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complex processor architectures. The 
era did not stop because Moore’s Lawa 
ended. Semiconductor technology is 
still capable of doubling the transistors 
on a chip every two years. However, this 
flood of transistors now increases the 
number of independent processors on 
a chip, rather than making an individ-
ual processor run faster. The resulting 
computer architecture, named Multi-
core, consists of several independent 
processors (cores) on a chip that com-
municate through shared memory. To-
day, two-core chips are common and 
four-core chips are coming to market, 
and there is every reason to believe that 
the number of cores will continue to 
double for a number of generations. 
On one hand, the good news is that the 
peak performance of a Multicore com-
puter doubles each time the number 
of cores doubles. On the other hand, 
achieving this performance requires a 
program execute in parallel and scale 
as the number of processors increase.

Few programs today are written to 
exploit parallelism effectively. In part, 
most programmers did not have access 
to parallel computers, which were lim-
ited to domains with large, naturally 
parallel workloads, such as servers, or 
huge computations, such as high-per-
formance computing. Because main-
stream programming was sequential 
programming, most existing program-
ming languages, libraries, design pat-
terns, and training do not address the 
challenges of parallelism program-
ming. Obviously, this situation must 
change before programmers in general 
will start writing parallel programs for 
Multicore processors.

A primary challenge is to find bet-
ter abstractions for expressing paral-
lel computation and for writing paral-
lel programs. Parallel programming 
encompasses all of the difficulties of 
sequential programming, but also in-
troduces the hard problem of coordi-
nating interactions among concurrent-
ly executing tasks. Today, most parallel 

a.	 The doubling every 18–24 months of the num-
ber of transistors fabricable on a chip.

As computers evolve, programming changes as 
well. The past few years mark the start of a historic 
transition from sequential to parallel computation 
in the processors used in most personal, server, 
and mobile computers. This shift marks the end of 
a remarkable 30-year period in which advances in 
semiconductor technology and computer architecture 
improved the performance of sequential processors at 
an annual rate of 40%–50%. This steady performance 
increase benefited all software, and this progress was 
a key factor driving the spread of software throughout 
modern life.

This remarkable era stopped when practical limits 
on the power dissipation of a chip ended the continual 
increases in clock speed and limited instruction-level 
parallelism diminished the benefit of increasingly
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programs employ low-level program-
ming constructs that are just a thin 
veneer over the underlying hardware. 
These constructs consist of threads, 
which are an abstract processor, and 
explicit synchronization (for example, 
locks, semaphores, and monitors) to 
coordinate thread execution. Consid-
erable experience has shown that par-
allel programs written with these con-
structs are difficult to design, program, 
debug, maintain, and—to add insult to 
injury—often do not perform well.

Transactional memory (TM)—pro-
posed by Lomet19 and first practically 
implemented by Herlihy and Moss13—
is a new programming construct that 
offers a higher-level abstraction for 
writing parallel programs. In the past 
few years, it has engendered consider-

able interest, as transactions have long 
been used in databases to isolate con-
current activities. TM offers a mecha-
nism that allows portions of a program 
to execute in isolation, without regard 
to other, concurrently executing tasks. 
A programmer can reason about the 
correctness of code within a transac-
tion and need not worry about complex 
interactions with other, concurrently ex-
ecuting parts of the program. TM offers 
a promising, but as yet unproven mecha-
nism to improve parallel programming.

What is Transaction Memory?
A transaction is a form of program ex-
ecution borrowed from the database 
community.8 Concurrent queries con-
flict when they read and write an item in 
a database, and a conflict can produce 

an erroneous result that could not arise 
from a sequential execution of the que-
ries. Transactions ensure that all que-
ries produce the same result as if they 
executed serially (a property known as 
“serializability”). Decomposing the se-
mantics of a transaction yields four re-
quirements, usually called the “ACID” 
properties—atomicity, consistency, 
isola​tion, and durability.

TM provides lightweight transac-
tions for threads running in a shared 
address space. TM ensures the atom-
icity and isolation of concurrently ex-
ecuting tasks. (In general, TM does not 
provide consistency or durability.) Ato-
micity ensures program state changes 
effected by code executing in a transac-
tion are indivisible from the perspec-
tive of other, concurrently executing I
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account only during their operation, 
properly implementing Transfer re-
quires understanding and modifying 
the class’s locking discipline by adding 
a method to either lock all accounts 
or lock a single account. The latter ap-
proach allows non-overlapping trans-
fers to execute concurrently, but intro-
duces the possibility of deadlock if a 
transfer from account A to B overlaps 
with a transfer from B to A.

TM allows the operations to be com-
posed directly. The Deposit and With-
draw operations each execute in a trans-
action, to protect their manipulations 
of the underlying data. The Transfer 
operation also executes in a transaction, 
which subsumes the underlying opera-
tions into a single atomic action.

Limitations of Transactional Mem-
ory. Transactions by themselves cannot 
replace all synchronization in a parallel 
program.2 Beyond mutual exclusion, 
synchronization is often used to coor-
dinate independent tasks, for example, 
by ensuring that one task waits for an-
other to finish or by limiting the num-
ber of threads performing a task.

Transactions by themselves provide 
little assistance in coordinating inde-
pendent tasks. For example, consider 
a producer-consumer programming 
relationship, in which one task writes 
a value that another task reads. Trans-
actions can ensure the tasks’ shared 
accesses do not interfere. However, 
this pattern is expensive to imple-
ment with transactions, whose goal is 
to shield a task from interactions with 
other tasks. If the consumer transac-
tion finds the value is not available, it 
can only abort and check for the value 
later. Busy waiting by aborting is inef-
ficient since an aborted transaction 
rolls back its entire computation. A 
better solution is for the producer to 
signal the consumer when the value 
is ready. However, since a signal is 
not visible in a transaction, many TM 
systems provide a guard that prevents 
a transaction from starting execution 
until a predicate becomes true. 

Haskell TM introduced the retry 
and orElse constructs as a way for a 
transaction to wait until an event oc-
curs and to sequence the execution of 
two transactions.11 Executing a re-
try statement causes the surround-
ing transaction to abort. It does not 
reexecute until a location it previously 

transactions. In other words, although 
the code in a transaction may modify 
individual variables through a series 
of assignments, another computation 
can only observe the program state 
immediately before or immediately af-
ter the transaction executes. Isolation 
ensures that concurrently executing 
tasks cannot affect the result of a trans-
action, so a transaction produces the 
same answer as when no other task was 
executing. Transactions provide a ba-
sis to construct parallel abstractions, 
which are building blocks that can be 
combined without knowledge of their 
internal details, much as procedures 
and objects provide composable ab-
stractions for sequential code.

TM Programming Model. A pro-
gramming model provides a rationale 
for the design of programming lan-
guage constructs and guidance on how 
to construct programs. Like many as-
pects of TM, its programming model is 
still the subject of active investigation.

Most TM systems provide simple 
atomic statements that execute a block 
of code (and the routines it invokes) as 
a transaction. An atomic block isolates 
the code from concurrently executed 
threads, but a block is not a replace-
ment for general synchronization 
such as semaphores or condition vari-
ables.2 In particular, atomic blocks by 
themselves do not provide a means to 
coordinate code running on parallel 
threads.

Automatic mutual exclusion (AME), 
by contrast, turns the transactional 
model “inside-out” by executing most 
of a program in transactions.15 AME 
supports asynchronous program-
ming, in which a function starts one 
or more asynchronous computations 
and later rendezvouses to retrieve 
their results. This programming mod-
el is a common way to deal with un-
predictable latency in user-directed 
and distributed systems. The atomic-
ity provided by transactions ensures 
that an asynchronous computation, 
which executes at an unpredictable 
rate, does not interfere with other, si-
multaneously active computations.

Advantages of Transactional Mem-
ory. Parallel programming poses many 
difficulties, but one of the most serious 
challenges in writing correct code is 
coordinating access to data shared by 
several threads. Data races, deadlocks, 

and poor scalability are consequences 
of trying to ensure mutual exclusion 
with too little or too much synchroni-
zation. TM offers a simpler alternative 
to mutual exclusion by shifting the bur-
den of correct synchronization from 
a programmer to the TM system.9 In 
theory, a program’s author only needs 
to identify a sequence of operations on 
shared data that should appear to ex-
ecute atomically to other, concurrent 
threads. Through the many mecha-
nisms discussed here, the TM system 
then ensures this outcome.

Harris and Peyton-Jones11 argued 
that, beyond providing a better pro-
gramming abstraction, transactions 

also make synchronization compos-
able, which enables the construction 
of concurrency programming abstrac-
tions. A programming abstraction is 
composable if it can be correctly com-
bined with other abstractions without 
needing to understand how the ab-
stractions operate.

Simple locking is not composable. 
Consider, as an example, a class that 
implements a collection of bank ac-
counts. The class provides thread-safe 
Deposit and Withdraw operations 
to add and remove money from a bank 
account. Suppose that we want to com-
pose these operations into a thread-
safe Transfer operation, which 
moves money from one account to an-
other. The intermediate state, in which 
money was debited but not credited, 
should not be visible to other threads 
(that is, the transfer should be atomic). 
Since Deposit and Withdraw lock an I
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read changes value, which avoids 
the crudest form of busy waiting in 
which a transaction repeatedly reads 
an unchanging value and aborts. The 
orElse construct composes two 
transactions by starting the second 
one only if the first transaction fails to 
commit. This pattern—which arises 
in situations as simple as checking for 
a value in a cache and recomputing 
it if necessary—is difficult to express 
otherwise, since a transaction’s fail-
ure and reexecution is transparent to 
other computation.

We still do not understand the 
trade-offs and programming pragmat-
ics of the TM programming model. 
For example, the semantics of nested 
transactions is an area of active debate. 
Suppose that code in a transaction O 
invokes a library routine, which starts 
its own transaction I. Should the two 
transactions interact in any way, and 
if so, what are the implications for the 
TM implementation and for program-
mers building modular software and 
libraries? Consider when transaction 
I commits. Should its results be visible 
only to code in transaction O (closed 
nesting) or also to other threads (open 
nesting)? If the latter, what happens 
if transaction O aborts? Similarly, if 
transaction I aborts, should it termi-
nate transaction O as well, or should 
the inner transaction be rolled back 
and restarted independently?

Finally, the performance of TM is 
not yet good enough for widespread 
use. Software TM systems (STM) im-
pose considerable overhead costs on 
code running in a transaction, which 
saps the performance advantages of 
parallel computers. Hardware TM sys-
tems (HTM) can lower the overhead, 
but they are only starting to become 
commercially available, and most 
HTM systems fall back on software for 
large transactions. Better implemen-
tation techniques are likely to improve 
both types of systems and are an area 
of active research.

Transactional Memory  
Implementation
TM can be implemented entirely in 
software (STM) or with specialized 
hardware support (HTM). Many differ-
ent implementation techniques have 
been proposed, and this paper, rather 
than surveying the literature, focuses 

original, underlying object while the 
first transaction is still running, which 
causes a logical conflict that the STM 
system detects and resolves by abort-
ing one of the two transactions. 

An STM system can detect a con-
flict when a transaction first accesses 
an object (early detection) or when the 
transaction attempts to commit (late 
detection). Both approaches yield the 
same results, but may perform differ-
ently and, unfortunately, neither is 
consistently superior. Early detection 
prevents a transaction from perform-
ing unnecessary computation that a 
subsequent abort will discard. Late de-
tection can avoid unnecessary aborts, 
as when the conflicting transaction it-
self aborts because of a conflict with a 
third transaction. 

Another complication is a conflict 
between a transaction that only reads 
an object and another that modifies 
the object. Since reads are more com-
mon than writes, STM systems only 
clone objects that are modified. To 
reduce overhead, a transaction tracks 
the objects it reads and, before it com-
mits, ensures that no other transaction 
modified them.

DSTM is a library. An object ma-
nipulated in a transaction is first reg-
istered with the DSTM system, which 
returns a TMObject wrapper for the 
object (as illustrated in the accompa-
nying figure). Subsequently, the code 
executing the transaction can open 
the TMObject for read-only or read-
write access, which returns a pointer 
to the original or cloned object, re-
spectively. Either way, the transaction 
manipulates the object directly, with-
out further synchronization.

 A transaction ends when the pro-
gram attempts to commit the transac-
tion’s changes. If the transaction suc-
cessfully commits, the DSTM system 
atomically replaces, for all modified 
objects, the old object in a Locator 
structure with its modified version.

A transaction T can commit success-
fully if it meets two conditions. The 
first is that no concurrently executing 
transaction modified an object read by 
T. DSTM tracks the objects a transac-
tion opened for reading and validates 
the entries in this read set when the 
transaction attempts to commit. An 
object in the read set is valid if its ver-
sion is unchanged since transaction 

on a few key techniques. A more com-
plete overview is available elsewhere.18 

Most TM systems of both types im-
plement optimistic concurrency con-
trol in which a transaction executes 
under the assumption that it will not 
conflict with another transaction. If 
two transactions conflict, because one 
modifies a location read or modified 
by the other, the TM system aborts 
one of the transactions by reversing 
(rolling back) its side effects. The al-
ternative pessimistic concurrency 
control requires a transaction to es-
tablish exclusive access to a location 
(for example, by acquiring a lock) be-
fore modifying it. This approach also 

may abort and roll back a transaction, 
in case of deadlock.

Software Transactional Memory. 
The initial paper on STM by Shavit and 
Touitou29 showed it was possible to 
implement lock-free, atomic, multi-lo-
cation operations entirely in software, 
but it required a program to declare in 
advance the memory locations to be ac-
cessed by a transaction.

Herlihy et al.’s Dynamic STM 
(DSTM)14 was the first STM system that 
did not require a program to declare 
the memory locations accessed by a 
transaction. DSTM is an object-gran-
ularity, deferred-update STM system, 
which means that a transaction modi-
fies a private copy of an object and 
only makes its changes visible to other 
transactions when it commits. The 
transaction exclusively accesses the 
copy without synchronization. Howev-
er, another transaction can access the I
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T first opened it. DSTM also validates 
the read set every time it opens an ob-
ject, to avoid allowing a transaction to 
continue executing in an erroneous 
program state in which some objects 
changed after the transaction started 
execution.

The second condition is that trans-
action T is not modifying an object 
that another transaction is also modi-
fying. DSTM prevents this type of con-
flict by only allowing one transaction 
to open an object for modification. 
When a write-write conflict occurs, 
DSTM aborts one of the two conflicting 
transactions and allows the other to 
proceed. DSTM rolls the aborted trans-
action back to its initial state and then 
allow it to reexecute. The policy used to 
select which transaction to abort can 
affect system performance, including 
liveness, but it should have no effect on 
the semantics of the STM system.28

The performance of DSTM, like 
other STM systems, depends on the 
details of the workload. In general, 
the large overheads of STM systems 
are more expensive than locking on a 
small number of processors. However, 
as the number of processors increases, 
so does the contention for a lock and 
the cost of locking. When this occurs 
and conflicts are rare, STMs have been 
shown to outperform locks on small 
benchmarks.

Deferred-Update Systems. Other 
deferred-update STM systems inves-
tigated alternative implementation 

techniques. Harris and Fraser’s WSTM 
system detects conflicts at word, not 
object, granularity. This approach 
can avoid unnecessary conflicts if two 
transactions access different fields in 
an object, but it complicates the imple-
mentation sufficiently that few STM 
systems adopted the idea (although, 
HTM systems generally detect con-
flicts at word or cache line granularity). 
WSTM also was the first STM system in-
tegrated into a programming language. 
Harris and Fraser extended Java with 
an atomic statement that executed its 
block in a transaction, for example:

atomic {
 int x = lst.head;
 lst = lst.tail;
 …
}

The construct also provided an op-
tional guard that prevents a transac-
tion from executing until the condition 
becomes true.

Considerable research has inves-
tigated the policies that select which 
transaction to abort at a conflict.10, 28 
No one policy performs best in all situ-
ations, though a policy called “Polka” 
performed well overall. Under this pol-
icy, each transaction tracks the num-
ber of objects it has open and uses 
this count as its priority. A transaction 
attempting to acquire access to an ob-
ject immediately aborts a conflicting, 
lower-priority transaction. If the ac-

quiring transaction’s priority is lower, 
it backs off N times, where N is the dif-
ference in priority, with an exponen-
tially increasing interval between the 
retries. The transaction aborts and re-
executes if it cannot acquire an object 
within N attempts.

Direct Update Systems. In a direct-
update STM system, transactions di-
rectly modify an object, rather than a 
copy.1, 12, 27 Eliminating the copy poten-
tially is more efficient, since it does 
not require a clone of each modified 
object. However, direct-update sys-
tems must record the original value 
of each modified memory location, 
so the system can restore the location 
if the transaction aborts. In addition, 
a direct update STM must prevent a 
transaction from reading the loca-
tions modified by other, uncommitted 
transactions, thereby reducing the po-
tential for concurrent execution.

Direct update STM systems also re-
quire a lock to prevent multiple trans-
actions from updating an object con-
currently. Because of the high cost of 
fair multiple reader-single writer locks, 
the systems do not lock a read-only ob-
ject and instead rely on read-set valida-
tion to detect concurrent modification 
of read-only objects. These lock sets in-
cur the same high overhead cost as in 
deferred-update systems.

The locks used to prevent multiple 
writes to a location, however, raise the 
possibility of stalling many transac-
tions when a transaction is suspended 
or descheduled while holding locks. 
Deferred-update STM systems typi-
cally use non-blocking data structures, 
which prevented a failed thread from 
obstructing other threads. Direct-up-
date STM systems provide similar for-
ward progress guarantees to an appli-
cation by detecting and aborting failed 
or blocked threads.

Hardware Support for  
Transactional Memory
The programming effort necessary to 
exploit parallelism is justified if the 
new code performs better or is more 
responsive than sequential code. Even 
though the performance of recent 
STM systems scales with the number 
of processors in a Multicore chip, the 
overhead of the software systems is 
significant. Even with compiler opti-
mizations, a STM thread may run two 

TMObject is a handle for the object. It points to a Locator, which in turn points to  
the Transaction that opened the object, the original (“old) version of the object, and  
the transaction’s private (“new”) clone of the object.

Locator
TMObject

Object — Old Version

Object — New VersionTransaction

New Data

Old Data

Status

A transacted object in the DSTM system.
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to seven times slower than sequential 
code. 22, 26

HTM can improve the performance 
of STM. While still an active area of re-
search, proposed systems fall into two 
broad categories: those that acceler-
ate key STM operations and those that 
implement transactional bookkeeping 
directly in hardware. 

Hardware Acceleration for STM. 
The primary source of overhead for an 
STM is the maintenance and validation 
of read sets. To track a read set, an STM 
system typically invokes an instrumen-
tation routine at every shared-memory 
read. The routine registers the object’s 
address and optionally performs early 
conflict detection by checking the 
object’s version or lock. To validate a 
transaction, the STM must traverse the 
read set and ensure each object has no 
conflicts. This instrumentation can 
impose a large overhead if the transac-
tion does not perform a large amount 
of computation per memory access. 

The hardware-accelerated STM 
(HASTM) by Saha et al. was the first 
system to propose hardware support 
to reduce the overhead of STM instru-
mentation.26 The supplementary hard-
ware allows software to build fast fil-
ters that could accelerate the common 
case of read set maintenance. HASTM 
provides the STM with two capabilities 
through per-thread mark bits at the 
granularity of cache blocks. First, soft-
ware can check if a mark bit was previ-
ously set for a given block of memory 
and that no other thread wrote to the 
block since it was marked (conflict de-
tection). Second, software can query if 
potentially there were writes by other 
threads to any of the memory blocks 
that the thread marked (validation).

HASTM proposed implementing 
mark bits using additional metadata 
for each block in the per-processor 
cache of a Multicore chip. The hard-
ware tracks if any marked cache block 
was invalidated because it was evicted 
from the cache or written to by another 
thread. An STM uses mark bits in the 
following way. The read instrumenta-
tion call checks and sets the mark bit 
for the memory block that contains 
an object’s header. If the mark bit was 
set, indicating that the transaction pre-
viously accessed the object, it is not 
added to the read set again. To validate 
the transaction, the STM queries the 

hardware to determine if any marked 
cache blocks were invalidated. If not, 
all objects accessed through instru-
mentation were private to the thread 
for the duration of the transaction 
and no further validation is required. 
If some marked blocks were invali-
dated, the STM must rely on software-
based validation to check the version 
numbers or locks for all objects in the 
read set. This expensive validation 
step determines if a marked block 
was evicted because of limited cache 
capacity or because of true conflicts 
between concurrent transactions. 

HASTM allows transactions to span 
system events such as interrupts, con-
text switches, and page faults, as the 
mark bits function only as a filter. If 
servicing a system event causes the 
eviction of some marked blocks, a 
pending transaction can continue its 
subsequent execution without abort-
ing. The transaction will simply fall 
back on software validation before it 
commits. Similarly, HASTM allows a 
transaction to be suspended and its 
speculative state inspected by a com-
ponent such as a garbage collector or a 
debugger running in another thread. 

It is also possible to accelerate STM 
conflict detection without modifying 
hardware caches. First-level caches are 
typically in the critical path of a proces-
sor and interact with complex subsys-
tems such as the coherence protocol. 
Even minor changes to caches can af-
fect the processor’s clock frequency 
and increase design and verification 
complexity. The signature-accelerated 
STM (SigTM) proposed by Cao Minh et 
al. uses hardware signatures to encode 
pessimistically the read set and write 
set for software transactions.22 A hard-
ware Bloom filter outside of the caches 
computes the signatures.b Software in-
strumentation provides the filters with 
the addresses of the objects read or 
written within a transaction. To detect 
conflicts, hardware in the computer 
monitors coherence traffic for requests 
for exclusive accesses to a cache block, 
which indicates a memory update. The 
hardware tests if the address in a re-

b.	 A Bloom filter efficiently represents a super-
set of the elements in a set and allows fast set 
membership queries. The use of Bloom fil-
ters for dependency detection in thread-level 
speculation and transactions was originally 
proposed by Ceze et al.6

The programming 
effort necessary to 
exploit parallelism 
is justified if the 
new code performs 
better or is more 
responsive than 
sequential code.



86    communications of the acm    |   JULY 2008  |   vol.  51  |   no.  7

review articles

quest is potentially in a transaction’s 
read or write set by examining the trans-
action’s signatures. If so, the memory 
reference is a potential conflict and the 
STM can either abort a transaction or 
turn to software validation. 

Both HASTM and SigTM accelerate 
read set tracking and validation for 
STM systems. Nevertheless, the archi-
tectures differ. SigTM encodes read 
set and write sets whose size exceeds 
the size of private caches. Capacity 
and conflict misses do not cause soft-
ware validation, as with HASTM. On 
the other hand, SigTM uses probabi-
listic signatures, which never miss a 
true conflict, but may produce false 
conflicts due to address aliasing in a 
Bloom filter. Moreover, the hardware 
signatures are relatively compact 
and easy to manipulate, so they can 
be saved and restored across context 
switches and other interruptions. In 
HASTM, the mark bits may be lost if 
a processor is used to run other tasks. 
On the other hand, SigTM signatures 
track physical addresses and their 
content must be discarded after the 
virtual page mapping is modified. 

Hardware acceleration for read set 
management has been shown to im-
prove the performance of lock-based, 
direct-update, and deferred-update 
STM systems by a factor of two.22, 26  
Additional improvements are pos-
sible with hardware mechanisms that 
target version management for the ob-
jects written by the STM.31 Neverthe-
less, since most programs read signif-
icantly more objects than they write, 
these performance improvements are 
small. 

Hardware Transactional Memory. 
The interest in full hardware imple-
mentation of TM (HTM) dates to the 
initial two papers on TM by Knight16 
and Herlihy and Moss13 respectively. 
HTM systems require no software in-
strumentation of memory references 
within transaction code. The hardware 
manages data versions and tracks 
conflicts transparently as software 
performs ordinary read and write ac-
cesses. Eliminating instrumentation 
reduces program overhead and elimi-
nates the need to specialize function 
bodies so they can be called within 
and outside of a transaction. 

HTM systems rely on a computer’s 
cache hierarchy and the cache coher-

ence protocol to implement version-
ing and conflict detection. Caches 
observe all reads and writes issued by 
a processor, can buffer a significant 
amount of data, and can be searched 
efficiently because of their associative 
organization. All HTMs modify the 
first-level caches, but the approach 
extends to higher-level caches, both 
private and shared. To illustrate the 
organization and operation of HTM 
systems, we will describe the TCC ar-
chitecture in some detail and briefly 
mention the key attributes of alterna-
tive designs. 

The Transactional Coherence and 
Consistency (TCC) system is a deferred-

update HTM that performs conflict de-
tection when a transaction attempts 
to commit.21 To track the read set and 
write set, each cache block is annotat-
ed with R and W tracking bits, which 
are set on the first read or write access 
to the block from within the transac-
tion. Cache blocks in the write set act 
as a write buffer and do not propagate 
the memory updates until the transac-
tion commits. 

TCC commits transactions using 
a two-phase protocol. First, the hard-
ware acquires exclusive access to all 
cache blocks in the write set using co-
herence messages. If this step is suc-
cessful, the transaction is considered 
validated. Next, the hardware instanta-
neously resets all W bits in the cache, 
which atomically commits the updates 
by this transaction. The new versions 
of the data are now globally accessible 
by all processors through the normal 

coherence protocol of a Multicore 
chip. If validation fails, because anoth-
er processor is also trying to commit a 
conflicting transaction, the hardware 
reverts to a software handler, which 
may abort the transaction or attempt 
to commit it under a contention man-
agement policy. When a transaction 
commits or aborts, all tracking bits are 
simultaneously cleared using a gang 
reset operation. Absent conflicts, mul-
tiple transactions may be committing 
in parallel. 

Conflict detection occurs as other 
processors receive the coherence mes-
sages from the committing transac-
tion. Hardware looks up the received 
block address in the local caches. If the 
block is in a cache and has its R or W 
bit set, there is a read-write or a write-
write conflict between the committing 
and the local transaction. The hard-
ware signals a software handler, which 
aborts the local transaction and poten-
tially retries it after a backoff period. 

Similar hardware techniques can 
support HTM systems with direct 
memory updates or early detection 
of conflicts.23 For direct updates, the 
hardware transparently logs the origi-
nal value in a memory block before its 
first modification by a transaction. If 
the transaction aborts, the log is used 
to undo any memory updates. For 
early conflict detection, the hardware 
acquires exclusive access to the cache 
block on the first write and maintains 
it until the transaction commits. Un-
der light contention, most HTM de-
signs perform similarly. Under heavier 
contention, deferred updates and late 
conflict detection lead to fewer patho-
logical scenarios that can be easily 
handled with a backoff policy.3 

 The performance of an HTM thread 
is typically within 2%–10% of the per-
formance of non-transactional code. 
An HTM system can outperform a lock-
based STM by a factor of four and the 
corresponding hardware-accelerated 
STM by a factor of two.22 Nevertheless, 
HTM systems face several system chal-
lenges that are not an issue for STM 
implementations. The caches used to 
track the read set, write set, and data 
versions have finite capacity and may 
overflow on a long transaction. The 
transactional state in caches is large 
and is difficult to save and restore at in-
terrupts, context switching, and paging I
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events. Long transactions may be rare, 
but they still must execute in a manner 
that preserves atomicity and isolation. 
Placing implementation-dependent 
limits on transaction sizes is unaccept-
able from a programmer’s perspective. 

A simple mechanism to handle cache 
overflows or system events is to ensure 
the offending transaction executes to 
completion.21 When one of these events 
occurs, the HTM system can update 
memory directly without tracking the 
read set, write set, or old data versions. 
At this point, however, no other transac-
tions can execute, as conflict detection 
is no longer possible. Moreover, direct 
memory updates without undo logging 
preclude the use of explicit abort or re-
try statements in a transaction. 

Rajwar et al. proposed Virtualized 
TM (VTM), an alternative approach 
that maintains atomicity and isolation 
for even if a transaction is interrupted 
by a cache overflow or a system event.25 
VTM maps the key bookkeeping data 
structures for transactional execution 
(read set, write set, write buffer or un-
do-log) to virtual memory, which is ef-
fectively unbounded and is unaffected 
by system interruptions. The hardware 
caches hold the working set of these 
data structures. VTM also suggested 
the use of hardware signatures to avoid 
redundant searches through structures 
in virtual memory. 

A final technique to address the 
limitation of hardware resources is to 
use a hybrid HTM–STM system.7, 17 A 
transaction starts in the HTM mode us-
ing hardware mechanisms for conflict 
detection and data versioning. If HTM 
resources are exceeded, the transac-
tion is rolled back and restarted in the 
STM mode with additional instrumen-
tation. This approach requires two ver-
sions of each function, but it provides 
good performance for short transac-
tions. A challenge for hybrid systems is 
to detect conflict between concurrently 
HTM and STM transactions. 

Hardware/Software Interface for 
Transactional Memory. Hardware de-
signs are optimized to make the com-
mon case fast and reduce the cost of 
correctly handling rare events. Proces-
sor vendors will follow this principle 
in introducing hardware support for 
transactional execution. Initial systems 
are likely to devote modest hardware 
resources to TM. As more applications 

use transactions, more aggressive hard-
ware designs, including full-featured 
HTM systems, may become available. 

Regardless of the amount of hard-
ware used for TM, it is important that 
HTM systems provide functionality 
that is useful in developing practical 
programming models and execution 
environments. A significant amount 
of HTM research has focused on hard-
ware/software interfaces that can sup-
port rich software features. McDonald 
et al. suggested four interface mecha-
nisms for HTM systems.20 The first 
mechanism is a two-phase commit 
protocol that architecturally separates 
transaction validation from commit-

ting its updates to memory. The sec-
ond mechanism is transactional han-
dlers that allow software to interface 
on significant events such as conflict 
detection, commit, or abort. Shrira-
man et al. suggest alert-on-update, 
a similar mechanism that invokes a 
software handler when HTM hard-
ware detects conflicts or experiences 
overflows.31 The third mechanism is 
support for closed and open-nested 
transactions. Open nesting allows soft-
ware to interrupt the currently execut-
ing transaction and run some service 
code (for example, a system call) with 
independent atomicity and isolation 
guarantees. Other researchers sug-
gest it is sufficient to suspend HTM 
transactions to service system calls 
and I/O operations.24, 32 Nevertheless, 
if the service code uses transactions to 
access shared data in memory, the re-
quirements of transaction pausing are 

not significantly different from those 
of open-nested transactions. Finally, 
both McDonald et al. and Sriraman et 
al. propose multiple types of load and 
store instructions what allow compil-
ers to distinguish accesses to thread-
private, immutable, or idempotent 
data from accesses to truly shared data. 
By providing such mechanisms, HTM 
systems can support software features 
ranging from conditional synchroni-
zation and limited I/O within trans-
actions5,32 to high-level concurrency 
models that avoid transaction aborts 
on memory conflicts if the application-
level semantics are not violated.4 

Open Issues
Beyond the implementation issues 
discussed here, TM faces a number of 
challenges that are the subject of active 
research. One serious difficulty with 
optimistic TM is that a transaction that 
executed an I/O operation may roll back 
at a conflict. I/O in this case consists of 
any interaction with the world outside 
of the control of the TM system. If a 
transaction aborts, its I/O operations 
should roll back as well, which may be 
difficult or impossible to accomplish 
in general. Buffering the data read or 
written by a transaction permits some 
rollbacks, but buffering fails in simple 
situations, such as a transaction that 
writes a prompt and then waits for user 
input. A more general approach is to 
designate a single privileged transac-
tion that runs to completion, by en-
suring it triumphs over all conflicting 
transactions. Only the privileged trans-
action can perform I/O (but the privi-
lege can be passed between transac-
tions), which unfortunately limits the 
amount of I/O a program can perform.

Another major issue is strong and 
weak atomicity. STM systems generally 
implement weak atomicity, in which 
non-transactional code is not isolated 
from code in transactions. HTM sys-
tems, on the other hand, implement 
strong atomicity, which provides a 
more deterministic programming 
model in which non-transactional code 
does not affect the atomicity of a trans-
action. This difference presents several 
problems. Beyond the basic question of 
which model is a better basis for writ-
ing software, the semantic differences 
makes it difficult to develop software 
that runs on both types of systems. I
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The least common denominator is the 
weak model, but erroneous programs 
will produce divergent results on differ-
ent systems. An alternative viewpoint 
is that unsynchronized data accesses 
between two threads is generally an er-
ror, and if only one thread is executing 
a transaction, then there is insufficient 
synchronization between the threads. 
Therefore, the programming language, 
tools, runtime system, or hardware 
should prevent or detect unsynchro-
nized sharing between transactional 
and non-transactional code, and a pro-
grammer should fix the defect.

Weakly atomic systems also face 
difficulties when an object is shared 
between transactional and non-trans-
actional code.30 Publication occurs 
when a thread makes an object visible 
to other threads (for example, by add-
ing it to a global queue) and privatiza-
tion occurs when a thread removes an 
object from the global shared space. 
Private data should be manipulatable 
outside of a transaction without syn-
chronization, but an object’s transi-
tion between public and private must 
be coordinated with the TM system, 
lest it attempt to roll back an object’s 
state while another thread assumes it 
has sole, private access to the data.

Finally, TM must coexist and inter-
operate with existing programs and li-
braries. It is not practical to require pro-
grammers to start afresh and acquire a 
brand new set of transactional libraries 
to enjoy the benefits of TM. Existing se-
quential code should be able to execute 
correctly in a transaction, perhaps with 
a small amount of annotation and re-
compilation. Existing parallel code 
that uses locks and other forms of syn-
chronization, must continue to oper-
ate properly, even if some threads are 
executing transactions. 

Conclusion
Transactional memory by itself is un-
likely to make Multicore computers 
readily programmable. Many other 
improvements to programming lan-
guages, tools, runtime systems, and 
computer architecture are also neces-
sary. TM, however, does provide a time-
tested model for isolating concurrent 
computations from each other. This 
model raises the level of abstraction for 
reasoning about concurrent tasks and 
helps avoid many insidious parallel 

programming errors. However, many 
aspects of the semantics and imple-
mentation of TM are still the subject 
of active research. If these difficulties 
can be resolved in a timely fashion, 
TM will likely become a central pillar 
of parallel programming.	
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