
Virtualization

Part 2 – VMware
Hardware Support

CS 5204 – Fall, 2008

Virtualization

2

VMware: binary translation

Hypervisor

VMM VMMVMM

Base Functionality (e.g. scheduling)
Enhanced

Functionality

References and Sources
Carl Waldspurger, “Memory Resource Mangement in VMware ESX Server” Proceedings, 5th Symposium on Operating
Systems Design and Implementation, Boston, Massachusetts, December 9-11, 2002, 14 pages.
Keith Adams, and Ole Agesen, “A Comparison of Software and Hardware Techniques for x86 Virtualization,”
Proceedings, ASPLOS’06, San Jose, California, October 21, 2006, 12 pages.

CS 5204 – Fall, 2008

Virtualization

3

Binary Translation

Characteristics
Binary – input is machine-level code
Dynamic – occurs at runtime
On demand – code translated when needed for execution
System level – makes no assumption about guest code
Subsetting – translates from full instruction set to safe subset
Adaptive – adjust code based on guest behavior to achieve efficiency

innocuousinnocuous

sensitive

IDENT(ical)

SIMULATE(d)

CS 5204 – Fall, 2008

Virtualization

4

Binary Translation

TU: translation unit (usually a basic block)
CCF: compiled code fragment

: continuation

TU
Binary Translator

Translation Cache

CCF

PC [x] [y]

([x], [y])

Hash Table

execute1

5

3

2 4

Running time

%
 tr

an
sl

at
io

n

Few cache hits

Working set captured

CS 5204 – Fall, 2008

Virtualization

5

Eliminating faults/traps
Expensive traps/faults can be avoided
Example: Pentium privileged instruction
(rdtsc)

Trap-and-emulate: 2030 cycles
Callout-and-emulate: 1254 cycles
In-TC emulation: 216 cycles

Process
Privileged instructions – eliminated
by simple binary translation (BT)
Non-privileged instructions –
eliminated by adaptive BT

(a) detect a CCF containing an
instruction that trap frequently
(b) generate a new translation of the
CCF to avoid the trap (perhaps
inserting a call-out to an interpreter),
and patch the original translation to
execute the new translation

CS 5204 – Fall, 2008

Virtualization

6

Memory resource management
VMM (meta-level) memory management

Must identify both VM and pages within VM to replace
VMM replacement decisions may have unintended interactions
with GuestOS page replacement policy
Worst-case scenario: double paging

Strategies
“ballooning” –

add memory demands on GuestOS so that the GuestOS decides which
pages to replace
Also used in Xen

Eliminating duplicate pages – even identical pages across
different GuestOSs.

VMM has sufficient perspective
Clear savings when running numerous copies of same GuestOS

Allocation algorithm
Balances memory utilization vs. performance isolation guarantees
“taxes” idle memory

CS 5204 – Fall, 2008

Virtualization

7

Ballooning

“balloon” – module inserted into GuestOS as
pseudo-device driver or kernel service
Has no interface to GuestOS or applications
Has a private channel for communication to VMM
Polls VMM for current “balloon” size
Balloon holds number of “pinned” page frames
equal to its current size
Inflating the balloon

Balloon requests additional “pinned” pages from GuestOS
Inflating the balloon causes GuestOS to select pages to be
replaced using GuestOS page replacement policy
Balloon informs VMM of which physical page frames it has
been allocated
VMM frees the machine page frames s corresponding to the
physical page frames allocated to the balloon (thus freeing
machine memory to allocate to other GuestOSs)

Deflating the balloon
VMM reclaims machine page frames
VMM communicates to balloon
Balloon unpins/ frees physical page frames corresponding to
new machine page frames
GuestOS uses its page replacement policy to page in needed
pages

CS 5204 – Fall, 2008

Virtualization

8

Content-based page sharing

A hash table contains entries for shared
pages already marked “copy-on-write”
A key for a candidate page is generated
from a hash value of the page’s contents
A full comparison is made between the
candidate page and a page with a
matching key value
Pages that match are shared – the page
table entries for their VMMs point to the
same machine page
If no match is found, a “hint” frame is
added to the hash table for possible future
matches
Writing to a shared page causes a page
fault which causes a separate copy to be
created for the writing GuestOS

CS 5204 – Fall, 2008

Virtualization

9

Page sharing performance

Identical Linux systems running same benchmark
“best case” scenario
Large fraction (67%) of memory sharable
Considerable amount and percent of memory reclaimed
Aggregate system throughput essentially unaffected

CS 5204 – Fall, 2008

Virtualization

10

Measuring Cross-VM memory usage

Each GuestOS is given a number of shares, S, against the total available machine memory.
The shares-per-page represents the “price” that a GuestOS is willing to pay for a page of memory.
The price is determined as follows:

shares

price
page

allocation

fractional
usageidle page

cost

The idle page cost is k = 1/(1-τ) where 0 ≤ τ < 1 is the “tax rate” that defaults to 0.75
The fractional usage, f, is determined by sampling (what fraction of 100 randomly selected pages
are accesses in each 30 second period) and smoothing (using three different weights)

CS 5204 – Fall, 2008

Virtualization

11

Memory tax experiment

Initially, VM1 and VM2 converge to same memory allocation with τ=0 (no idle
memory tax) despite greater need for memory by VM2
When idle memory tax applied at default level (75%), VM1 relinquishes memory
to VM2 which improves performance of VM2 by over 30%

VM1: idles

VM2: memory-intensive workload

CS 5204 – Fall, 2008

Virtualization

12

I/O

Note: refers to hosted (workstation) version, not
ESX (server) version
Startup

VmApp loads/executes as normal application
Uses VMDriver installed in Host OS to create
VMmonitor
VMDriver facilitates transfer of control between
host world and VMM world (“world switch”)

Overhead significant for devices with both low
latency and high throughput demands (i.e.,
network devices)

CS 5204 – Fall, 2008

Virtualization

13

Performance
Systems become CPU bound before network link is saturated
Optimizations

Handling in the VMM operations to I/O ports that do not involve data transfer
Combine multiple send operations
Use shared memory bitvector to reduce cost of notifying completion of operation

CS 5204 – Fall, 2008

Virtualization

14

Hardware Support for Virtualization

Vanderpool Pacifica

CS 5204 – Fall, 2008

Virtualization

15

Intel/VT-X

Two forms of CPU operation
VMX root (VMM) and VMX non-root (Guest/VM)
Each has four protection levels (rings 0-3)
Each can run in separate address space

Transitions
VM exit: from VM to VMM
VM entry: from VMM to VM

VMCS control structure
Contains state for root and non-root
Defines processor behavior in non-root mode

Deprivileged non-root execution (defined in VMCS)
Separate controls for set of privileged instructions
Interrupt controls: a VM exit occurs

All interrupts
When VM ready to receive interrupt
As defined by bitmap

VMCS

VM exit

saverestore

restore

VM enter

non-rootroot

CS 5204 – Fall, 2008

Virtualization

16

AMD
GuestOS and VMM execute in isolation
Transitions:

VMRUN: begins/resumes GuestOS
Hypervisor entered on execution of privileged instruction or
protected register access

Virtual Machine Control Block (VMCB) stores GuestOS
state on transition
VMMCALL allows GuestOS to invoke hypervisor directly

