
80 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

complex processor architectures. The
era did not stop because Moore’s Lawa
ended. Semiconductor technology is
still capable of doubling the transistors
on a chip every two years. However, this
flood of transistors now increases the
number of independent processors on
a chip, rather than making an individ-
ual processor run faster. The resulting
computer architecture, named Multi-
core, consists of several independent
processors (cores) on a chip that com-
municate through shared memory. To-
day, two-core chips are common and
four-core chips are coming to market,
and there is every reason to believe that
the number of cores will continue to
double for a number of generations.
On one hand, the good news is that the
peak performance of a Multicore com-
puter doubles each time the number
of cores doubles. On the other hand,
achieving this performance requires a
program execute in parallel and scale
as the number of processors increase.

Few programs today are written to
exploit parallelism effectively. In part,
most programmers did not have access
to parallel computers, which were lim-
ited to domains with large, naturally
parallel workloads, such as servers, or
huge computations, such as high-per-
formance computing. Because main-
stream programming was sequential
programming, most existing program-
ming languages, libraries, design pat-
terns, and training do not address the
challenges of parallelism program-
ming. Obviously, this situation must
change before programmers in general
will start writing parallel programs for
Multicore processors.

A primary challenge is to find bet-
ter abstractions for expressing paral-
lel computation and for writing paral-
lel programs. Parallel programming
encompasses all of the difficulties of
sequential programming, but also in-
troduces the hard problem of coordi-
nating interactions among concurrent-
ly executing tasks. Today, most parallel

a.	 The doubling every 18–24 months of the num-
ber of transistors fabricable on a chip.

As computers evolve, programming changes as
well. The past few years mark the start of a historic
transition from sequential to parallel computation
in the processors used in most personal, server,
and mobile computers. This shift marks the end of
a remarkable 30-year period in which advances in
semiconductor technology and computer architecture
improved the performance of sequential processors at
an annual rate of 40%–50%. This steady performance
increase benefited all software, and this progress was
a key factor driving the spread of software throughout
modern life.

This remarkable era stopped when practical limits
on the power dissipation of a chip ended the continual
increases in clock speed and limited instruction-level
parallelism diminished the benefit of increasingly

doi: 10.1145/1364782.1364800

Is TM the answer for improving
parallel programming?

by james larus and christos Kozyrakis

Transactional
Memory

JULY 2008 | vol. 51 | no. 7 | communications of the acm 81

programs employ low-level program-
ming constructs that are just a thin
veneer over the underlying hardware.
These constructs consist of threads,
which are an abstract processor, and
explicit synchronization (for example,
locks, semaphores, and monitors) to
coordinate thread execution. Consid-
erable experience has shown that par-
allel programs written with these con-
structs are difficult to design, program,
debug, maintain, and—to add insult to
injury—often do not perform well.

Transactional memory (TM)—pro-
posed by Lomet19 and first practically
implemented by Herlihy and Moss13—
is a new programming construct that
offers a higher-level abstraction for
writing parallel programs. In the past
few years, it has engendered consider-

able interest, as transactions have long
been used in databases to isolate con-
current activities. TM offers a mecha-
nism that allows portions of a program
to execute in isolation, without regard
to other, concurrently executing tasks.
A programmer can reason about the
correctness of code within a transac-
tion and need not worry about complex
interactions with other, concurrently ex-
ecuting parts of the program. TM offers
a promising, but as yet unproven mecha-
nism to improve parallel programming.

What is Transaction Memory?
A transaction is a form of program ex-
ecution borrowed from the database
community.8 Concurrent queries con-
flict when they read and write an item in
a database, and a conflict can produce

an erroneous result that could not arise
from a sequential execution of the que-
ries. Transactions ensure that all que-
ries produce the same result as if they
executed serially (a property known as
“serializability”). Decomposing the se-
mantics of a transaction yields four re-
quirements, usually called the “ACID”
properties—atomicity, consistency,
isola​tion, and durability.

TM provides lightweight transac-
tions for threads running in a shared
address space. TM ensures the atom-
icity and isolation of concurrently ex-
ecuting tasks. (In general, TM does not
provide consistency or durability.) Ato-
micity ensures program state changes
effected by code executing in a transac-
tion are indivisible from the perspec-
tive of other, concurrently executing I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

82 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

account only during their operation,
properly implementing Transfer re-
quires understanding and modifying
the class’s locking discipline by adding
a method to either lock all accounts
or lock a single account. The latter ap-
proach allows non-overlapping trans-
fers to execute concurrently, but intro-
duces the possibility of deadlock if a
transfer from account A to B overlaps
with a transfer from B to A.

TM allows the operations to be com-
posed directly. The Deposit and With-
draw operations each execute in a trans-
action, to protect their manipulations
of the underlying data. The Transfer
operation also executes in a transaction,
which subsumes the underlying opera-
tions into a single atomic action.

Limitations of Transactional Mem-
ory. Transactions by themselves cannot
replace all synchronization in a parallel
program.2 Beyond mutual exclusion,
synchronization is often used to coor-
dinate independent tasks, for example,
by ensuring that one task waits for an-
other to finish or by limiting the num-
ber of threads performing a task.

Transactions by themselves provide
little assistance in coordinating inde-
pendent tasks. For example, consider
a producer-consumer programming
relationship, in which one task writes
a value that another task reads. Trans-
actions can ensure the tasks’ shared
accesses do not interfere. However,
this pattern is expensive to imple-
ment with transactions, whose goal is
to shield a task from interactions with
other tasks. If the consumer transac-
tion finds the value is not available, it
can only abort and check for the value
later. Busy waiting by aborting is inef-
ficient since an aborted transaction
rolls back its entire computation. A
better solution is for the producer to
signal the consumer when the value
is ready. However, since a signal is
not visible in a transaction, many TM
systems provide a guard that prevents
a transaction from starting execution
until a predicate becomes true.

Haskell TM introduced the retry
and orElse constructs as a way for a
transaction to wait until an event oc-
curs and to sequence the execution of
two transactions.11 Executing a re-
try statement causes the surround-
ing transaction to abort. It does not
reexecute until a location it previously

transactions. In other words, although
the code in a transaction may modify
individual variables through a series
of assignments, another computation
can only observe the program state
immediately before or immediately af-
ter the transaction executes. Isolation
ensures that concurrently executing
tasks cannot affect the result of a trans-
action, so a transaction produces the
same answer as when no other task was
executing. Transactions provide a ba-
sis to construct parallel abstractions,
which are building blocks that can be
combined without knowledge of their
internal details, much as procedures
and objects provide composable ab-
stractions for sequential code.

TM Programming Model. A pro-
gramming model provides a rationale
for the design of programming lan-
guage constructs and guidance on how
to construct programs. Like many as-
pects of TM, its programming model is
still the subject of active investigation.

Most TM systems provide simple
atomic statements that execute a block
of code (and the routines it invokes) as
a transaction. An atomic block isolates
the code from concurrently executed
threads, but a block is not a replace-
ment for general synchronization
such as semaphores or condition vari-
ables.2 In particular, atomic blocks by
themselves do not provide a means to
coordinate code running on parallel
threads.

Automatic mutual exclusion (AME),
by contrast, turns the transactional
model “inside-out” by executing most
of a program in transactions.15 AME
supports asynchronous program-
ming, in which a function starts one
or more asynchronous computations
and later rendezvouses to retrieve
their results. This programming mod-
el is a common way to deal with un-
predictable latency in user-directed
and distributed systems. The atomic-
ity provided by transactions ensures
that an asynchronous computation,
which executes at an unpredictable
rate, does not interfere with other, si-
multaneously active computations.

Advantages of Transactional Mem-
ory. Parallel programming poses many
difficulties, but one of the most serious
challenges in writing correct code is
coordinating access to data shared by
several threads. Data races, deadlocks,

and poor scalability are consequences
of trying to ensure mutual exclusion
with too little or too much synchroni-
zation. TM offers a simpler alternative
to mutual exclusion by shifting the bur-
den of correct synchronization from
a programmer to the TM system.9 In
theory, a program’s author only needs
to identify a sequence of operations on
shared data that should appear to ex-
ecute atomically to other, concurrent
threads. Through the many mecha-
nisms discussed here, the TM system
then ensures this outcome.

Harris and Peyton-Jones11 argued
that, beyond providing a better pro-
gramming abstraction, transactions

also make synchronization compos-
able, which enables the construction
of concurrency programming abstrac-
tions. A programming abstraction is
composable if it can be correctly com-
bined with other abstractions without
needing to understand how the ab-
stractions operate.

Simple locking is not composable.
Consider, as an example, a class that
implements a collection of bank ac-
counts. The class provides thread-safe
Deposit and Withdraw operations
to add and remove money from a bank
account. Suppose that we want to com-
pose these operations into a thread-
safe Transfer operation, which
moves money from one account to an-
other. The intermediate state, in which
money was debited but not credited,
should not be visible to other threads
(that is, the transfer should be atomic).
Since Deposit and Withdraw lock an I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

review articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 83

read changes value, which avoids
the crudest form of busy waiting in
which a transaction repeatedly reads
an unchanging value and aborts. The
orElse construct composes two
transactions by starting the second
one only if the first transaction fails to
commit. This pattern—which arises
in situations as simple as checking for
a value in a cache and recomputing
it if necessary—is difficult to express
otherwise, since a transaction’s fail-
ure and reexecution is transparent to
other computation.

We still do not understand the
trade-offs and programming pragmat-
ics of the TM programming model.
For example, the semantics of nested
transactions is an area of active debate.
Suppose that code in a transaction O
invokes a library routine, which starts
its own transaction I. Should the two
transactions interact in any way, and
if so, what are the implications for the
TM implementation and for program-
mers building modular software and
libraries? Consider when transaction
I commits. Should its results be visible
only to code in transaction O (closed
nesting) or also to other threads (open
nesting)? If the latter, what happens
if transaction O aborts? Similarly, if
transaction I aborts, should it termi-
nate transaction O as well, or should
the inner transaction be rolled back
and restarted independently?

Finally, the performance of TM is
not yet good enough for widespread
use. Software TM systems (STM) im-
pose considerable overhead costs on
code running in a transaction, which
saps the performance advantages of
parallel computers. Hardware TM sys-
tems (HTM) can lower the overhead,
but they are only starting to become
commercially available, and most
HTM systems fall back on software for
large transactions. Better implemen-
tation techniques are likely to improve
both types of systems and are an area
of active research.

Transactional Memory
Implementation
TM can be implemented entirely in
software (STM) or with specialized
hardware support (HTM). Many differ-
ent implementation techniques have
been proposed, and this paper, rather
than surveying the literature, focuses

original, underlying object while the
first transaction is still running, which
causes a logical conflict that the STM
system detects and resolves by abort-
ing one of the two transactions.

An STM system can detect a con-
flict when a transaction first accesses
an object (early detection) or when the
transaction attempts to commit (late
detection). Both approaches yield the
same results, but may perform differ-
ently and, unfortunately, neither is
consistently superior. Early detection
prevents a transaction from perform-
ing unnecessary computation that a
subsequent abort will discard. Late de-
tection can avoid unnecessary aborts,
as when the conflicting transaction it-
self aborts because of a conflict with a
third transaction.

Another complication is a conflict
between a transaction that only reads
an object and another that modifies
the object. Since reads are more com-
mon than writes, STM systems only
clone objects that are modified. To
reduce overhead, a transaction tracks
the objects it reads and, before it com-
mits, ensures that no other transaction
modified them.

DSTM is a library. An object ma-
nipulated in a transaction is first reg-
istered with the DSTM system, which
returns a TMObject wrapper for the
object (as illustrated in the accompa-
nying figure). Subsequently, the code
executing the transaction can open
the TMObject for read-only or read-
write access, which returns a pointer
to the original or cloned object, re-
spectively. Either way, the transaction
manipulates the object directly, with-
out further synchronization.

 A transaction ends when the pro-
gram attempts to commit the transac-
tion’s changes. If the transaction suc-
cessfully commits, the DSTM system
atomically replaces, for all modified
objects, the old object in a Locator
structure with its modified version.

A transaction T can commit success-
fully if it meets two conditions. The
first is that no concurrently executing
transaction modified an object read by
T. DSTM tracks the objects a transac-
tion opened for reading and validates
the entries in this read set when the
transaction attempts to commit. An
object in the read set is valid if its ver-
sion is unchanged since transaction

on a few key techniques. A more com-
plete overview is available elsewhere.18

Most TM systems of both types im-
plement optimistic concurrency con-
trol in which a transaction executes
under the assumption that it will not
conflict with another transaction. If
two transactions conflict, because one
modifies a location read or modified
by the other, the TM system aborts
one of the transactions by reversing
(rolling back) its side effects. The al-
ternative pessimistic concurrency
control requires a transaction to es-
tablish exclusive access to a location
(for example, by acquiring a lock) be-
fore modifying it. This approach also

may abort and roll back a transaction,
in case of deadlock.

Software Transactional Memory.
The initial paper on STM by Shavit and
Touitou29 showed it was possible to
implement lock-free, atomic, multi-lo-
cation operations entirely in software,
but it required a program to declare in
advance the memory locations to be ac-
cessed by a transaction.

Herlihy et al.’s Dynamic STM
(DSTM)14 was the first STM system that
did not require a program to declare
the memory locations accessed by a
transaction. DSTM is an object-gran-
ularity, deferred-update STM system,
which means that a transaction modi-
fies a private copy of an object and
only makes its changes visible to other
transactions when it commits. The
transaction exclusively accesses the
copy without synchronization. Howev-
er, another transaction can access the I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

84 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

T first opened it. DSTM also validates
the read set every time it opens an ob-
ject, to avoid allowing a transaction to
continue executing in an erroneous
program state in which some objects
changed after the transaction started
execution.

The second condition is that trans-
action T is not modifying an object
that another transaction is also modi-
fying. DSTM prevents this type of con-
flict by only allowing one transaction
to open an object for modification.
When a write-write conflict occurs,
DSTM aborts one of the two conflicting
transactions and allows the other to
proceed. DSTM rolls the aborted trans-
action back to its initial state and then
allow it to reexecute. The policy used to
select which transaction to abort can
affect system performance, including
liveness, but it should have no effect on
the semantics of the STM system.28

The performance of DSTM, like
other STM systems, depends on the
details of the workload. In general,
the large overheads of STM systems
are more expensive than locking on a
small number of processors. However,
as the number of processors increases,
so does the contention for a lock and
the cost of locking. When this occurs
and conflicts are rare, STMs have been
shown to outperform locks on small
benchmarks.

Deferred-Update Systems. Other
deferred-update STM systems inves-
tigated alternative implementation

techniques. Harris and Fraser’s WSTM
system detects conflicts at word, not
object, granularity. This approach
can avoid unnecessary conflicts if two
transactions access different fields in
an object, but it complicates the imple-
mentation sufficiently that few STM
systems adopted the idea (although,
HTM systems generally detect con-
flicts at word or cache line granularity).
WSTM also was the first STM system in-
tegrated into a programming language.
Harris and Fraser extended Java with
an atomic statement that executed its
block in a transaction, for example:

atomic {
 int x = lst.head;
 lst = lst.tail;
 …
}

The construct also provided an op-
tional guard that prevents a transac-
tion from executing until the condition
becomes true.

Considerable research has inves-
tigated the policies that select which
transaction to abort at a conflict.10, 28
No one policy performs best in all situ-
ations, though a policy called “Polka”
performed well overall. Under this pol-
icy, each transaction tracks the num-
ber of objects it has open and uses
this count as its priority. A transaction
attempting to acquire access to an ob-
ject immediately aborts a conflicting,
lower-priority transaction. If the ac-

quiring transaction’s priority is lower,
it backs off N times, where N is the dif-
ference in priority, with an exponen-
tially increasing interval between the
retries. The transaction aborts and re-
executes if it cannot acquire an object
within N attempts.

Direct Update Systems. In a direct-
update STM system, transactions di-
rectly modify an object, rather than a
copy.1, 12, 27 Eliminating the copy poten-
tially is more efficient, since it does
not require a clone of each modified
object. However, direct-update sys-
tems must record the original value
of each modified memory location,
so the system can restore the location
if the transaction aborts. In addition,
a direct update STM must prevent a
transaction from reading the loca-
tions modified by other, uncommitted
transactions, thereby reducing the po-
tential for concurrent execution.

Direct update STM systems also re-
quire a lock to prevent multiple trans-
actions from updating an object con-
currently. Because of the high cost of
fair multiple reader-single writer locks,
the systems do not lock a read-only ob-
ject and instead rely on read-set valida-
tion to detect concurrent modification
of read-only objects. These lock sets in-
cur the same high overhead cost as in
deferred-update systems.

The locks used to prevent multiple
writes to a location, however, raise the
possibility of stalling many transac-
tions when a transaction is suspended
or descheduled while holding locks.
Deferred-update STM systems typi-
cally use non-blocking data structures,
which prevented a failed thread from
obstructing other threads. Direct-up-
date STM systems provide similar for-
ward progress guarantees to an appli-
cation by detecting and aborting failed
or blocked threads.

Hardware Support for
Transactional Memory
The programming effort necessary to
exploit parallelism is justified if the
new code performs better or is more
responsive than sequential code. Even
though the performance of recent
STM systems scales with the number
of processors in a Multicore chip, the
overhead of the software systems is
significant. Even with compiler opti-
mizations, a STM thread may run two

TMObject is a handle for the object. It points to a Locator, which in turn points to
the Transaction that opened the object, the original (“old) version of the object, and
the transaction’s private (“new”) clone of the object.

Locator
TMObject

Object — Old Version

Object — New VersionTransaction

New Data

Old Data

Status

A transacted object in the DSTM system.

review articles

JULY 2008 | vol. 51 | no. 7 | communications of the acm 85

to seven times slower than sequential
code. 22, 26

HTM can improve the performance
of STM. While still an active area of re-
search, proposed systems fall into two
broad categories: those that acceler-
ate key STM operations and those that
implement transactional bookkeeping
directly in hardware.

Hardware Acceleration for STM.
The primary source of overhead for an
STM is the maintenance and validation
of read sets. To track a read set, an STM
system typically invokes an instrumen-
tation routine at every shared-memory
read. The routine registers the object’s
address and optionally performs early
conflict detection by checking the
object’s version or lock. To validate a
transaction, the STM must traverse the
read set and ensure each object has no
conflicts. This instrumentation can
impose a large overhead if the transac-
tion does not perform a large amount
of computation per memory access.

The hardware-accelerated STM
(HASTM) by Saha et al. was the first
system to propose hardware support
to reduce the overhead of STM instru-
mentation.26 The supplementary hard-
ware allows software to build fast fil-
ters that could accelerate the common
case of read set maintenance. HASTM
provides the STM with two capabilities
through per-thread mark bits at the
granularity of cache blocks. First, soft-
ware can check if a mark bit was previ-
ously set for a given block of memory
and that no other thread wrote to the
block since it was marked (conflict de-
tection). Second, software can query if
potentially there were writes by other
threads to any of the memory blocks
that the thread marked (validation).

HASTM proposed implementing
mark bits using additional metadata
for each block in the per-processor
cache of a Multicore chip. The hard-
ware tracks if any marked cache block
was invalidated because it was evicted
from the cache or written to by another
thread. An STM uses mark bits in the
following way. The read instrumenta-
tion call checks and sets the mark bit
for the memory block that contains
an object’s header. If the mark bit was
set, indicating that the transaction pre-
viously accessed the object, it is not
added to the read set again. To validate
the transaction, the STM queries the

hardware to determine if any marked
cache blocks were invalidated. If not,
all objects accessed through instru-
mentation were private to the thread
for the duration of the transaction
and no further validation is required.
If some marked blocks were invali-
dated, the STM must rely on software-
based validation to check the version
numbers or locks for all objects in the
read set. This expensive validation
step determines if a marked block
was evicted because of limited cache
capacity or because of true conflicts
between concurrent transactions.

HASTM allows transactions to span
system events such as interrupts, con-
text switches, and page faults, as the
mark bits function only as a filter. If
servicing a system event causes the
eviction of some marked blocks, a
pending transaction can continue its
subsequent execution without abort-
ing. The transaction will simply fall
back on software validation before it
commits. Similarly, HASTM allows a
transaction to be suspended and its
speculative state inspected by a com-
ponent such as a garbage collector or a
debugger running in another thread.

It is also possible to accelerate STM
conflict detection without modifying
hardware caches. First-level caches are
typically in the critical path of a proces-
sor and interact with complex subsys-
tems such as the coherence protocol.
Even minor changes to caches can af-
fect the processor’s clock frequency
and increase design and verification
complexity. The signature-accelerated
STM (SigTM) proposed by Cao Minh et
al. uses hardware signatures to encode
pessimistically the read set and write
set for software transactions.22 A hard-
ware Bloom filter outside of the caches
computes the signatures.b Software in-
strumentation provides the filters with
the addresses of the objects read or
written within a transaction. To detect
conflicts, hardware in the computer
monitors coherence traffic for requests
for exclusive accesses to a cache block,
which indicates a memory update. The
hardware tests if the address in a re-

b.	 A Bloom filter efficiently represents a super-
set of the elements in a set and allows fast set
membership queries. The use of Bloom fil-
ters for dependency detection in thread-level
speculation and transactions was originally
proposed by Ceze et al.6

The programming
effort necessary to
exploit parallelism
is justified if the
new code performs
better or is more
responsive than
sequential code.

86 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

quest is potentially in a transaction’s
read or write set by examining the trans-
action’s signatures. If so, the memory
reference is a potential conflict and the
STM can either abort a transaction or
turn to software validation.

Both HASTM and SigTM accelerate
read set tracking and validation for
STM systems. Nevertheless, the archi-
tectures differ. SigTM encodes read
set and write sets whose size exceeds
the size of private caches. Capacity
and conflict misses do not cause soft-
ware validation, as with HASTM. On
the other hand, SigTM uses probabi-
listic signatures, which never miss a
true conflict, but may produce false
conflicts due to address aliasing in a
Bloom filter. Moreover, the hardware
signatures are relatively compact
and easy to manipulate, so they can
be saved and restored across context
switches and other interruptions. In
HASTM, the mark bits may be lost if
a processor is used to run other tasks.
On the other hand, SigTM signatures
track physical addresses and their
content must be discarded after the
virtual page mapping is modified.

Hardware acceleration for read set
management has been shown to im-
prove the performance of lock-based,
direct-update, and deferred-update
STM systems by a factor of two.22, 26
Additional improvements are pos-
sible with hardware mechanisms that
target version management for the ob-
jects written by the STM.31 Neverthe-
less, since most programs read signif-
icantly more objects than they write,
these performance improvements are
small.

Hardware Transactional Memory.
The interest in full hardware imple-
mentation of TM (HTM) dates to the
initial two papers on TM by Knight16
and Herlihy and Moss13 respectively.
HTM systems require no software in-
strumentation of memory references
within transaction code. The hardware
manages data versions and tracks
conflicts transparently as software
performs ordinary read and write ac-
cesses. Eliminating instrumentation
reduces program overhead and elimi-
nates the need to specialize function
bodies so they can be called within
and outside of a transaction.

HTM systems rely on a computer’s
cache hierarchy and the cache coher-

ence protocol to implement version-
ing and conflict detection. Caches
observe all reads and writes issued by
a processor, can buffer a significant
amount of data, and can be searched
efficiently because of their associative
organization. All HTMs modify the
first-level caches, but the approach
extends to higher-level caches, both
private and shared. To illustrate the
organization and operation of HTM
systems, we will describe the TCC ar-
chitecture in some detail and briefly
mention the key attributes of alterna-
tive designs.

The Transactional Coherence and
Consistency (TCC) system is a deferred-

update HTM that performs conflict de-
tection when a transaction attempts
to commit.21 To track the read set and
write set, each cache block is annotat-
ed with R and W tracking bits, which
are set on the first read or write access
to the block from within the transac-
tion. Cache blocks in the write set act
as a write buffer and do not propagate
the memory updates until the transac-
tion commits.

TCC commits transactions using
a two-phase protocol. First, the hard-
ware acquires exclusive access to all
cache blocks in the write set using co-
herence messages. If this step is suc-
cessful, the transaction is considered
validated. Next, the hardware instanta-
neously resets all W bits in the cache,
which atomically commits the updates
by this transaction. The new versions
of the data are now globally accessible
by all processors through the normal

coherence protocol of a Multicore
chip. If validation fails, because anoth-
er processor is also trying to commit a
conflicting transaction, the hardware
reverts to a software handler, which
may abort the transaction or attempt
to commit it under a contention man-
agement policy. When a transaction
commits or aborts, all tracking bits are
simultaneously cleared using a gang
reset operation. Absent conflicts, mul-
tiple transactions may be committing
in parallel.

Conflict detection occurs as other
processors receive the coherence mes-
sages from the committing transac-
tion. Hardware looks up the received
block address in the local caches. If the
block is in a cache and has its R or W
bit set, there is a read-write or a write-
write conflict between the committing
and the local transaction. The hard-
ware signals a software handler, which
aborts the local transaction and poten-
tially retries it after a backoff period.

Similar hardware techniques can
support HTM systems with direct
memory updates or early detection
of conflicts.23 For direct updates, the
hardware transparently logs the origi-
nal value in a memory block before its
first modification by a transaction. If
the transaction aborts, the log is used
to undo any memory updates. For
early conflict detection, the hardware
acquires exclusive access to the cache
block on the first write and maintains
it until the transaction commits. Un-
der light contention, most HTM de-
signs perform similarly. Under heavier
contention, deferred updates and late
conflict detection lead to fewer patho-
logical scenarios that can be easily
handled with a backoff policy.3

 The performance of an HTM thread
is typically within 2%–10% of the per-
formance of non-transactional code.
An HTM system can outperform a lock-
based STM by a factor of four and the
corresponding hardware-accelerated
STM by a factor of two.22 Nevertheless,
HTM systems face several system chal-
lenges that are not an issue for STM
implementations. The caches used to
track the read set, write set, and data
versions have finite capacity and may
overflow on a long transaction. The
transactional state in caches is large
and is difficult to save and restore at in-
terrupts, context switching, and paging I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

JULY 2008 | vol. 51 | no. 7 | communications of the acm 87

review articles

events. Long transactions may be rare,
but they still must execute in a manner
that preserves atomicity and isolation.
Placing implementation-dependent
limits on transaction sizes is unaccept-
able from a programmer’s perspective.

A simple mechanism to handle cache
overflows or system events is to ensure
the offending transaction executes to
completion.21 When one of these events
occurs, the HTM system can update
memory directly without tracking the
read set, write set, or old data versions.
At this point, however, no other transac-
tions can execute, as conflict detection
is no longer possible. Moreover, direct
memory updates without undo logging
preclude the use of explicit abort or re-
try statements in a transaction.

Rajwar et al. proposed Virtualized
TM (VTM), an alternative approach
that maintains atomicity and isolation
for even if a transaction is interrupted
by a cache overflow or a system event.25
VTM maps the key bookkeeping data
structures for transactional execution
(read set, write set, write buffer or un-
do-log) to virtual memory, which is ef-
fectively unbounded and is unaffected
by system interruptions. The hardware
caches hold the working set of these
data structures. VTM also suggested
the use of hardware signatures to avoid
redundant searches through structures
in virtual memory.

A final technique to address the
limitation of hardware resources is to
use a hybrid HTM–STM system.7, 17 A
transaction starts in the HTM mode us-
ing hardware mechanisms for conflict
detection and data versioning. If HTM
resources are exceeded, the transac-
tion is rolled back and restarted in the
STM mode with additional instrumen-
tation. This approach requires two ver-
sions of each function, but it provides
good performance for short transac-
tions. A challenge for hybrid systems is
to detect conflict between concurrently
HTM and STM transactions.

Hardware/Software Interface for
Transactional Memory. Hardware de-
signs are optimized to make the com-
mon case fast and reduce the cost of
correctly handling rare events. Proces-
sor vendors will follow this principle
in introducing hardware support for
transactional execution. Initial systems
are likely to devote modest hardware
resources to TM. As more applications

use transactions, more aggressive hard-
ware designs, including full-featured
HTM systems, may become available.

Regardless of the amount of hard-
ware used for TM, it is important that
HTM systems provide functionality
that is useful in developing practical
programming models and execution
environments. A significant amount
of HTM research has focused on hard-
ware/software interfaces that can sup-
port rich software features. McDonald
et al. suggested four interface mecha-
nisms for HTM systems.20 The first
mechanism is a two-phase commit
protocol that architecturally separates
transaction validation from commit-

ting its updates to memory. The sec-
ond mechanism is transactional han-
dlers that allow software to interface
on significant events such as conflict
detection, commit, or abort. Shrira-
man et al. suggest alert-on-update,
a similar mechanism that invokes a
software handler when HTM hard-
ware detects conflicts or experiences
overflows.31 The third mechanism is
support for closed and open-nested
transactions. Open nesting allows soft-
ware to interrupt the currently execut-
ing transaction and run some service
code (for example, a system call) with
independent atomicity and isolation
guarantees. Other researchers sug-
gest it is sufficient to suspend HTM
transactions to service system calls
and I/O operations.24, 32 Nevertheless,
if the service code uses transactions to
access shared data in memory, the re-
quirements of transaction pausing are

not significantly different from those
of open-nested transactions. Finally,
both McDonald et al. and Sriraman et
al. propose multiple types of load and
store instructions what allow compil-
ers to distinguish accesses to thread-
private, immutable, or idempotent
data from accesses to truly shared data.
By providing such mechanisms, HTM
systems can support software features
ranging from conditional synchroni-
zation and limited I/O within trans-
actions5,32 to high-level concurrency
models that avoid transaction aborts
on memory conflicts if the application-
level semantics are not violated.4

Open Issues
Beyond the implementation issues
discussed here, TM faces a number of
challenges that are the subject of active
research. One serious difficulty with
optimistic TM is that a transaction that
executed an I/O operation may roll back
at a conflict. I/O in this case consists of
any interaction with the world outside
of the control of the TM system. If a
transaction aborts, its I/O operations
should roll back as well, which may be
difficult or impossible to accomplish
in general. Buffering the data read or
written by a transaction permits some
rollbacks, but buffering fails in simple
situations, such as a transaction that
writes a prompt and then waits for user
input. A more general approach is to
designate a single privileged transac-
tion that runs to completion, by en-
suring it triumphs over all conflicting
transactions. Only the privileged trans-
action can perform I/O (but the privi-
lege can be passed between transac-
tions), which unfortunately limits the
amount of I/O a program can perform.

Another major issue is strong and
weak atomicity. STM systems generally
implement weak atomicity, in which
non-transactional code is not isolated
from code in transactions. HTM sys-
tems, on the other hand, implement
strong atomicity, which provides a
more deterministic programming
model in which non-transactional code
does not affect the atomicity of a trans-
action. This difference presents several
problems. Beyond the basic question of
which model is a better basis for writ-
ing software, the semantic differences
makes it difficult to develop software
that runs on both types of systems. I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 S

T
U

D
I

O
 T

O
N

N
E

 /
 Z

E
E

G
E

N
R

U
S

H
.C

O
M

88 communications of the acm | JULY 2008 | vol. 51 | no. 7

review articles

The least common denominator is the
weak model, but erroneous programs
will produce divergent results on differ-
ent systems. An alternative viewpoint
is that unsynchronized data accesses
between two threads is generally an er-
ror, and if only one thread is executing
a transaction, then there is insufficient
synchronization between the threads.
Therefore, the programming language,
tools, runtime system, or hardware
should prevent or detect unsynchro-
nized sharing between transactional
and non-transactional code, and a pro-
grammer should fix the defect.

Weakly atomic systems also face
difficulties when an object is shared
between transactional and non-trans-
actional code.30 Publication occurs
when a thread makes an object visible
to other threads (for example, by add-
ing it to a global queue) and privatiza-
tion occurs when a thread removes an
object from the global shared space.
Private data should be manipulatable
outside of a transaction without syn-
chronization, but an object’s transi-
tion between public and private must
be coordinated with the TM system,
lest it attempt to roll back an object’s
state while another thread assumes it
has sole, private access to the data.

Finally, TM must coexist and inter-
operate with existing programs and li-
braries. It is not practical to require pro-
grammers to start afresh and acquire a
brand new set of transactional libraries
to enjoy the benefits of TM. Existing se-
quential code should be able to execute
correctly in a transaction, perhaps with
a small amount of annotation and re-
compilation. Existing parallel code
that uses locks and other forms of syn-
chronization, must continue to oper-
ate properly, even if some threads are
executing transactions.

Conclusion
Transactional memory by itself is un-
likely to make Multicore computers
readily programmable. Many other
improvements to programming lan-
guages, tools, runtime systems, and
computer architecture are also neces-
sary. TM, however, does provide a time-
tested model for isolating concurrent
computations from each other. This
model raises the level of abstraction for
reasoning about concurrent tasks and
helps avoid many insidious parallel

programming errors. However, many
aspects of the semantics and imple-
mentation of TM are still the subject
of active research. If these difficulties
can be resolved in a timely fashion,
TM will likely become a central pillar
of parallel programming.	

References
1.	 Adl-Tabatabai, A.R., Lewis, B.T., Menon, V., Murphy,

B.R., Saha, B., and Shpeisman, T. Compiler and
runtime support for efficient software transactional
memory. In Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (Ottawa, Ontario, Canada, 2006).
ACM, NY 26–37.

2.	 Blundell, C., Lewis, E.C., and Martin, M.M.K . Subtleties
of transactional memory atomicity semantics. IEEE
Computer Architecture Letters 5 (Nov. 2006).

3.	 Bobba, J., Moore, K.E., Volos, H., Yen, L., Hill, M.D.,
Swift, M.M., and Wood, D.A. Performance pathologies
in hardware transactional memory. In Proceedings
of the 34th International Symposium on Computer
Architecture (San Diego, CA, 2007). ACM, NY, 81–91.

4.	 Carlstrom, B. D., McDonald, A., Carbin, M., Kozyrakis,
C., and Olukotun, K. Transactional collection classes.
In Proceedings of the 12th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(San Jose, CA, 2007). ACM, NY, 56–67.

5.	 Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J.,
Minh, C.C., Kozyrakis, C., and Olukotun, K. The Atomos
transactional programming language. In Proceedings
of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation
(Ottawa, Ontario, Canada, 2006). ACM, NY, 1–13.

6.	 Ceze, L., Tuck, J., Torrellas, J., and Cascaval,
C. Bulk disambiguation of speculative threads
in multiprocessors. In Proceedings of the 33rd

International Symposium on Computer Architecture
(Boston, MA, 2006). ACM, NY, 227–238.

7.	 Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir,
M., and Nussbaum, D. Hybrid transactional memory.
In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages
and Operating Systems (San Jose, CA, 2006). ACM,
NY, 336–346.

8.	 Gray, J. and Reuter, A. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann
Publishers, San Francisco, CA, 1992.

9.	 Grossman, D. The transactional memory / garbage
collection analogy. In Proceedings of the ACM
Conference on Object-Oriented Programming
Systems, Languages, and Applications (Montreal,
Canada, 2007). ACM, NY, 695–706.

10.	 Guerraoui, R., Herlihy, M., and Pochon, B. Polymorphic
contention management. In Proceedings of the 19th
International Symposium on Distributed Computing
(Krakow, Poland, 2005). Springer Verlag, 303–323.

11.	 Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M.
Composable memory transactions. In Proceedings of
the 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (Chicago, IL, 2005),
ACM, NY, 48–60.

12.	 Harris, T., Plesko, M., Shinnar, A., and Tarditi, D.
Optimizing memory transactions. In Proceedings of
the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation (Ottawa,
Ontario, Canada, 2006). ACM, NY, 14–25.

13.	 Herlihy, M. and Moss, J.E.B. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium on
Computer Architecture. ACM, 1993, 289–300.

14.	 Herlihy, M., Luchangco, V., Moir, M., and Scherer III,
W.N. Software transactional memory for dynamic-
sized data structures. In Proceedings of the 22nd
Annual Symposium on Principles of Distributed
Computing (Boston, MA, 2003), 92–101

15.	 Isard, M., and Birrell, A. Automatic mutual exclusion.
In Proceeding of the Usenix 11th Workshop on Hot
Topics in Operating Systems (San Diego, CA, 2007).

16.	 Knight, T.F. An architecture for mostly functional
languages. In Proceedings of the 1986 ACM Lisp and
Functional Programming Conference. ACM, NY.

17.	 Kumar, S., Chu, M., Hughes, C.J., Kundu, P., and
Nguyen, A. Hybrid transactional memory. In
Proceedings of the 11th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming. ACM,
NY, 2006, 209–220.

18. 	Larus, J.R. and Rajwar, R. Transactional Memory.
Morgan & Claypool, 2006.

19.	 Lomet, D.B. Process structuring, synchronization, and
recovery using atomic actions. In Proceedings of the
ACM Conference on Language Design for Reliable
Software (Raleigh, NC, 1977). ACM, NY, 128–137.

20.	 McDonald, A., Chung, J., Brian, D.C., Minh, C.C., Chafi,
H., Kozyrakis, C., and Olukotun, K. Architectural
semantics for practical transactional memory. In
Proceedings of the 33rd International Symposium on
Computer Architecture. ACM, 2006, 53–65.

21.	 McDonald, A., Chung, J., Chafi, H., Cao Minh,
C., Carlstrom, B.D., Hammond, L., Kozyrakis, C.,
and Olukotun, K. Characterization of TCC on
chip-multiprocessors. In Proceedings of the 14th
International Conference on Parallel Architectures
and Compilation Techniques. (St Louis, MO, 2005).
IEEE, 63–74.

22.	 Minh, C. C., Trautmann, M., Chung, J., McDonald, A.,
Bronson, N., Casper, J., Kozyrakis, C., and Olukotun, K.
An effective hybrid transactional memory system with
strong isolation guarantees. In Proceedings of the 34th
International Symposium on Computer Architecture
(San Diego, CA, 2007) ACM, NY, 69–80.

23.	 Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., and
Wood, D.A. LogTM: Log-based transactional memory.
In Proceedings of the 12th International Symposium
on High-Performance Computer Architecture (Austin,
TX, 2006). IEEE, 254–265.

24.	 Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill,
M.D., Liblit, B., Swift, M.M., and Wood, D.A. Supporting
Nested Transactional Memory in LogTM. Proceedings
of the 12th International Conference on Architectural
Support for Programming Languages and Operating
Systems (San Jose, CA, 2006). ACM, NY, 359–370.

25.	 Rajwar, R., Herlihy, M., and Lai, K. Virtualizing
transactional memory. In Proceedings of the 32nd
International Symposium on Computer Architecture
(Madison, WI, 2005). ACM. NY, 494–505.

26.	 Saha, B., Adl-Tabatabai, A. R., and Jacobson, Q.
Architectural support for software transactional
memory. In Proceedings of the 39th International
Symposium on Microarchitecture (Orlando, FL, 2006).
IEEE, 185–196.

27.	 Saha, B., Adl-Tabatabai, A.R., Hudson, R.L., Minh, C.C.,
and Hertzberg, B. McRT-STM: A high performance
software transactional memory system for a
multi-core runtime. In Proceedings of the 11th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (2006). ACM, NY, 187–197.

28.	 Scherer III, W.N., and Scott, M.L. Advanced
contention management for dynamic software
transactional memory. In Proceedings of the Twenty-
fourth Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (Las Vegas, NV,
2005). ACM Press, 240–248.

29.	 Shavit, N. and Touitou, D. Software transactional
memory. In Proceedings of the 14th ACM Symposium
on Principles of Distributed Computing (Ottawa,
Canada, 1995). ACM, NY, 204–213.

30.	 Shpeisman, T., Menon, V., Adl-Tabatabai, A.-R.,
Balensiefer, S., Grossman, D., Hudson, R.L., Moore,
K.F., and Saha, B. Enforcing isolation and ordering
in STM. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and
Implementation (San Diego, CA, 2007). ACM, NY,
78–88.

31.	 Shriraman, A., Spear, M.F., Hossain, H., Marathe,
V.J., Dwarkadas, S., and Scott, M.L. An integrated
hardware-software approach to flexible transactional
memory. In Proceedings of the 34th International
Symposium on Computer Architecture (San Diego, CA,
2007). ACM, NY, 104–115.

32.	 Zilles, C. and Baugh, L. Extending hardware
transactional memory to support nonbusy waiting and
nontransactional actions. In Proceedings of the First
ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing
(Ottawa, Canada, 2006). ACM, NY.

James Larus (larus@microsoft.com) is a research area
manager at Microsoft Research, Redmond, WA.

Christos Kozyrakis (christosee.stanford.edu) is an
assistant professor of electrical engineering and computer
science at Stanford University, Stanford, CA.

©2008 ACM0001-0782/08/0700 $5.00

