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VMware: binary translation

Hypervisor

VMM VMMVMM

Base Functionality (e.g. scheduling)
Enhanced

Functionality

References and Sources
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Binary Translation

Characteristics
Binary – input is machine-level code
Dynamic – occurs at runtime
On demand – code translated when needed for execution
System level – makes no assumption about guest code
Subsetting – translates from full instruction set to safe subset
Adaptive – adjust code based on guest behavior to achieve efficiency
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Binary Translation

TU:            translation unit (usually a basic block)
CCF:          compiled code fragment

:  continuation
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Eliminating faults/traps
Expensive traps/faults can be avoided
Example: Pentium privileged instruction 
(rdtsc)

Trap-and-emulate: 2030 cycles
Callout-and-emulate: 1254 cycles
In-TC emulation: 216 cycles

Process
Privileged instructions – eliminated 
by simple binary translation (BT)
Non-privileged instructions –
eliminated by adaptive BT

(a) detect a CCF containing an 
instruction that trap frequently
(b) generate a new translation of the 
CCF to avoid the trap (perhaps 
inserting a call-out to an interpreter), 
and patch the original translation to 
execute the new translation
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Memory resource management
VMM (meta-level) memory management 

Must identify both VM and pages within VM to replace
VMM replacement decisions may have unintended interactions 
with GuestOS page replacement policy
Worst-case scenario: double paging

Strategies
“ballooning” –

add memory demands on GuestOS so that the GuestOS decides which 
pages to replace
Also used in Xen

Eliminating duplicate pages – even identical pages across 
different GuestOSs.

VMM has sufficient perspective
Clear savings when running numerous copies of same GuestOS

Allocation algorithm
Balances memory utilization vs. performance isolation guarantees
“taxes” idle memory
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Ballooning

“balloon” – module inserted into GuestOS as 
pseudo-device driver or kernel service
Has no interface to GuestOS or applications
Has a private channel for communication to VMM
Polls VMM for current “balloon” size
Balloon holds number of “pinned” page frames 
equal to its current size
Inflating the balloon

Balloon requests additional “pinned” pages from GuestOS
Inflating the balloon causes GuestOS to select pages to be 
replaced using GuestOS page replacement policy
Balloon informs VMM of which physical page frames it has 
been allocated
VMM frees the machine page frames s corresponding to the 
physical page frames allocated to the balloon (thus freeing 
machine memory to allocate to other GuestOSs)

Deflating the balloon
VMM reclaims machine page frames
VMM communicates to balloon
Balloon unpins/ frees physical page frames corresponding to 
new machine page frames
GuestOS uses its page replacement policy to page in needed 
pages
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Content-based page sharing

A hash table contains entries for shared 
pages already marked “copy-on-write”
A key for a candidate page is generated 
from a hash value of the page’s contents
A full comparison is made between the 
candidate page and a page with a 
matching key value
Pages that match are shared – the page 
table entries for their VMMs point to the 
same machine page
If no match is found, a “hint” frame is 
added to the hash table for possible future 
matches
Writing to a shared page causes a page 
fault which causes a separate copy to be 
created for the writing GuestOS
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Page sharing performance

Identical Linux systems running same benchmark
“best case” scenario
Large fraction (67%) of memory sharable
Considerable amount and percent of memory reclaimed
Aggregate system throughput essentially unaffected 
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Measuring Cross-VM memory usage

Each GuestOS is given a number of shares, S, against the total available machine memory.
The shares-per-page represents the “price” that a GuestOS is willing to pay for a page of memory.
The price is determined as follows:

shares

price
page

allocation

fractional 
usageidle page 

cost

The idle page cost is k = 1/(1-τ) where 0 ≤ τ < 1 is the “tax rate” that defaults to 0.75
The fractional usage, f, is determined by sampling (what fraction of 100 randomly selected pages 
are accesses in each 30 second period) and smoothing (using three different weights)
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Memory tax experiment

Initially, VM1 and VM2 converge to same memory allocation with τ=0 (no idle 
memory tax) despite greater need for memory by VM2
When idle memory tax applied at default level (75%), VM1 relinquishes memory 
to VM2 which improves performance of VM2 by over 30%

VM1: idles

VM2: memory-intensive workload
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I/O

Note: refers to hosted (workstation) version, not 
ESX (server) version 
Startup

VmApp loads/executes as normal application
Uses VMDriver installed in Host OS to create 
VMmonitor
VMDriver facilitates transfer of control between 
host world and VMM world (“world switch”)

Overhead significant for devices with both low 
latency and high throughput demands (i.e., 
network devices)



CS 5204 – Fall, 2008

Virtualization

13

Performance
Systems become CPU bound before network link is saturated
Optimizations

Handling in the VMM operations to I/O ports that do not involve data transfer
Combine multiple send operations
Use shared memory bitvector to reduce cost of notifying completion of operation
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Hardware Support for Virtualization

Vanderpool Pacifica
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Intel/VT-X

Two forms of CPU operation
VMX root (VMM) and VMX non-root (Guest/VM)
Each has four protection levels (rings 0-3)
Each can run in separate address space

Transitions
VM exit: from VM to VMM
VM entry: from VMM to VM

VMCS control structure
Contains state for root and non-root
Defines processor behavior in non-root mode

Deprivileged non-root execution (defined in VMCS)
Separate controls for set of privileged instructions
Interrupt controls: a VM exit occurs

All interrupts 
When VM ready to receive interrupt
As defined by bitmap

VMCS

VM exit

saverestore

restore

VM enter

non-rootroot
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AMD
GuestOS and VMM execute in isolation
Transitions:

VMRUN: begins/resumes GuestOS
Hypervisor entered on execution of privileged instruction or 
protected register access

Virtual Machine Control Block (VMCB) stores GuestOS
state on transition
VMMCALL allows GuestOS to invoke hypervisor directly


