, S.W. AND JOHNSON, D.B. 1996. Minimizing
timestamp size for completely asynchronous
optimistic recovery with minimal rollback.
In Proceedings, the Fifteenth Symposium on
Reliable Distributed Systems, 66-75.

STROM, R. AND YEMINI, S. 1985. Optimistic recovery
in distributed systems. ACM Transactions
on Computing Systems 3, 3, 204-226.

TAMIR, Y. AND SEQUIN, C.H. 1984. Error recovery in
multicomputers using global checkpoints. In
Proceedings of the International Conference
on Parallel Processing, 32-41.

TONG, Z., KAIN, R.Y. AND TSAI, W.T. 1992. Roll-
back-recovery in distributed systems using
loosely synchronized clocks. IEEE Transac-
tions on Parallel and Distributed Systems 3,
2, 246-251.

WANG, Y.-M. 1993. Space reclamation for uncoor-
dinated checkpointing in message-passing
systems. Ph.D. Thesis, University of Illinois,
Department of Computer Science.

WANG, Y.-M. 1997. Consistent global checkpoints
that contain a set of local checkpoints. IEEE
Transactions on Computers 46, 4, 456-468.

WANG, Y.-M., CHUNG, P.Y. AND FUCHS, W.K.
1995a. Tight upper bound on useful distrib-
uted system checkpoints. Technical Report,
University of Illinois.

WANG, Y.-M., CHUNG, P.Y., LIN, I.J. AND FUCHS,
W.K. 1995b. Checkpoint space reclamation
for uncoordinated checkpointing in mes-
sage-passing systems. IEEE Transactions on
Parallel and Distributed Systems 6, 5, 546-
554.

 - 31 -

BIBLIOGRAPHY

ACHARYA, A. AND BADRINATH, B.R. 1992. Re-

cording distributed snapshots based on
causal order of message delivery. In-
formation Processing Letters 44, 6.

ACHARYA, A. AND BADRINATH, B.R. 1994. Check-
pointing distributed applications on
mobile computers. In Proceedings of
the Third International Conference on
Parallel and Distributed Information
Systems.

AHAMAD, M. AND LIN, L. 1989. Using check-
points to localize the effects of faults in
distributed systems. In Proceedings,
Eighth Symposium on Reliable Distrib-
uted Systems, 2-11.

AHUJA, M. 1989. Repeated global snapshots in
asynchronous distributed systems.
Technical Report OSU-CISRC-8/89
TR40, The Ohio State University.

ALGUDADY, M.S. AND DAS, C.R. 1991. A cache-
based checkpointing scheme for MIN-
based multiprocessors. In Proceedings
of the International Conference on Par-
allel Processing, 497-500.

ALVISI, L. AND MARZULLO, K. 1995. Message
logging: Pessimistic, optimistic and
causal. In Proceedings of the IEEE In-
ternational Conference on Distributed
Computing Systems (Vancouver, Can-
ada).

ALVISI, L. AND MARZULLO, K. 1995. Deriving
optimal checkpointing protocols for dis-
tributed shared memory architectures.
In Proceedings of the 1995 ACM SI-
GACT-SIGOPS Symposium on Princi-
ples of Distributed Computing (PODC)
(Ottawa, Canada).

ALVISI, L. AND MARZULLO, K. 1996. Tradeoffs in
implementing causal message logging
protocols. In Proceedings of the 1996
ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing
(PODC), 58-67.

ALVISI, L., HOPPE, B. AND MARZULLO, K. 1993.
Nonblocking and orphan-free message
logging protocols. In Digest of Papers,
FTCS-23, The Twenty Third Annual In-
ternational Symposium on Fault-
Tolerant Computing (Toulouse,
France), 145-154.

ALVISI, L., RAO, S. AND VIN, H.M. 1998. Low-
overhead protocols for fault-tolerant file
sharing. In Proceedings of the IEEE 18th

International Conference on Distributed
Computing Systems, 452-461.

ALVISI, L., BHATIA, K. AND MARZULLO, K. 2000.
Tracking causality in causal message
logging protocols. Technical Report,
The University of Texas at Austin.

ALVISI, L., BRESSOUD, T.C., EL-KHASHAB, A.,
MARZULLO, K. AND ZAGORODNOV, D.
2001. Wrapping server-side TCP to
mask connection failures. In InfoComm.

ANYANWU, J.A. 1985. A reliable stable storage
system for UNIX. Software--Practice
and Experience 15, 10, 973-900.

ARTSY, Y. AND FINKEL, R. 1989. Designing a
process migration facility: The Char-
lotte experience. IEEE Computer, 47-
56.

ATTIG, N. AND SANDER, V. 1993. Automatic
checkpointing of NQS batch jobs on
CRAY UNICOS. In Proceedings of the
Cray User Group Meeting.

BABAOGLU, O. 1990. Fault-tolerant computing
based on Mach. In Proceedings of the
USENIX Mach Symposium, 186-199.

BABAOGLU, O. AND MARZULLO, K. 1993. Consis-
tent global states of distributed systems:
Fundamental concepts and mechanisms.
In MULLENDER, S. ed. Distributed Sys-
tems, Addison-Wesley, 55-96.

BACON, D. 1991. Transparent recovery in distrib-
uted systems. Operating Systems Re-
view, 91-94.

BACON, D. 1991. File system measurements and
their application to the design of effi-
cient operation logging algorithms. In
Proceedings, Tenth Symposium on Reli-
able Distributed Systems, 21-30.

BALDONI, R., QUAGLIA, F. AND FORNARA, P. 1997.
An index-based checkpointing algo-
rithm for autonomous distributed sys-
tems. In Proceedings, Sixteenth Sympo-
sium on Reliable Distributed Systems,
27-34.

BALDONI, R., HÉLARY, J.-M., MOSTEFAOUI, A. AND
RAYNAL, M. 1997. A communication-
induced checkpointing protocol that en-
sures rollback-dependency trackability.
In Digest of Papers, (FTCS-27), The
Twenty Seventh Annual International
Symposium on Fault-Tolerant Comput-
ing (Seattle), 68-77.

BALDONI, R., HÉLARY, J.-M., MOSTEFAOUI, A. AND
RAYNAL, M. 1997. Adaptive checkpoint-
ing in message passing distributed sys-
tems. International Journal of Systems
Science 28, 11, 1145-1161.

 - 32 -

BALDONI, R., HÉLARY, J.-M., MOSTEFAOUI, A. AND
RAYNAL, M. 1997. Adaptive checkpoint-
ing in message passing distributed sys-
tems. International Journal of Systems
Science 28, 11, 1145-1161.

BANÂTRE, J.P., BANÂTRE, M. AND MULLER, G.
1989. Architecture of fault-tolerant mul-
tiprocessor workstations. In Proceed-
ings of the Workshop on Workstation
Operating Systems, 20-24.

BANÂTRE, M., HENG, P., MULLER, G. AND RO-

CHARD, B. 1991. How to design reliable
servers using fault-tolerant micro-kernel
mechanisms. In Proceedings of the
USENIX Mach Symposium, 223-231.

BANÂTRE, M., GEFFLAUT, A., JOUBERT, P., LEE, P.
AND MORIN, C. 1993. An architecture for
tolerating processor failures in shared-
memory multiprocessors. Technical Re-
port No. 707-93, IRISA.

BARIGAZZI, G. AND STRIGINI, L. 1983. Application-
transparent setting of recovery points.
In Digest of Papers, FTCS-13, The
Thirteenth Annual International Sympo-
sium on Fault-Tolerant Computing, 48-
55.

BECK, M., PLANK, J.S. AND KINGSLEY, G. 1994.
Compiler-assisted checkpointing. Tech-
nical Report CS-94-269, University of
Tennessee at Knoxville, Department of
Computer Science.

BEEDUBAIL, G., KARMARKAR, A., GURIJALA, A.,
MARTI, W. AND POOCH, U. 1995. An al-
gorithm for supporting fault-tolerant ob-
jects in distributed object oriented oper-
ating systems. In Proceedings of the
Fourth International Workshop on Ob-
ject-Orientation in Operating Systems
(IWOOOS'95), 142-148.

BHATIA, K., MARZULLO, K. AND ALVISI, L. 1998.
The relative overhead of piggybacking
in causal message logging protocols. In
Proceedings, Seventeenth Symposium
on Reliable Distributed Systems, 348-
353.

BIEKER, B., DEONINCK, G., MAEHLE, E. AND
VOUNCKX, J. 1994. Reconfiguration and
checkpointing in massively parallel sys-
tems. In Proceedings of the 1st Euro-
pean Dependant Computing Conference
(EDCC-1), 353-370.

BORG, A., BAUMBACH, J. AND GLAZER, S. 1983. A
message system supporting fault toler-
ance. In Proceedings of the 9th ACM
Symposium on Operating System Prin-
ciples, 90-99.

BOWEN, N.S. AND PRADHAN, D.K. 1991. Survey of
checkpoint and rollback recovery tech-
niques. Technical Report TR-91-CSE-
17, Department of Electrical and Com-
puter Engineering, Univ. of Mass.

BOWEN, N.S. AND PRADHAN, D.K. 1992. Virtual
checkpoints: Architecture and perform-
ance. IEEE Transactions on Computers
41, 5, 516-525.

BOWEN, N.S. AND PRADHAN, D.K. 1993. Proces-
sor- and memory-based checkpoint and
rollback recovery. IEEE Computer 26,
2, 22-32.

CABILLIC, G., MULLER, G. AND PUAUT, I. 1995.
The performance of consistent check-
pointing in distributed shared memory
systems. In Proceedings, Fourteenth
Symposium on Reliable Distributed Sys-
tems.

CAMPOS, A.E. AND CASTILLO, M.A. 1996. Check-
pointing through garbage collection.
Technical Report, Escuela de Ingeniería
Pontificia Universidad Católica de
Chile, Departamento de Ciencia de la
Computación.

CAO, J. 1991. On correctness of distributed roll-
back recovery. In Proceedings of the
14th Australia Computer Science Con-
ference, 39.31-39.10.

CAO, J. 1992. Efficient synchronous checkpoint-
ing in distributed systems. In Proceed-
ings of the 15th Australia Computer
Science Conference, 165-179.

CAO, J. AND WANG, K.C. 1991. Efficient synchro-
nous checkpointing in distributed sys-
tems. Technical Report 91/6, James
Cook University of North Queensland,
Department of Computer Science.

CAO, J. AND WANG, K.C. 1992. An abstract model
of rollback recovery control in distrib-
uted systems. Operating Systems Re-
view, 62-76.

CAO, G. AND SINGHAL, M. 1998. On the impossi-
bility of min-process non-blocking
checkpointing and an efficient check-
pointing algorithm for mobile comput-
ing systems. In Proceedings.1998 In-
ternational Conference on Parallel
Processing, 37-44.

CAO, G. AND SINGHAL, M. 1998. Low-cost check-
pointing with mutable checkpoints in
mobile computing systems. In Proceed-
ings of the 18th International Confer-
ence on Distributed Computing, 464-
471.

 - 33 -

CARGILL, T. AND LOCANTHI, B. 1987. Cheap
hardware support for software debug-
ging and profiling. In Proceedings of
the 2nd Symposium on Architectural
Support for Programming Languages
and Operating Systems, 82-83.

CARTER, J.B., COX, A., DWARKADAS, S., ELNO-

ZAHY, E.N., JOHNSON, D.B., KELEHER, P.,
RODRIGUES, S., YU, W. AND ZWAENEPOEL,
W. 1993. Network multicomputing us-
ing recoverable distributed shared mem-
ory. In Proceedings of COMPCON'93.

CASAS, J., CLARK, D., GALBIATI, P. AND KONURU,
R. 1995. MIST: PVM with transparent
migration and checkpointing. Technical
Report, Oregon Graduate Institute of
Science and Technology, Department of
Computer Science.

CHEN, R. AND NG, T.P. 1990. Building a fault-
tolerant system based on Mach. In Pro-
ceedings of the USENIX Mach Work-
shop, 157-168.

CHEN, R. AND NG, T.P. 1992. Microkernel sup-
port for checkpointing. In Open Forum.

CHIU, G.-M. AND YOUNG, C.-R. 1996. Efficient
rollback-recovery technique in distrib-
uted computing systems. IEEE Transac-
tions on Parallel and Distributed Sys-
tems 7, 6.

CHIUEH, T. 1992. Polar: A storage architecture
for fast checkpointing. In Proceedings
of the 1992 International Conference on
Parallel and Distributed Systems, 251-
258.

CHIUEH, T.-C. AND DENG, P. 1996. Evaluation of
checkpoint mechanisms for massively
parallel machines. In Digest of Papers,
FTCS-26, The Twenty-Sixth Annual In-
ternational Symposium on Fault-
Tolerant Computing, 370-379.

CHOY, M., LEONG, H. AND WONG, M.H. 1995. On
distributed object checkpointing and re-
covery. In Proceedings of the 1995
ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing
(PODC).

CHUNG, K.-S., KIM, K.-B., HWANG, C.-S., SHON,
J.G. AND YU, H.-C. 1997. Hybrid
checkpointing protocol based on selec-
tive sender-based message logging. In
Proceedings of the 1997 International
Conference on Parallel and Distributed
Systems, 788-793.

CLEMATIS, A. 1994. Fault-tolerant programming
for network based parallel computing.

Microprocessing and Microprogram-
ming 40, 765-768.

CLEMATIS, A., DODERO, G. AND GIANUZZI, V.
1992. Process checkpointing primitives
for fault tolerance: Definitions and ex-
amples. Microprocessors and Microsys-
tems 16, 1, 15-23.

CUMMINGS, D. AND ALKALAJ, L. 1994. Check-
point/rollback in a distributed system
using coarse-grained dataflow. In Di-
gest of Papers, FTCS-24, The Twenty
Fourth Annual International Sympo-
sium on Fault-Tolerant Computing,
424-433.

DAMANI, O.P. AND GARG, V.K. 1996. How to
recover efficiently and asynchronously
when optimism fails. In Proceedings of
the 16th International Conference on
Distributed Computing, 108-115.

DECONINCK, G. AND LAUWEREINS, R. 1997. User-
triggered checkpointing: system-
independent and scalable application
recovery. In Proceedings Second IEEE
Symposium on Computer and Commu-
nications, 418-423.

DECONINCK, G., VOUNCKX, J., LAUWEREINS, R. AND
PEPERSTRAETE, J.A. 1993. Survey of
backward error recovery techniques for
multicomputers based on checkpointing
and rollback. In IASTED International
Conference on Modeling and Simula-
tion, 262-265.

DECONINCK, G., VOUNCKX, J., LAUWEREINS, R. AND
PEPERSTRAETE, J. 1998. Survey of back-
ward error recovery techniques for mul-
ticomputers based on checkpointing and
rollback. International Journal of Mod-
eling and Simulation 18, 1, 66-71.

DI, Z. 1987. Eliminating domino effect in back-
ward error recovery in distributed sys-
tems. In Proceedings of the 2nd Inter-
national Conference on Computers and
Applications, 243-248.

DIETER, W. AND LUMPP JR., J. 1999. A user-level
checkpointing library for POSIX
threads programs. In Digest of Papers,
FTCS-29, The Twenty Ninth Annual In-
ternational Symposium on Fault-
Tolerant Computing, 224-227.

DUDA, A. 1983. The effects of checkpointing on
program execution time. Information
Processing Letters 16, 221-229.

ECUYER, P.L. AND MALEFANT, J. 1988. Computing
optimal checkpointing strategies for
rollback and recovery systems. IEEE

 - 34 -

Transactions on Computers 37, 491-
496.

ELLENBERGER, E.L. 1995. Transparent process
rollback recovery: Some new tech-
niques and a portable implementation.
Technical Report, Texas A&M Univer-
sity, Department of Computer Science.

ELLIS, B. 1985. A stable storage package. In Pro-
ceedings of the USENIX Summer Tech-
nical Conference, 209-212.

ELNOZAHY, E.N. 1990. Efficient fault-tolerance
support for interactive distributed ap-
plications. Technical Report TR90-120,
Rice University, Department of Com-
puter Science.

ELNOZAHY, E.N. 1994. Fault tolerance for clusters
of workstations. In BANÂTRE, M. AND
LEE, P. eds. Hardware and software ar-
chitectures for fault tolerance, Springer
Verlag.

ELNOZAHY, E.N. 1995. On the relevance of com-
munication costs of rollback-recovery
protocols. In Proceedings of the 1995
ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing
(PODC).

ELNOZAHY, E.N. AND ZWAENEPOEL, W. 1992.
Manetho, transparent rollback-recovery
with low overhead, limited rollback and
fast output commit. IEEE Transactions
on Computers, Special Issue on Fault-
Tolerant Computing 41, 5, 526-531.

ELNOZAHY, E.N. AND ZWAENEPOEL, W. 1992. Rep-
licated distributed processes in
Manetho. In Digest of Papers, FTCS-
22, The Twenty Second Annual Interna-
tional Symposium on Fault-Tolerant
Computing, 18-27.

ELNOZAHY, E.N. AND ZWAENEPOEL, W. 1992. An
integrated approach to fault tolerance.
In Proceedings of the Second Workshop
on Management of Replicated Data, 82-
85.

FIDGE, C.J. 1988. Timestamps in message-
passing systems that preserve the partial
ordering. In Proceedings of the 11th
Australian Computer Science Confer-
ence, 55-66.

FISCHER, M.J., GRIFFETH, N.D. AND LYNCH, N.A.
1982. Global states of a distributed sys-
tem. IEEE Transactions on Software
Engineering SE-8, 3, 198-202.

FRAZIER, T.M. AND TAMIR, Y. 1989. Application-
transparent error-recovery techniques
for multicomputers. In Proceedings of
The Fourth Conferences on Hyper-

cubes, Concurrent computers, and Ap-
plications, 103-108.

GAIT, J. 1990. A checkpointing page store for
write-once optical disk. IEEE Transac-
tions on Computers 39, 1, 2--9.

GARG, S. AND WONG, K.F. 1993. Improving the
speed of a distributed checkpointing al-
gorithm. In Proceedings of the 6th In-
ternational Conference on Parallel and
Distributed Computing Systems.

GELENBE, E. 1979. On the optimum checkpoint-
ing interval. Journal of the ACM 2, 259-
270.

GELENBE, E. AND DEROCHETTE, D. 1978. Perform-
ance of rollback-recovery systems un-
der intermittent failures. Communica-
tions of the ACM 21, 6, 493-499.

GOLDING III, R. AND SINGHAL, M. 1993. Using
logging and asynchronous checkpoint-
ing to implement recoverable distrib-
uted shared memory. In Proceedings,
Twelfth Symposium on Reliable Dis-
tributed Systems, 58-67.

GREGORY, S.T. AND KNIGHT, J.C. 1989. On the
provision of backward error recovery in
production programming languages. In
Digest of Papers, FTCS-19, The Nine-
teenth Annual International Symposium
on Fault-Tolerant Computing, 506-511.

GROSELJ, B. 1993. Bounded and minimum global
snapshots. IEEE Parallel and Distrib-
uted Technology 1, 4.

HADZILACOS, V. 1982. An algorithm for minimiz-
ing rollback cost. In Proceedings of the
ACM SIGMOD Symposium on Princi-
ples of Database Systems, 93-97.

HÉLARY, J.M. 1989. Observing global states of
asynchronous distributed applications.
Lecture Notes in Computer Science 392,
124-135.

HÉLARY, J.M., MOSTEFAOUI, A. AND RAYNAL, M.
1998. Communication-induced deter-
mination of consistent snapshots. In Di-
gest of Papers, FTCS-28, The Twenty
Eighth Annual International Symposium
on Fault-Tolerant Computing, 208-217.

HÉLARY, J.M., MOSTEFAOUI, A. AND RAYNAL, M.
1999. Communication-induced deter-
mination of consistent snapshots. IEEE
Transactions on Parallel and Distrib-
uted Systems 10, 9, 865-877.

HEWITT, C.E. 1980. Checkpoint and recovery in
ACTOR systems. Technical Report,
MIT, Artificial Intelligence Laboratory.

HIGAKI, H. AND TAKIZAWA, M. 1998. Checkpoint-
recovery protocol for reliable mobile

 - 35 -

systems. In Proceedings, Seventeenth
Symposium on Reliable Distributed Sys-
tems, 93-99.

HIGAKI, H., SHIMA, K., TACHIKAWA, T. AND TAKI-

ZAWA, M. 1997. Checkpoint and roll-
back in asynchronous distributed sys-
tems. In Proceedings IEEE INFOCOM
'97.Sixteenth Annual Joint Conference
of the IEEE Computer and Communica-
tions Societies, 998-1005.

ISRAEL, S. AND MORRIS, D. 1989. A non-intrusive
checkpointing protocol. In Proceedings
of the Phoenix Conference on Commu-
nications and Computers, 413-421.

JALOTE, P. 1989. Fault-tolerant processes. Dis-
tributed Computing 3, 187-195.

JANAKIRAMAN, G. AND TAMIR, Y. 1994. Coordi-
nated checkpointing-rollback error re-
covery for distributed shared memory
multicomputers. In Proceedings, Thir-
teenth Symposium on Reliable Distrib-
uted Systems, 42-51.

JANSSENS, B. AND FUCHS, W.K. 1993. Relaxing
consistency in recoverable distributed
shared memory. In Digest of Papers,
FTCS-23, The Twenty Third Annual In-
ternational Symposium on Fault-
Tolerant Computing, 155-163.

JANSSENS, B. AND FUCHS, W.K. 1994. Reducing
interprocessor dependence in recover-
able distributed shared memory. In Pro-
ceedings, Thirteenth Symposium on Re-
liable Distributed Systems, 34-41.

JASPER, D.P. 1969. A discussion of checkpoint
restart. Software Age.

JEONG, K. AND SHASHA, D. 1994. Plinda 2.0: A
transactional/checkpoint approach to
fault-tolerant Linda. In Proceedings,
Thirteenth Symposium on Reliable Dis-
tributed Systems, 96-105.

JOHNSON, D.B. 1993. Efficient transparent opti-
mistic rollback recovery for distributed
application programs. In Proceedings,
Twelfth Symposium on Reliable Dis-
tributed Systems, 86-95.

JOHNSON, D.B. AND ZWAENEPOEL, W. 1988. Re-
covery in distributed systems using op-
timistic message logging and check-
pointing. In Proceedings of the Sixth
Annual ACM Symposium on Principles
of Distributed Computing (PODC-88),
171-181.

JOHNSON, D.B. AND ZWAENEPOEL, W. 1990. Out-
put-driven distributed optimistic mes-
sage logging and checkpointing. Tech-

nical Report TR90-118, Rice Univer-
sity, Department of Computer Science.

JOHNSON, D.B. AND ZWAENEPOEL, W. 1991.
Transparent optimistic rollback recov-
ery. Operating Systems Review, 99-102.

KAASHOEK, M.F., MICHIELS, R., BAL, H.E. AND
TANENBAUM, A.S. 1992. Transparent
fault-tolerance in parallel Orca pro-
grams. In Proceedings of the Sympo-
sium on Experiences with Distributed
and Multiprocessor Systems III, 297-
312.

KAMBHALTA, S. AND WALPOLE, J. 1990. Recovery
with limited replay: Fault-tolerant proc-
esses in Linda. In Proceedings of the
2nd IEEE Symposium on Parallel and
Distributed Processing, 715-718.

KANT, K. 1978. A model for error recovery with
global checkpointing. Information Sci-
ences 30, 58-68.

KANTHADAI, S. AND WELCH, J.L. 1996. Implemen-
tation of recoverable distributed shared
memory by logging writes. In Proceed-
ings of the 16th International Confer-
ence on Distributed Computing Systems
(ICDCS-16), 27-30.

KERMARREK, A.M., CABILLIC, G., GEFFLAUT, A.,
MORIN, C. AND PUAUT, I. 1995. A recov-
erable distributed shared memory inte-
grating coherence and recoverability. In
Digest of Papers, FTCS-25, The Twenty
Fifth Annual International Symposium
on Fault-Tolerant Computing, 289-298.

KIM, K.H. 1982. Approaches to mechanization of
the conversation scheme based on
monitors. IEEE Transactions on Soft-
ware Engineering SE-8, 3, 189-197.

KIM, K.H. 1988. Programmer-transparent coor-
dination of recovering concurrent proc-
esses: Philosophy and rules for efficient
implementation. IEEE Transactions on
Software Engineering SE-14, 6, 189-
197.

KIM, K.H. AND YOU, J.H. 1990. A highly decen-
tralized implementation model for the
Programmer-Transparent Coordination
(PTC) scheme for cooperative recovery.
In Digest of Papers, FTCS-20, The
Twentieth Annual International Sympo-
sium on Fault-Tolerant Computing,
282-289.

KIM, J.L. AND PARK, T. 1993. An efficient proto-
col for checkpointing recovery in dis-
tributed systems. IEEE Transactions on
Parallel and Distributed Systems 4, 8,
955-960.

 - 36 -

KIM, K.H., YOU, J.H. AND ABOUELNAGA, A. 1986.
A scheme for coordinated execution of
independently designed recoverable dis-
tributed processes. In Digest of Papers,
FTCS-16, The Sixteenth Annual Inter-
national Symposium on Fault-Tolerant
Computing, 130-135.

KIM, Y., PLANK, J.S. AND DONGARRA, J.J. 1996.
Fault-tolerant matrix operations using
checksum and reverse computation. In
Proceedings of 6th Symposium on the
Frontiers of Massively Parallel Compu-
tation.

KIM, Y., PLANK, J.S. AND DONGARRA, J.J. 1997.
Fault-tolerant matrix operations for
network of workstations using multiple
checkpointing. In Proceedings of HPC
Asia'97, High Performance Computing
in the Information Superhighway, 460-
465.

KINGSBURY, B.A. AND KLINE, J.T. 1989. Job and
process recovery in a UNIX-based op-
erating system. In Usenix Association
Winter Conference Proceedings, 355-
364.

KLAIBER, A.C. AND LEVY, H.M. 1993. Crash re-
covery for scientific applications. In
Proceedings of the International Con-
ference on Parallel and Distributed Sys-
tems.

KRISHNA, P., VAIDYA, N.T. AND PRADHAN, D.K.
Recovery in distributed mobile envi-
ronments. In Proceedings of the IEEE
Workshop on Advances in Parallel and
Distributed Systems (Princeton, New
Jersey), 83-88.

KRISHNA, C.M., KANG, G. AND LEE, Y. 1984. Op-
timization criteria for checkpoint
placement. Communications of the
ACM 27, 10, 1008-1012.

KRISHNA, P., VAIDYA, N.T. AND PRADHAN, D.K.
1994. Recovery in multicomputers with
finite error detection latency. In Pro-
ceedings of the 23rd International Con-
ference on Parallel Processing.

LAI, T.H. AND YANG, T.H. 1987. On distributed
snapshots. Information Processing Let-
ters 25, 153-158.

LAMPORT, L. 1984. Using time instead of timeout
for fault-tolerant distributed systems.
ACM Transactions on Programming
Languages and Systems 6, 2, 254-280.

LANDAU, C.R. 1992. The checkpoint mechanism
in KeyKOS. In Proceedings of the 2nd
International Workshop on Object Ori-
entation in Operating Systems.

LEE, B., PARK, T., YEOM, H. AND CHO, Y. 1998.
An efficient algorithm for causal mes-
sage logging. In Proceedings, Seven-
teenth Symposium on Reliable Distrib-
uted Systems, 19-25.

LEON, J., FICHER, A.L. AND STEENKISTE, P. 1993.
Fail-safe PVM: A portable package for
distributed programming with transpar-
ent recovery. Technical Report CMU-
CS-93-124, Carnegie Mellon Univer-
sity, School of Computer Science.

LEONG, H.V. AND AGRAWAL, D. 1994. Using mes-
sage semantics to reduce rollback in op-
timistic message logging recovery
schemes. In Proceedings of the 13th
IEEE International Conference on Dis-
tributed Computing Systems (ICDCS-
13), 227-234.

LEU, P.-J. AND BHARGAVA, B. 1988. Concurrent
robust checkpointing and recovery in
distributed systems. In Proceedings of
the International Conference on Data
Engineering, 154-163.

LI, W.-J. AND TSAY, J.-J. 1997. Checkpointing
message-passing interface (MPI) paral-
lel programs. In Proceedings of the Pa-
cific Rim International Symposium on
Fault-Tolerant Systems, 147-152.

LI, K., NAUGHTON, J.F. AND PLANK, J.S. 1990.
Real-time concurrent checkpoint for
parallel programs. In Proceedings of the
1990 Conference on the Principles and
Practice of Parallel Programming, 79-
88.

LI, K., NAUGHTON, J.F. AND PLANK, J.S. 1991.
Checkpointing multicomputer applica-
tions. In Proceedings, Tenth Symposium
on Reliable Distributed Systems, 1--10.

LI, K., NAUGHTON, J.F. AND PLANK, J.S. 1992. An
efficient checkpointing method for mul-
ticomputers with wormhole routing. In-
ternational Journal of Parallel Pro-
gramming 20, 3, 159-180.

LIN, L. AND AHAMAD, M. 1990. Checkpointing
and rollback-recovery in distributed ob-
ject based systems. In Digest of Papers,
FTCS-20, The Twentieth Annual Inter-
national Symposium on Fault-Tolerant
Computing, 97-104.

LIN, T.-H. AND SHIN, K.G. 1998. Damage as-
sessment for optimal rollback-recovery.
IEEE Transactions on Computers 47, 5,
603-613.

LITZKOW, M. AND SOLOMON, M. 1992. Supporting
checkpointing and process migration
outside the UNIX kernel. In Usenix

 - 37 -

Winter 1992 Technical Conference,
283-290.

LONG, J., FUCHS, W.K. AND ABRAHAM, J.A. 1990.
Forward recovery using checkpointing
in parallel systems. In Proceedings of
the 19th International Conference on
Parallel Processing, 272-275.

LONG, J., FUCHS, W.K. AND ABRAHAM, J.A. 1991.
Implementing forward recovery using
checkpointing in distributed systems. In
Proceedings of the International Con-
ference on Dependable Computing for
Critical Applications (DCCA), 20-27.

LONG, J., FUCHS, W.K. AND ABRAHAM, J.A. 1992.
Compiler-assisted static checkpoint in-
sertion. In Digest of Papers, FTCS-22,
The Twenty Second Annual Interna-
tional Symposium on Fault-Tolerant
Computing, 58-65.

LOWRY, A., RUSSELL, J.R. AND GOLDBERG, A.P.
1991. Optimistic failure recovery for
very large networks. In Proceedings,
Tenth Symposium on Reliable Distrib-
uted Systems, 66-75.

MANDELBERG, K.I. AND SUNDERAM, V.S. 1988.
Process migration in UNIX networks.
In Proceedings of the Usenix Winter
Technical Conference, 357-364.

MANIVANNAN, D. AND SINGHAL, M. 1996. A low-
overhead recovery technique using syn-
chronous checkpointing. In Proceedings
of the 16th International Conference on
Distributed Computing Systems
(ICDCS-16), 100-107.

MANIVANNAN, D., NETZER, R.H. AND SINGHAL, M.
1997. Finding consistent global check-
points in a distributed computation.
IEEE Transactions on Parallel & Dis-
tributed Systems 8, 6, 623-627.

MATTERN, F. 1988. Virtual time and global states
of distributed systems. In Proceedings
of the Workshop on Parallel and Dis-
tributed Algorithms, 215-226.

MCDERMID, J.A. 1982. Checkpointing and error
recovery in distributed systems. In Pro-
ceedings of the 2nd International Con-
ference on Distributed Computing Sys-
tems, 271-282.

MERLIN, P.M. AND RANDELL, B. 1978. State resto-
ration in distributed systems. In Digest
of Papers, FTCS-8, The Eighth Annual
International Symposium on Fault-
Tolerant Computing, 129-134.

MITCHELL, J.R. AND GARG, V.K. 1998. A non-
blocking recovery algorithm for causal
message logging. In Proceedings, Sev-

enteenth Symposium on Reliable Dis-
tributed Systems, 3--9.

MOSTEFAOUI, A. AND RAYNAL, M. 1996. Efficient
message logging for uncoordinated
checkpointing protocols. In Dependable
Computing-EDCC-2, the Second Euro-
pean Dependable Computing Confer-
ence Proceedings, 353-364.

MULLER, G., BANÂTRE, M., PEYROUZ, N. AND RO-
CHAT, B. 1996. Lessons from FTM: an
experiment in design and implementa-
tion of a low-cost fault-tolerant system.
IEEE Transactions on Reliability 45, 2,
332-340.

NETT, E., KROGER, R. AND KAISER, J. 1986. Im-
plementing a general error recovery
mechanism in a distributed operating
system. In Digest of Papers, FTCS-16,
The Sixteenth Annual International
Symposium on Fault-Tolerant Comput-
ing, 124-129.

NETZER, R.B. AND MILLER, B.P. 1992. Optimal
tracing and replay for debugging mes-
sage-passing parallel programs. In Pro-
ceedings of Supercomputing'92, 502-
511.

NETZER, R.B. AND XU, J. 1993. Adaptive message
logging for incremental program replay.
IEEE Parallel and Distributed Tech-
nology 1, 4, 32-39.

NETZER, R.B. AND WEAVER, M.H. 1994. Optimal
tracing and incremental reexecution for
Debugging Long-Running Programs. In
SIGPLAN '94: Conference on Pro-
gramming Language Design and Im-
plementation (PLDI), 313-325.

NETZER, R.B. AND XU, J. 1997. Replaying distrib-
uted programs without message log-
ging. In Proceedings of the Sixth IEEE
International Symposium on High Per-
formance Distributed Computing
(HPDC), 137-147.

NEVES, N. AND FUCHS, W.K. 1996. Using time to
improve the performance of coordinated
checkpointing. In Proceedings of the
IEEE International Computer Perform-
ance and Dependability Symposium,
IPDS'96, 282-291.

NEVES, N. AND FUCHS, W.K. 1997. Adaptive re-
covery for mobile environments. Com-
munications of ACM 40, 1, 68-74.

NEVES, N. AND FUCHS, W.K. 1998. RENEW: A
tool for fast and efficient implementa-
tion of checkpoint protocols. In Digest
of Papers, FTCS-28, The Twenty Eighth

 - 38 -

Annual International Symposium on
Fault-Tolerant Computing.

NEVES, N. AND FUCHS, W.K. 1998. Coordinated
checkpointing without direct coordina-
tion. In Proceedings of the IEEE Inter-
national Computer Performance and
Dependability Symposium (IPDS'98),
23-31.

NEVES, N., CASTRO, M. AND GUEDES, P. 1994. A
checkpoint protocol for an entry consis-
tent shared memory system. In Pro-
ceedings of the 1994 ACM SIGACT-
SIGOPS Symposium on Principles of
Distributed Computing (PODC).

NICOLA, V. 1995. Checkpointing and the model-
ing of program execution time. In LYU,
M. ed. Software Fault Tolerance.

PARK, T. AND YEOM, H.Y. 2000. An asynchro-
nous recovery scheme based on opti-
mistic message logging for mobile
computing systems. In Proceedings of
the 20th International Conference on
Distributed Computing Systems
(ICDCS-20), 436-443.

PETERSON, S.L. AND KEARNS, P. 1993. Rollback
based on vector time. In Proceedings,
Twelfth Symposium on Reliable Dis-
tributed Systems, 68-77.

PETERSON, L.L., BUCHHOLZ, N.C. AND SCHLICHT-

ING, R.D. 1989. Preserving and using
context information in interprocess
communication. ACM Transaction on
Computing Systems 7, 3, 217-246.

PLANK, J.S. 1996. Improving the performance of
coordinated checkpointers on networks
of workstations using RAID techniques.
In Proceedings, Fifteenth Symposium
on Reliable Distributed Systems, 76-85.

PLANK, J.S. AND ELWASIF, W.R. 1998. Experimen-
tal assessment of workstation failures
and their impact on checkpointing sys-
tems. In Digest of Papers, FTCS-28,
The Twenty Eighth Annual Interna-
tional Symposium on Fault-Tolerant
Computing, 48-57.

PLANK, J.S., BECK, M. AND KINGSLEY, G. 1995.
Compiler-assisted memory exclusion
for fast checkpointing. IEEE Technical
Committee on Operating Systems News-
letter, 62-67.

PLANK, J.S., KIM, Y. AND DONGARRA, J.J. 1995.
Algorithm-based diskless checkpointing
for fault-tolerant matrix computations.
In Digest of Papers, FTCS-25, The
Twenty Fifth Annual International Sym-

posium on Fault-Tolerant Computing,
351-360.

PLANK, J.S., YOUNGBAE, K. AND DONGARA, J.J.
1997. Fault-tolerant matrix operations
for networks of workstations using disk-
less checkpointing. Journal of Parallel
& Distributed Computing 43, 2, 125-
138.

PLANK, J.S., LI, K. AND PUENING, M.A. 1998.
Diskless checkpointing. IEEE Transac-
tions on Parallel & Distributed Systems
9, 10, 972-986.

PLANK, J.S., CHEN, Y., LI, K., BECK, M. AND
KINGSLEY, G. 1996. Memory exclusion:
Optimizing the performance of check-
pointing systems. Technical Report UT-
CS-96-335, University of Tennessee at
Knoxville, Department of Computer
Science.

POWELL, M. AND PRESOTTO, D. 1993. Publishing:
A reliable broadcast communication
mechanism. In Proceedings of the 9th
ACM Symposium on Operating System
Principles, 100-109.

PRADHAN, D.K. AND VAIDYA, N. 1992. Roll-
forward checkpointing scheme: Concur-
rent retry with non-dedicated spares. In
Proceedings of the IEEE Workshop on
Fault-Tolerant Parallel and Distributed
Systems, 166-174.

PRADHAN, D.K. AND VAIDYA, N. 1994. Roll-
forward and rollback-recovery: Per-
formance-reliability trade-off. In Digest
of Papers, FTCS-24, The Twenty Fourth
Annual International Symposium on
Fault-Tolerant Computing, 186-195.

RAMAMURTHY, B., UPADHYAYA, S. AND IYER, R.K.
1997. An object-oriented testbed for the
evaluation of checkpointing and recov-
ery systems. In Digest of Papers, FTCS-
27, The Twenty Seventh Annual Interna-
tional Symposium on Fault-Tolerant
Computing, 194-203.

RAMAMURTHY, B., UPADHYAYA, S. AND BHARGAVA,
J. 1998. Design and analysis of a hard-
ware-assisted checkpointing and recov-
ery scheme for distributed applications.
In Proceedings, Seventeenth Symposium
on Reliable Distributed Systems, 84-90.

RAMANATHAN, P. AND SHIN, K.G. 1988. Check-
pointing and rollback recovery in a dis-
tributed system using common time
base. In Proceedings, Seventh Sympo-
sium on Reliable Distributed Systems
(SRDS-7), 13-21.

 - 39 -

RAMANATHAN, P. AND SHIN, K.G. 1993. Use of
common time base for checkpointing
and rollback recovery in a distributed
system. IEEE Transactions on Software
Engineering SE-19, 6, 571-583.

RAMKUMAR, B. AND STRUMPEN, V. 1997. Portable
checkpointing for heterogeneous archi-
tectures. In Digest of Papers, FTCS-22,
The Twenty Second Annual Interna-
tional Symposium on Fault-Tolerant
Computing, 58-67.

RANGARAJAN, S., GARG, S. AND HUANG, Y. 1998.
Checkpoints-on-demand with active
replication. In Proceedings, Seventeenth
Symposium on Reliable Distributed Sys-
tems, 75-83.

RAO, S., ALVISI, L. AND VIN, H. 1999. Egida: An
extensible toolkit for low-overhead fault
tolerance. In Digest of Papers, FTCS-
29, The Twenty Ninth Annual Interna-
tional Symposium on Fault-Tolerant
Computing.

RUSSINOVICH, M. AND COGSWELL, B. 1996. Replay
for concurrent non-deterministic shared
memory applications. In Proceedings of
the 1996 ACM SIGPLAN Conference on
Programming Language Design and
Implementation, 258-266.

RUSSINOVICH, M., SEGALL, Z. AND SIEWIOREK, D.P.
1993. Application transparent fault
management in fault-tolerant Mach. In
Digest of Papers, FTCS-23, The Twenty
Third Annual International Symposium
on Fault-Tolerant Computing, 10--19.

SCHWARZ, R. AND MATTERN, F. 1994. Detecting
causal relationships in distributed com-
putations: in search of the Holy Grail.
Distributed Computing 7, 149-174.

SELIGMAN, E. AND BEGUELIN, A. 1994. High-level
fault tolerance in distributed programs.
Technical Report CMU-CS-94-223,
Carnegie Mellon University, School of
Computer Science.

SHARMA, D.D. AND PRADHAN, D.K. 1994. An effi-
cient coordinated checkpointing scheme
for multicomputers. In Proceedings of
the IEEE Workshop on Fault-Tolerant
Parallel and Distributed Systems.

SILVA, L.M. AND SILVA, J.G. 1992. Global check-
pointing for distributed programs. In
Proceedings, Eleventh Symposium on
Reliable Distributed Systems, 155-162.

SILVA, L.M. AND SILVA, J.G. 1994. Integrating a
checkpointing and rollback-recovery al-
gorithm with a causal order protocol. In
Proceedings of the 12th Brazilian Sym-

posium on Computer Networks, 523-
540.

SILVA, L.M. AND SILVA, J.G. 1994. Checkpointing
pipeline applications. In Proceedings of
the 1994 World Transputer Congress,
497-512.

SILVA, L.M. AND SILVA, J.G. 1994. On the opti-
mum recovery of distributed programs.
In Proceedings of the 20th EUROMI-
CRO Conference, 704-711.

SILVA, L.M. AND SILVA, J.G. 1996. A checkpoint-
ing facility for a heterogeneous DSM
system. In Proceedings of the 9th Con-
ference on Parallel and Distributed
Computing Systems, 554-559.

SILVA, L.M. AND SILVA, J.G. 1998. Avoiding
checkpoint contamination in parallel
system. In Digest of Papers, FTCS-28,
The Twenty Eighth Annual Interna-
tional Symposium on Fault-Tolerant
Computing, 364-369.

SILVA, L.M. AND SILVA, J.G. 1998. An experi-
mental study about diskless checkpoint-
ing. In Proceedings of the 24th EU-
ROMICRO Conference, 395-402.

SILVA, L.M. AND SILVA, J.G. 1998. System-level
versus user-defined checkpointing. In
Proceedings, Seventeenth Symposium
on Reliable Distributed Systems, 68-74.

SILVA, L.M., VEER, B. AND SILVA, J.G. 1994.
Checkpointing SPMD applications on
transputer networks. In Proceedings of
the Scalable High-Performance Com-
puting Conference, SHPCC94, 694-701.

SILVA, L.M., SILVA, J.G. AND CHAPPLE, S. 1996.
Portable transparent checkpointing for
distributed shared memory. In Proceed-
ings of the Fifth IEEE International
Symposium on High Performance Dis-
tributed Computing, HPDC-5, 422-431.

SILVA, L.M., TAVORA, V.N. AND SILVA, J.G. 1996.
Mechanisms of file-checkpointing for
UNIX applications. In Proceedings of
the 14th IASTED Conference on Ap-
plied Informatics, 358-361.

SILVA, L.M., SILVA, J.G., CHAPPLE, S. AND
CLARKE, L. 1995. Portable checkpoint-
ing and recovery. In Proceedings of the
4th International Symposium on High-
Performance Distributed Computing,
HPDC-4, 188-195.

SINHA, A., DAS, P.K. AND CHAUDHURI, A. 1992.
Checkpointing and recovery in a pipe-
line of transputers. In Proceedings of
Euromicro'92, 141-148.

 - 40 -

SLYE, J.H. 1996. Adding support for software
interrupts in log-based rollback-
recovery protocols. Master Thesis, Car-
negie Mellon University, Department of
Computer Science.

SLYE, J.H. AND ELNOZAHY, E.N. 1996. Supporting
nondeterministic execution in fault-
tolerant systems. In Digest of Papers,
FTCS-26, The Twenty-Sixth Annual In-
ternational Symposium on Fault-
Tolerant Computing.

SMITH, J.M. AND IOANNIDIS, J. 1989. Implement-
ing remote fork() with check-
point/restart. IEEE Technical Commit-
tee on Operating Systems Newsletter,
12--16.

SOLIMAN, H.M. AND ELMAGHRABY, A.S. 1998. An
analytical model for hybrid checkpoint-
ing in time warp distributed simulation.
IEEE Transactions on Parallel & Dis-
tributed Systems 9, 10, 947-951.

SPEZIALETTI, M. AND KEARNS, P. 1986. Efficient
distributed snapshots. In Proceedings of
the International Conference on Dis-
tributed Computing Systems, 382-388.

SSU, K.-F. AND FUCHS, W.K. 1998. PREACHES-
portable recovery and checkpointing in
heterogeneous systems. In Digest of
Papers, FTCS-28, The Twenty Eighth
Annual International Symposium on
Fault-Tolerant Computing, 38-47.

STAINOV, R. 1991. An asynchronous checkpoint-
ing service. Microprocessing and
Microprogramming 31, 117-120.

STAKNIS, M. 1989. Sheaved memory: Architec-
tural support for state saving and resto-
ration in paged systems. In Proceedings
of the 3rd Symposium on Architectural
Support for Programming Languages
and Operating Systems, 96-102.

STELLNER, G. 1994. Consistent checkpoints of
PVM applications. In Proceedings of
the First European PVM User Group
Meeting.

STELLNER, G. 1996. CoCheck: Checkpointing and
process migration for MPI. In Proceed-
ings of the 10th International Parallel
Processing Symposium.

STROM, R.E., BACON, D.F. AND YEMINI, S.A.
1988. Volatile logging in n-fault-
tolerant distributed systems. In Digest
of Papers, FTCS-18, The Eighteenth
Annual International Symposium on
Fault-Tolerant Computing, 44-49.

STROM, R.E., YEMINI, S.A. AND BACON, D.F.
1988. A recoverable object store. In

Proceedings of the Hawaii Interna-
tional Conference on System Sciences,
II-215-II221.

SURI, G., JANSSENS, B. AND FUCHS, W.K. 1995.
Reduced overhead logging for rollback
recovery in distributed shared memory.
In Digest of Papers, FTCS-25, The
Twenty Fifth Annual International Sym-
posium on Fault-Tolerant Computing,
279-288.

SURI, G., HUANG, Y., WANG, Y.M., FUCHS, W.K.
AND KINTALA, C. 1995. An implementa-
tion and performance measurement of
the progressive retry technique. In Pro-
ceedings of the IEEE International
Computer Performance and Depend-
ability Symposium, 41-48.

TAM, V.-O. AND HSU, M. 1990. Fast recovery in
distributed shared virtual memory sys-
tems. In Proceedings of the 10th Inter-
national Conference on Distributed
Computing Systems, 38-45.

TAMIR, Y. AND GAFNI, E. 1987. A software-based
hardware fault tolerance scheme for
multicomputers. In Proceedings of the
International Conference on Parallel
Processing, 117-120.

TAMIR, Y. AND FRAZIER, T.M. 1989. Application-
transparent process-level error recovery
for multicomputers. In Proceedings of
the Hawaii International Conferences
on System Sciences-22, 296-305.

TAMIR, Y. AND FRAZIER, T.M. 1991. Error-
recovery in multicomputers using asyn-
chronous coordinated checkpointing.
Technical Report CSD-010066, Univer-
sity of California.

TANAKA, K. AND TAKIZAWA, M. 1996. Distributed
checkpointing based on influential mes-
sages. In Proceedings of the 1996 Inter-
national Conference on Parallel and
Distributed Systems, 440-447.

TANAKA, K., HIGAKI, H. AND TAKIZAWA, M. 1998.
Object-based checkpoints in distributed
systems. Computer Systems Science &
Engineering 13, 3, 179-185.

TAYLOR, D.J. AND WRIGHT, M.L. 1986. Backward
error recovery in a UNIX environment.
In Digest of Papers, FTCS-16, The Six-
teenth Annual International Symposium
on Fault-Tolerant Computing, 118-123.

THANAWASTIAN, S., PAMULA, R.S. AND VAROL,
Y.L. 1986. Evaluation of global check-
point rollback strategies for error recov-
ery in concurrent processing systems. In
Digest of Papers, FTCS-16, The Six-

 - 41 -

teenth Annual International Symposium
on Fault-Tolerant Computing, 246-251.

TONG, Z., KAIN, R.Y. AND TSAI, W.T. 1989. A
lower overhead checkpointing and roll-
back recovery scheme for distributed
systems. In Proceedings, Eighth Sym-
posium on Reliable Distributed Systems,
12--20.

TSAI, J., KUO, S.Y. AND WANG, Y.-M. 1998.
Theoretical analysis for communica-
tion-induced checkpointing protocols
with rollback-dependency trackability.
IEEE Transactions on Parallel & Dis-
tributed Systems 9, 10, 963-971.

TSURUOKA, K., KANEKO, A. AND NISHIHARA, Y.
1981. Dynamic recovery schemes for
distributed processes. In Proceedings of
the IEEE 2nd Symp. on Reliability in
Distributed Software and Database Sys-
tems, 124-130.

TULLMANN, P., LEPREAU, J., FORD, B. AND HIBLER,
M. 1996. User-level checkpointing
through exportable kernel state. In Pro-
ceedings of the Fifth International
Workshop on Object-Orientation in Op-
erating Systems, 85-88.

VAIDYA, N.H. 1993. Dynamic cluster-based re-
covery: Pessimistic and optimistic
schemes. Technical Report 93-027,
Texas A&M University, Department of
Computer Science.

VAIDYA, N.H. 1995. A case of two-level distrib-
uted recovery schemes. In Proceedings
of the International Conference on
Measurement and Modeling of Com-
puter Systems (SIGMETRICS'95), 64-
73.

VAIDYA, N.H. 1996. On staggered checkpointing.
In Proceedings of the Eighth IEEE
Symposium on Parallel and Distributed
Processing, 572-580.

VENKATESAN, S. 1989. Message-optimal incre-
mental snapshots. In Proceedings of the
International Conference on Distributed
Computing Systems, 53-60.

VENKATESAN, S. 1997. Optimistic crash recovery
without changing application messages.
IEEE Transactions on Parallel and Dis-
tributed Systems 8, 3, 263-271.

VENKATESH, K., RADAKRISHNAN, T. AND LI, H.L.
1987. Optimal checkpointing and local
recording for domino-free rollback-
recovery. Information Processing Let-
ters 25, 295-303.

WANG, Y.M. 1993. Reducing message logging
overhead for log-based recovery. In

Proceedings of the IEEE International
Symposium on Circuits and Systems,
1925-1928.

WANG, Y.M. 1995. The maximum and minimum
consistent global checkpoints and their
applications. In Proceedings, Four-
teenth Symposium on Reliable Distrib-
uted Systems.

WANG, Y.-M. AND FUCHS, W.K. 1992. Optimistic
message logging for independent
checkpointing in message passing sys-
tems. In Proceedings, Eleventh Sympo-
sium on Reliable Distributed Systems,
147-154.

WANG, Y.M. AND FUCHS, K. 1992. Scheduling
message processing for reducing roll-
back propagation. In Digest of Papers,
FTCS-22, The Twenty Second Annual
International Symposium on Fault-
Tolerant Computing, 204-211.

WANG, Y.M. AND FUCHS, K. 1993. Lazy check-
point coordination for bounding roll-
back propagation. In Proceedings,
Twelfth Symposium on Reliable Dis-
tributed Systems, 78-85.

WANG, Y.M. AND FUCHS, W.K. 1994. Optimal
message log reclamation for uncoordi-
nated checkpointing. In Proceedings of
the IEEE Workshop on Fault-Tolerant
Parallel and Distributed Systems.

WANG, Y.M., HUANG, Y. AND FUCHS, W.K. 1993.
Progressive retry for software error re-
covery in distributed systems. In Digest
of Papers, FTCS-23, The Twenty Third
Annual International Symposium on
Fault-Tolerant Computing Systems,
138-144.

WANG, Y.M., LOWRY, A. AND FUCHS, W.K. 1994.
Consistent global checkpoints based on
direct dependency tracking. Information
Processing Letters 50, 4, 223-230.

WANG, Y.M., HUANG, Y. AND KINTALA, C. 1997.
Progressive retry for software failure
recovery in message passing applica-
tions. IEEE Transactions on Computers
46, 10, 1137-1141.

WANG, Y.M., DAMANI, O.P. AND GARG, V.K.
1997. Distributed recovery with K-
optimistic logging. In Proceedings of
the 17th International Conference on
Distributed Computing Systems, 60-67.

WANG, Y.M., CHUNG, E., HUANG, Y. AND ELNO-

ZAHY, E.N. 1997. Integrating check-
pointing with transaction processing. In
Digest of Papers, FTCS-27, The Twenty
Seventh Annual International Sympo-

 - 42 -

sium on Fault-Tolerant Computing,
304-308.

WANG, Y.M., HUANG, Y., VO, K.P., CHUNG, P.Y.
AND KINTALA, C. 1995. Checkpointing
and its applications. In Digest of Pa-
pers, FTCS-25, The Twenty Fifth An-
nual International Symposium on Fault-
Tolerant Computing, 22-31.

WEI, X. AND JU, J. 1998. A consistent check-
pointing algorithm with shorter freezing
time. Operating Systems Reviews 32, 4,
70-76.

WOJCIK, Z. AND WOJCIK, B.E. 1990. Fault-tolerant
distributed computing using atomic
send receive checkpoints. In Proceed-
ings of the 2nd IEEE Symposium on
Parallel and Distributed Processing,
215-222.

WONG, K.F. AND FRANKLIN, M. 1996. Checkpoint-
ing in distributed computing systems.
Journal of Parallel & Distributed Com-
puting, 67-75.

WOOD, W.G. 1981. A decentralized recovery
control protocol. In Digest of Papers,
FTCS-11, The Eleventh Annual Interna-
tional Symposium on Fault-Tolerant
Computing, 159-164.

WOOD, W.G. 1995. Recovery control of commu-
nicating processes in a distributed sys-
tem. In SHRIVASTAVA, S. K. ed. Reliable
Computing Systems, Springer Verlag.

WU, K.L. AND FUCHS, W.K. 1990. Recoverable
distributed shared virtual memory.
IEEE Transactions on Computers 39, 4,
460-469.

WYNER, D.S. 1972. A technique for optimizing
the performance of a checkpoint restart
system. In Proceedings of the Canadian
Computer Conference (Montreal), 201-
212.

XU, J. AND NETZER, R.H.B. 1993. Adaptive inde-
pendent checkpointing for reducing
rollback propagation. In Proceedings of
the 5th IEEE Symposium on Parallel
and Distributed Processing, 754-761.

XU, J., NETZER, R.B. AND MACKEY, M. 1995.
Sender-based message logging for re-
ducing rollback propagation. In Pro-
ceedings of the Seventh IEEE Sympo-
sium on Parallel and Distributed Proc-
essing, 602-609.

YOUNG, J.W. 1974. A first order approximation
to the optimum checkpoint interval.
Communications of the ACM 17, 9.

ZAMBONELLI, F. 1998. Distributed checkpoint
algorithms to avoid rollback propaga-
tion. In Proceedings of the 24th EU-
ROMICRO Conference, 403-410.

ZIV, A. AND BRUCK, J. 1994. Efficient check-
pointing over local area networks. In
Proceedings of the IEEE Workshop on
Fault-Tolerant Parallel and Distributed
Systems, 30-35.

ZIV, A. AND BRUCK, J. 1997. An on-line algorithm
for checkpoint placement. IEEE Trans-
actions on Computers 46, 9, 976-985.

ZWEIACKER, M. 1997. Fault-tolerant CORBA
using checkpointing and recovery.
Comtec 75, 8, 20-25

	I
	INTRODUCTION
	BACKGROUND AND DEFINITIONS
	System Model
	Consistent System States
	Interactions with the Outside World
	In-Transit Messages
	Logging Protocols
	Stable Storage
	Garbage Collection

	CHECKPOINT-BASED ROLLBACK RECOVERY
	Uncoordinated Checkpointing
	Overview
	Dependency Graphs and Recovery Line Calculation
	The Domino Effect

	Coordinated Checkpointing
	Overview
	Non-blocking Checkpoint Coordination
	Checkpointing with Synchronized Clocks
	Checkpointing and Communication Reliability
	Minimal Checkpoint Coordination

	Communication-induced Checkpointing
	Overview
	Model-based Protocols
	Index-based Protocols

	LOG-BASED ROLLBACK RECOVERY
	The No-Orphans Consistency Condition
	Pessimistic Logging
	Overview
	Techniques for Reducing Performance Overhead
	Relaxing Logging Atomicity

	Optimistic Logging
	Overview
	Synchronous vs. Asynchronous Recovery

	Causal Logging
	Overview
	Tracking Causality

	Comparison

	IMPLEMENTATION ISSUES
	Overview
	Checkpointing Implementation
	Concurrent Checkpointing
	Incremental Checkpointing
	System-level versus User-level Implementations
	Compiler Support
	Checkpoint Placement

	Checkpointing Protocols in Comparison
	Communication Protocols
	Location-Independent Identities and Redirection
	Reliable Channel Protocols

	Log-based Recovery
	Message Logging Overhead
	Combining Log-Based Recovery with Coordinated Checkpointing

	Stable Storage
	Support for Nondeterminism
	System Calls
	Asynchronous Signals

	Dependency Tracking
	Recovery
	Reinstating a Process in its Environment
	Behavior During Recovery

	Checkpointing and Mobility
	Rollback Recovery in Practice

	CONCLUDING REMARKS

