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Abstract

We present a declarative authorization language. Policies and credentials are ex-
pressed using predicates defined by logical clauses, in the style of constraint logic pro-
gramming. Access requests are mapped to logical authorization queries, consisting of
predicates and constraints combined by conjunctions, disjunctions, and negations. Ac-
cess is granted if the query succeeds against the current database of clauses. Predicates
ascribe rights to particular principals, with flexible support for delegation and revo-
cation. At the discretion of the delegator, delegated rights can be further delegated,
either to a fixed depth, or arbitrarily deeply.

Our language strikes a fine balance between semantic simplicity, policy expressive-
ness, and execution efficiency. The semantics consists of just three deduction rules.
The language can express many common policy idioms using constraints, controlled
delegation, recursive predicates, and negated queries. We describe an execution strat-
egy based on translation to Datalog with constraints and table-based resolution. We
show that this execution strategy is sound, complete, and always terminates, despite
recursion and negation, as long as simple syntactic conditions are met.
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1 Introduction

Many applications depend on complex and changing authorization criteria. In some do-
mains, such as electronic health records or eGovernment, authorization must comply with
evolving legislation. Distributed models such as web services or shared grid computations
involve frequent, ad hoc collaborations between entities with no pre-established trust rela-
tion, each with their own authorization policies. Hence, these policies must be phrased in
terms of principal attributes, asserted by adequate delegation chains, as well as traditional
identities. To deploy and maintain such applications, it is essential that all mundane au-
thorization decisions be automated, according to some human readable policy that can be
refined and updated, without the need to change (and re-validate) application code.

To this end, several declarative authorization management systems have been proposed;
they feature high-level languages dedicated to authorization policies; they aim at improving
scalability, maintenance, and availability by separating policy-based access control decisions
from their implementation mechanisms. Despite their obvious advantages, these systems
are not used much. The poor usability of policy languages remains a major obstacle to
their adoption. In this paper, we describe the design and semantics of SecPAL, a new
authorization language that improves on usability in several aspects. SecPAL is being
implemented and deployed as part of a large system-development project, initially targeted
at grid applications [17]. The early application of SecPAL for access control within a
prototype distributed computing environment has led to many improvements in its design.

Expressiveness Flexible delegation of authority is a key feature for decentralized systems.
SecPAL introduces a novel delegation mechanism that covers a wider spectrum of
delegation variants than existing authorization languages, including those specifically
designed for flexible delegation such as XrML [12], SPKI/SDSI [18] and Delegation
Logic (DL) [29]. Support for domain-specific constraints is another crucial feature, but
existing solutions have been very restrictive to preserve decidability and tractability
[31, 5], and disallow constraints that are required for expressing idioms commonly used
in practice. We introduce a novel set of mild and purely syntactic safety conditions
that allow an open choice of constraints without loss of efficiency. SecPAL can thus
express a wide range of idioms, including policies with parameterised roles and role
hierarchies, separation-of-duties and threshold constraints, expiration requirements,
temporal and periodicity constraints, policies on structured resources such as file
systems, and revocation.

Clear, readable syntax The syntax of some policy languages, such as XACML [36] and
XrML, is defined only via an XML schema; policies expressed directly in XML are
verbose and hard to read and write. On the other hand, policy authors are usually
unfamiliar with formal logic, and would find it hard to learn the syntax of most logic-
based policy languages (e.g. [26, 14, 32, 22, 31, 5]). SecPAL has a concrete syntax
consisting of simple, succinct statements close to natural language. (It also has an
XML schema for exchanging statements between implementations.)
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Intuitive, unambiguous semantics Languages such as XACML, XrML, or SPKI/SDSI
[18] are specified by a combination of lengthy descriptions and algorithms that are
ambiguous and, in some cases, inconsistent. Post-hoc attempts to formalise these
languages are difficult and reveal their semantic ambiguities and complexities (e.g.
[24, 23, 1, 30]). Without a formal foundation, it cannot be guaranteed that these
languages are decidable or tractable. Logic-based languages have a formal, unam-
biguous semantics, but that does not mean they are easily comprehensible. In many
cases, the semantics is specified only by translation to another formal language, such
as Datalog. The semantics of SecPAL assertions is specified by three deduction rules
that succinctly capture the intuitive meaning from the syntax. This is far more com-
prehensible than specifying the semantics via an algorithm or translation.

Another source of complexity is the use of negated conditions. Negation is a required
feature for expressing idioms such as separation of duties, but in conjunction with
recursion it can cause intractability and semantic ambiguity [45], and it generally
makes policies much harder to comprehend. By introducing a level of authorization
queries where negation is permitted and separating it from the negation-free assertion
language, we avoid these problems and simplify the task of authoring policies with
negation.

Effective decision procedures SecPAL query evaluation is decidable and tractable (with
polynomial data complexity) by translation into constrained Datalog We describe
a tabling resolution algorithm for efficient evaluation of authorization queries and
present correctness and complexity theorems for the translation and the algorithm.

Extensibility SecPAL builds on the notion of tunable expressiveness introduced in [4] and
defines several extension points at which functionality can be added in a modular and
orthogonal way. For example, the parameterized verbs, the environment functions,
and the language of constraints can all be extended by the user without affecting our
results.

To introduce the main features of SecPAL, we consider an example in the context of
a simplified grid system. Assume that Alice wishes to perform some data mining on a
computation cluster. To this end, the cluster needs to fetch Alice’s dataset from her file
server. A priori, the cluster may not know of Alice, and the cluster and the file server
may not share any trust relationship. We identify principals by names Alice, Cluster,
FileServer, . . . ; these names stand for public signature-verification keys in the SecPAL
implementation.

Alice sends to the cluster a request to run the command dbgrep file://project/
data.db plus a collection of tokens for the request, expressed as three SecPAL assertions:

STS says Alice is a researcher (1)
FileServer says Alice can read file://project (2)
Alice says Cluster can read file://project/data.db if

currentTime() ≤ 07/09/2006
(3)
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Every assertion is XML-encoded and signed by its issuer. Assertion (1) is an identity token
issued by STS, some security token server trusted by the cluster. Assertion (2) is a capability
for Alice to read her files, issued by FileServer. Assertion (3) delegates to Cluster the
right to access a specific file on that server, for a limited period of time; it is specifically
issued by Alice to support her request.

Before processing the request, the cluster authenticates Alice as the requester, validates
her tokens, and runs the query Cluster says Alice can execute dbgrep against the set
of assertions formed by its local policy plus these tokens. (Pragmatically, an authorization
query table for the cluster maps any requests to run dbgrep to such queries.) Assume the
local policy of the cluster includes the assertions:

Cluster says STS can say0 x is a researcher (4)
Cluster says x can execute dbgrep if x is a researcher (5)

Assertions (4) and (5) state that Cluster defers to STS to say who is a researcher, and that
any researcher may run dbgrep. (More realistic assertions may also include conditions and
constraints.) Here, we deduce that Cluster says Alice is a researcher by (1) and (4), then
deduce the target assertion by (5).

The cluster then executes the task, which involves requesting chunks of file://project/
data.db hosted on the file server. To support its requests, the cluster forwards Alice’s cre-
dentials. Before granting access to the data, the file server runs the query Cluster can read
file://project/data.db against its local policy plus Alice’s tokens. Assume the local pol-
icy of the server includes the assertion

FileServer says x can say∞ y can read file if
x can read dir, file � dir, markedConfidential(file) 6= Yes

(6)

Assertion (6) is a constrained delegation rule; it states that any principal x may delegate the
right to read a file, provided x can read a directory dir that includes the file and the file is not
marked as confidential. The first condition is a logical fact, whereas the last two conditions
are constraints. Here, by (3) and (6) with x = Alice and y = Cluster, the first condition
follows from (2) and we obtain that FileServer says Cluster can read file://project/
data.db provided that FileServer successfully checks the constraints currentTime() ≤
07/09/2006 and markedConfidential(file://project/data.db) 6= Yes.

In the delegation rules (4) and (6), the can says have different subscripts: in (4), can say0

prevents STS from re-delegating the delegated fact; conversely, in (6), can say∞ indicates
that y can re-delegate read access to file by issuing adequate can say tokens.

Assume now that the cluster distributes the task to several computation nodes, such
as Node23. In order for Node23 to gain access to the data, Cluster may issue its own
delegation token, so that the query FileServer says Node23 can read file://project/
data.db may be satisfied by applying (6) twice, with x = Alice then x = Cluster.
Alternatively, FileServer may simply issue the assertion

FileServer says Node23 can act as Cluster (7)
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With this aliasing mechanism, any assertion FileServer says Node23 verbphrase follows
from FileServer says Cluster verbphrase.

Contents The rest of the paper is organized as follows. Section 2 defines the syntax
and semantics of SecPAL assertions. Section 3 defines SecPAL authorization queries, built
as conjunctions, disjunctions and negations of facts and constraints. Section 4 shows how
to express a variety of authorization policy idioms in SecPAL. Sections 5, 6, and 7 give
our algorithm for evaluating authorization queries and establish its formal soundness and
completeness. SecPAL assertions are first translated into constrained Datalog (Section
5); the resulting program is then evaluated using a deterministic variant of resolution
with tabling (Section 6) for a series of Datalog queries obtained from the SecPAL query
(Section 7). Section 8 compares SecPAL to related languages and concludes.

Appendix A explains how assertions are filtered to remove expired or revoked assertions
prior to evaluating authorization queries. Appendix B discusses representations of proof
trees. Appendix C provides auxiliary definitions and all proofs.

2 Syntax and semantics of SecPAL

We give a core syntax for SecPAL. (The full SecPAL language provides additional syntax
for grouping assertions, for instance to delegate a series of rights in a single assertion;
these additions can be reduced to the core syntax. It also enforces a typing discipline for
constants, functions, and variables, omitted here.)

Assertions Authorization policies are specified as sets of assertions of the form

A says fact if fact1, ..., factn, c

where the facts are sentences that state properties on principals. A is the issuer ; the fact i

are the conditional facts; and c is the constraint. Assertions are similar to Horn clauses,
with the difference that (1) they are qualified by some principal A who issues and vouches
for the asserted claim; (2) facts can be nested, using the keyword can say, by means of which
delegation rights are specified; and (3) variables in the assertion are constrained by c, a
first-order formula that can express e.g. temporal, inequality, path and regular expression
constraints.
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e ::= x (variables)
| A (constants)

pred ∈ {possesses, can, ...} (predicates)
D ::= 0 (one-step, non-transitive delegation)

| ∞ (unbounded, transitive delegation)
verbphrase ::= pred e1 ... en for n = Arity(pred) ≥ 0

| can sayD fact (delegation with specified depth D)
| can act as e

fact ::= e verbphrase
claim ::= fact if fact1, ..., factn, c for some n ≥ 0

assertion ::= A says claim
AC ::= {assertion1, ..., assertionn} (assertion context)

Constants represent data such as IP addresses, DNS names, URLs, dates, and times.
Variables only range over the domain of constants — not predicates, facts, claims or as-
sertions. Predicates are verb phrases of fixed arity with holes for their object parameters;
holes may appear at any fixed position in verbphrases, as in e.g. has access from [−] till [−].

We say that a fact is flat when it does not contain can say, and is nested otherwise.
Facts are of the general form e1 can sayD1

... en can sayDn
fact , where n ≥ 0 and fact is flat.

For example, the fact Bob can read f is flat, but Charlie can say0 Bob can read f is not.

Constraints Constraints range over any constraint domain that extends the basic con-
straint domain shown below. Basic constraints include integer inequalities (for e.g. ex-
pressing temporal constraints), path constraints (for hierarchical file systems), and regular
expressions (for ad hoc filtering):

f ∈ {+,−,CurrentTime, ...} (built-in functions)
e ::= x

| A
| f(e1, ..., en) for n = Arity(f) ≥ 0

pattern ∈ RegularExpressions
c ::= True

| e1 = e2

| e1 ≤ e2 (integer inequality)
| e1 � e2 (path constraint)
| e matches pattern (regular expression)
| not(c) (negation)
| c1, c2 (conjunction)

Additional constraints can be added without affecting decidability or tractability. In
contrast to Cassandra [5] or RTC [31], the only requirement is that the validity of ground
constraints is decidable in polynomial time. (A phrase of syntax is ground when it contains
no variables.)
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We use a sugared notation for constraints that can be derived from the basic ones, e.g.
False, e1 6= e2 or c1 or c2. In assertions, we usually omit the True constraint, and also omit
the if when the assertion has no conditional facts.

We write keywords, function names and predicates in sans serif, constants in typewriter
font, and variables in italics. We also use A, B, C, and D as meta variables for constants,
usually for denoting principals. We use a vector notation to denote a (possibly empty) list
(or tuple) of items, e.g. we may write f(~e) for f(e1, ..., en).

For a given constraint c, we write |= c iff c is ground and valid. The following defines
ground validity within the basic constraint domain. The denotation of a constant A is
simply [[A]] = A. The denotation of a function f(~e) is defined if ~e is ground, and is also a
constant, but may depend on the system state as well as [[~e]]. For example, [[CurrentTime()]]
returns a different constant when called at different times. However, we assume that a
single authorization query evaluation is atomic with respect to system state. That is, even
though an expression may be evaluated multiple times, we require that its denotation not
vary during a single evaluation.

|= True
|= e1 = e2 iff [[e1]] and [[e2]] are equal constants
|= e1 ≤ e2 iff [[e1]] and [[e2]] are integer constants and [[e1]] ≤ [[e2]]
|= e1 � e2 iff [[e1]] and [[e2]] are path constants and

[[e1]] is a descendant of, or equal to, [[e2]]
|= e matches pattern iff [[e]] is a string constant that matches pattern
|= not(c) iff |= c does not hold
|= c1, c2 iff |= c1 and |= c2

Semantics We now give a formal definition of the language semantics. In the rest of this
document, we refer to a substitution θ as a function mapping variables to constants and
variables. Substitutions are extended to constraints, predicates, facts, claims, assertions
etc. in the natural way, and are usually written in postfix notation. We write vars(X) for
the set of variables occurring in a phrase of syntax X.

We now present the three deduction rules to capture the semantics of the language.
Each rule consists of a set of premises and a single consequence of the form AC, D |= A says
fact where vars(fact) = ∅ and the delegation flag D is 0 or ∞. Intuitively, the deduction
relation holds if the consequence can be derived from AC. If D = 0, no instance of the rule
(can say) occurs in the derivation.
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(cond)

(A says fact if fact1, ..., factk, c) ∈ AC
AC, D |= A says fact iθ for all i ∈ {1..k} |= cθ vars(factθ) = ∅

AC, D |= A says factθ

(can say)
AC,∞ |= A says B can sayD fact AC, D |= B says fact

AC,∞ |= A says fact

(can act as)
AC, D |= A says B can act as C AC, D |= A says C verbphrase

AC, D |= A says B verbphrase

Rule (cond) allows the deduction of matching assertions in AC with all free variables
substituted by constants. All conditional facts must be deducible, and the substitution
must also make the constraint valid. The delegation flag D is propagated to all conditional
facts. Rule (can say) deduces an assertion made by A by combining a can say assertion
made by A and a matching assertion made by B. This rule applies only if the delegation
flag is ∞. The matching assertion made by B must be proved with the delegation flag D
obtained from A’s can say assertion. Rule (can say) states that any fact that holds for C
also holds for B.

Rule (can act as) asserts that facts applicable to C also apply to B, when B can act as
C is derivable. A corollary is that can act as is a transitive relation.

Corollary 2.1. If AC, D |= A says B can act as B′ and AC, D |= A says B′ can act as
B′′ then AC, D |= A says B can act as B′′.

The following propositions state basic properties of the deduction relation; they are
established by induction on the rules.

Proposition 2.2. If AC, D |= A says fact then vars(fact) = ∅.

Proposition 2.3. If AC, 0 |= A says fact then AC,∞ |= A says fact .

Proposition 2.4. If AC1, D |= A says fact then AC1 ∪AC2, D |= A says fact .

Proposition 2.5. Let ACA be the set of all assertions in AC whose issuer is A. AC, 0 |= A
says fact iff ACA, 0 |= A says fact .

Proposition 2.5 implies that if A says fact is deduced from a zero-depth delegation
assertion A says B can say0 fact then the delegation chain is guaranteed to depend only on
assertions issued by B. XrML and DL [29] also support depth restrictions, but these can
be defeated as their semantics do not have the stated property. Section 8 discusses this
issue in more detail.

Safety The complexity of constraint logic programs depends on the choice of the con-
straint domain [44]. For this reason, authorization languages either support no constraints
at all, or only a limited class of constraints, in order to guarantee decidability and tractabil-
ity [3, 5, 31]. However, this would prohibit the use of constraints (even just the basic
constraint domain introduced above) that are actually needed in practice. SecPAL has
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virtually no restriction on the choice of constraint domain and yet remains decidable and
tractable. To achieve this, we enforce a simple, purely syntactic safety condition on the
variables occurring in assertions while allowing very expressive constraint domains.

Definition 2.6. (Assertion safety) Let A says fact if fact1, ..., factn, c be an assertion.
A variable x ∈ vars(fact) is safe iff x ∈ vars(fact1) ∪ ... ∪ vars(factn).

The assertion A says fact if fact1, ..., factn, c is safe iff

1. if fact is flat, all variables in vars(fact) are safe;
otherwise (i.e. fact is of the form e can sayD fact ′) e is either a constant or a safe
variable;

2. vars(c) ⊆ vars(fact) ∪ vars(fact1) ∪ ... ∪ vars(factn);

3. fact1, ..., factn are flat.

Examples Here are examples of safe assertions:

A says B can read Foo
A says B can read Foo if B can x y
A says B can read Foo if B can x y, x 6= y
A says B can x y if B can x y
A says z can x y if z can x Foo, z can read y
A says B can say0 x can y z

These assertions are unsafe:

A says B can x Foo
A says z can read Foo if B can x y
A says B can read Foo if B can x y, w 6= y
A says B can x y if B can say0 C can x y
A says w can say0 x can y z

The safety condition guarantees that the evaluation of the Datalog translation, as de-
scribed in Section 6, is complete and terminates in all cases. In essence, it makes sure that
constraints become ground (and thus easy to solve) during runtime once all conditional
facts have been satisfied.

3 Authorization queries

Authorization requests are decided by querying an assertion context (containing local as
well as imported assertions). In SecPAL, authorization queries consist of atomic queries of
the form A says fact and constraints, combined by logical connectives including negation:
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q ::= e says fact
| q1, q2

| q1 or q2

| not(q)
| c

The resulting query language is more expressive than in other logic-based languages where
only atomic queries are considered. For example, separation of duties, threshold and deny-
ing policies can be expressed by composing atomic queries with negation and constraints
(see Section 4). We do not allow negation in the assertion language, as coupling nega-
tion with a recursive language results in semantic ambiguities [45], and often to higher
computational complexity or undecidability [38]. By introducing the level of authorization
queries and restricting the use of negation to this level, we effectively uncouple negation
from recursion, thereby circumventing the problems usually associated with negation.

The semantics of queries is defined by the relation AC, θ ` q. In the following, let ε be
the empty substitution.

AC, θ ` e says fact if AC,∞ |= eθ says factθ, and dom(θ) ⊆ vars(e says fact)
AC, θ1θ2 ` q1, q2 if AC, θ1 ` q1 and AC, θ2 ` q2θ1

AC, θ ` q1 or q2 if AC, θ ` q1 or AC, θ ` q2

AC, ε ` not(q) if AC, ε 0 q and vars(q) = ∅
AC, ε ` c if |= c

One can easily verify that AC, θ ` q implies dom(θ) ⊆ vars(q). Note that conjunction is
defined to be non-commutative, as the second query may be instantiated by the outcome
of the first query.

Given a query q and an authorization context AC, an authorization algorithm should
return the set of all substitutions θ such that AC, θ ` q. If the query is ground, the
answer set will be either empty (meaning “no”) or be a singleton set containing the empty
substitution ε (meaning “yes”). In the general case, i.e. if the query contains variables, the
substitutions in the answer set are all the variable assignments that make the query true.
This is more informative than just returning “yes, the query can be satisfied”. Section 7
gives an algorithm for finding this set of substitutions.

Safety We now define a safety condition on authorization queries to guarantee that the
set of answer substitutions is finite, given that the assertions in the assertion context are
safe. Furthermore, the condition ensures that subqueries of the form not(q) or c will be
ground at evaluation time, assuming a left-to-right evaluation rule with propagation for
conjunctions, as is defined in Section 7.

We first define a deduction relation  with judgments of the form I  q : O where q is a
query and I, O are sets of variables. Intuitively, the set I represents the variables that are
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grounded by the context of the subquery, and O represents the variables that are grounded
by the subquery.

fact is flat
I  e says fact : vars(e says fact)− I

I  q1 : O1 I ∪O1  q2 : O2

I  q1, q2 : O1 ∪O2

I  q1 : O1 I  q2 : O2

I  q1 or q2 : O1 ∩O2

vars(q) ⊆ I

I  not(q) : ∅
vars(c) ⊆ I

I  c : ∅

Definition 3.1. (Authorization query safety) An authorization query q is safe iff there
exists a set of variables O such that ∅  q : O.

Checking safety can be done by recursively traversing all subqueries and thereby con-
structing the set O (which is uniquely determined by the query and I).

Examples

Safe queries Unsafe queries
A says C can read Foo A says B can say C can read Foo
x says y can a b, x = A x = A, x says y can a b
x says y can a b, y says z can a b, x 6= y x says y can a b, y says z can a b, x 6= w
(x says y can a b or y says x can a b), x 6= y (x says y can a b or y says z can a b), x 6= y
x says y can a b, not(y says x can a b) x says y can a b, not(y says z can a b)

Authorization query tables Conceptually, authorization queries are part of the local
policy and should be kept separate from imperative code. In SecPAL, authorization queries
belonging to a local assertion context are kept in a single place, the authorization query
table. The table provides an interface to authorization queries by mapping parameterized
method names to queries. Upon a request, the resource guard calls a method (instead of
issuing a query directly) that gets mapped by the table to an authorization query, which
is then used to query the assertion context.

For example, an authorization query table could contain the mapping:

canAuthorizePayment(requester, payment) :
Admin says requester possesses BankManagerID id,
not(Admin says requester has initiated payment)

If Alice attempts to authorize the payment Payment47, say, the resource guard calls
canAuthorizePayment(Alice, Payment47), which triggers the query

Admin says Alice possesses BankManagerID id,
not(Admin says Alice has initiated Payment47).

The resulting answer set (either an empty set if the request should be denied or a variable
assignment for id) is returned to the resource guard who can then enforce the policy.
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4 Policy idioms

In this section, we give examples of both assertions and authorization queries to show how
SecPAL can be used to encode a number of well-known policy idioms.

Discretionary Access Control (DAC) The following assertion specifies that users can
pass on their access rights to other users at their own discretion.

Admin says user can say∞ x can access resource if
user can access resource

For example, if it follows from the assertion context that Admin says Alice can read file://
docs/ and Alice says Bob can read file://docs/, then Admin says Bob can read file://
docs/. Even a policy as simple as this one cannot be expressed in languages without
recursion such as XACML.

Mandatory Access Control (MAC) We assume a finite set of users U and a finite set
of files S, characterised by the verb phrases is a user and is a file. Additionally, every such
user and file is associated with a label from an ordered set of security levels. The constraint
domain uses the function level to retrieve these labels, and the relation ≤ to represent the
ordering. The following two assertions implement the Simple Security Property and the
*-Property from the Bell-LaPadula model [6], respectively.

Admin says x can read f if
x is a user,
f is a file,
level(x) ≥ level(f)

Admin says user can write file if
x is a user,
f is a file,
level(x) ≤ level(f)

Role hierarchies The can act as keyword can be used to express role membership as
well as role hierarchies in which roles inherit all privileges of less senior roles. The following
example models a part of the hierarchy of medical careers in the UK National Health
Service.

HealthService says FoundationTrainee can read file://docs/

HealthService says SpecialistTrainee can act as FoundationTrainee

HealthService says SeniorMedPractitioner can act as SpecialistTrainee

HealthService says Alice can act as SeniorMedPractitioner

The first assertion assigns a privilege to a role; the second and third establish seniority re-
lations between roles; and the last assertion assigns Alice the role of a Senior Medical Prac-
titioner. From these assertions it follows that Admin says Alice can read file://docs/.
This example illustrates that SecPAL principals can represent roles as well as individuals;
the principal FoundationTrainee is a role, while the principal Alice is an individual.
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Parameterized attributes Parameterized roles can add significant expressiveness to
a role-based system and reduce the number of roles [21, 33]. In SecPAL, parameterized
roles, attributes and privileges can be encoded by introducing verb phrases. The following
example uses the verb phrases can access health record of [−] and is a treating clinician of [−].

HealthService says x can access health record of patient if
x is a treating clinician of patient

Separation of duties In this simple example of separation of duties, a payment trans-
action proceeds in two phases, initiation and authorization, which are required to be ex-
ecuted by two distinct bank managers. The following shows a fragment of the autho-
rization query table. The method canInitiatePayment(R,P ) is called by the resource
guard when a principal R attempts to initialize a payment P . If this is successful, the re-
source guard adds Admin says R has initiated P to the local assertion context. The method
canAuthorizePayment is called when a principal attempts to authorize a payment. This is
mapped to an authorization query that includes a negated atomic query that checks that
the requester has not initiated the payment.

canInitiatePayment(requester, payment) :
Admin says requester possesses BankManagerID id

canAuthorizePayment(requester, payment) :
Admin says requester possesses BankManagerID id,
not(Admin says requester has initiated payment)

Threshold-constrained trust SPKI/SDSI has the concept of k-of-n threshold subjects
(at least k out of n given principals must sign a request) to provide a fault tolerance
mechanism. RT T has the language construct of “threshold structures” for similar purposes
[32]. There is no need for a dedicated threshold construct in SecPAL, because threshold
constraints can be expressed directly. In the following example, Alice trusts a principal if
that principal is trusted by at least three distinct, trusted principals.

Alice says x is trusted by Alice if
x is trusted by a,
x is trusted by b,
x is trusted by c,
a 6= b, b 6= c, a 6= c

Alice says x can say∞ y is trusted by x if
x is trusted by Alice

Hierarchical resources Suppose the assertion

Admin says Alice can read file://docs/
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is supposed to mean that Alice has read access to the path /docs/ as well as to all descen-
dants of that path. For example, Alice’s request to read /docs/foo/bar.txt should be
granted. To encode this, one might try to write

Admin says Alice can read x if x matches file://docs/*

Unfortunately, this assertion is not safe. Instead, we can stick with the original assertion
and use the path constraint � inside queries:

canRead(requester, path) :
Admin says requester can read path2, path � path2

The same technique can be used in conditional facts. With the following assertion, users
can not only pass on their access rights, but also access rights to specific descendants; Alice
could then for example delegate read access for file://docs/foo/.

Admin says user can say∞ x can access path if
user can access path2,
path � path2

The support of hierarchical resources is a very common requirement in practice, but existing
policy languages cannot express the example shown above. For example, in RTC [31], the
� relation cannot take two variable arguments, because it only allows unary constraints in
order to preserve tractability. Again, it is SecPAL’s safety conditions that allow us to use
such expressive constraint domains without losing efficiency.

Attribute-based delegation Attribute-based (as opposed to identity-based) authoriza-
tion enables collaboration between parties whose identities are initially unknown to each
other. The authority to assert that a subject holds an attribute (such as being a student)
may then be delegated to other parties, who in turn may be characterised by attributes
rather than identity.

In the example below, students are entitled to a discount. The expiration date of the
student attribute can be checked with a constraint. The authority over the student attribute
is delegated to holders of the university attribute, and authority over the university attribute
is delegated to a known principal, the Board of Education.

Admin says x is entitled to discount if
x is a student till date,
currentTime() ≤ date

Admin says univ can say∞ x is a student till date if
univ is a university

Admin says BoardOfEducation can say∞ univ is a university

13



Constrained delegation Delegators may wish to restrict the parameters of the delegated
fact. In SecPAL, this can be done with constraints. In the example below, a Security Token
Server (STS) is given the right to issue tickets for accessing some resource for a specified
validity period of no longer than eight hours.

Admin says STS can say∞ x has access from t1 till t2 if
t2− t1 ≤ 8 hours

The delegation depth specified in the assertion above is unlimited, so STS can in turn
delegate the same right to some STS2, possibly with additional constraints. With STS’s
assertion below, Admin will accept tickets issued by STS2 with a validity period of at most
eight hours, where the start date is not before 01/01/2007.

STS says STS2 can say0 x has access from t1 till t2 if
t1 ≥ 01/01/2007

Depth-bounded delegation The delegation-depth subscript of the can say keyword can
only be 0 (no re-delegation) and ∞ (unlimited re-delegation). This might seem restrictive
at first sight. However, SecPAL can express any fixed integer delegation depth by nesting
can say. In the following example, Alice delegates the authority over is a friend facts to Bob
and allows Bob to re-delegate one level further.

Alice says Bob can say0 x is a friend

Alice says Bob can say0 x can say0 y is a friend

Suppose Bob re-delegates to Charlie with the assertion Bob says Charlie can say∞ x is a friend.
Now, Alice says Eve is a friend follows from Charlie says Eve is a friend. Since Alice does
not accept any longer delegation chains, Alice (in contrast to Bob) does not allow Charlie
to re-delegate with

Charlie says Doris can say0 x is a friend

Furthermore, Charlie cannot defeat the delegation depth restriction with the following trick
either, because the restriction is propagated to conditional facts.

Charlie says x is a friend if x is Doris’ friend
Charlie says Doris can say0 x is Doris’ friend

If the only assertions by Alice and Bob that mention the predicate is a friend are those
listed above, it is guaranteed that the result of the query Alice says x is a friend depends
only on Charlie’s assertions—not those of Doris for instance. Previous languages cannot
express such a policy with this guarantee, either because they do not support delegation
depth at all, or their depth restriction can be defeated with the trick above.
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Width-bounded delegation Suppose Alice wants to delegate authority over is a friend
facts to Bob. She does not care about the length of the delegation chain, but she requires
every delegator in the chain to satisfy some property, e.g. to possess an email address from
fabrikam.com. The following assertions implement this policy by encoding constrained
transitive delegation using the can say keyword with a 0 subscript. Principals with the is
a delegator attribute are authorized by Alice to assert is a friend facts, and to transitively
re-delegate this attribute, but only amongst principals with a matching email address.

Alice says x can say0 y is a friend if
x is a delegator

Alice says Bob is a delegator

Alice says x can say0 y is a delegator if
x is a delegator,
y possesses Email email,
email matches *@fabrikam.com

If these are the only assertions by Alice that mention the predicate is a friend or is a
delegator, then any derivation of Alice says x is a friend can only depend on Bob or principals
with a matching email address. As with depth-bounded delegation, this property cannot
be enforced in previous languages.

5 Translation into constrained Datalog

The SecPAL assertion semantics is defined by the three deduction rules of Section 2. This
semantics is more comprehensible and intuitive than one defined in terms of a translation
into some form of formal logic, as in e.g. [29, 26, 32, 14, 31, 22, 5]. Nevertheless, it is
useful to be able to efficiently translate SecPAL assertion contexts into equivalent Datalog
programs. We can then exploit known complexity results (polynomial data complexity)
and use the translated Datalog program for query evaluation, as described in Section 6.

Our terminology for constrained Datalog is as follows. (See [9] or [2] for an introduction
to Datalog and [39, 38] for constrained Datalog.) A literal, P , consists of a predicate name
plus an ordered list of parameters, each of which is either a variable or a constant. A literal
is ground if and only if it contains no variables. A clause, written P ′ ← P1, . . . , Pn, c,
consists of a head and a body. The head, P ′, is a literal. The body consists of a list of
literals, P1, . . . , Pn, plus a constraint, c. We assume the sets of variables, constants, and
constraints are the same as for SecPAL. A Datalog program, P, is a finite set of clauses.

The semantics of a program P is the least fixed point of the following operator TP .

Definition 5.1. (Consequence operator) The immediate consequence operator TP is a
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function between sets of ground literals and is defined as:

TP(I) = {P ′θ | (P ′ ← P1, ..., Pn, c) ∈ P,
Piθ ∈ I for each i,
cθ is valid,
cθ and P ′θ are ground }

The operator TP is monotonic and continuous, and its least fixed point Tω
P (∅) contains

all ground literals deducible from P.
We now describe an algorithm for translating an assertion context into an equivalent

constrained Datalog program. We treat expressions of the form e1 saysk fact as Datalog
literals, where k is either a variable or 0 or ∞. This can be seen as a sugared notation for
a literal where the predicate name is the string concatenation of all infix operators (says,
can say, can act as, and predicates) occurring in the expression, including subscripts for
can say. The arguments of the literal are the collected expressions between these infix
operators. For example, the expression A saysk x can say∞ y can say0 B can act as z is
shorthand for says can say infinity can say zero can act as(A, k, x, y, B, z).

Algorithm 5.2. The translation of an assertion context AC proceeds as follows:

1. If fact0 is flat, then an assertion A says fact0 if fact1, ..., factn, c is translated into the
clause A saysk fact0 ← A saysk fact1, ..., A saysk factn, c where k is a fresh variable.

2. Otherwise, fact0 is of the form e0 can sayK0
... en−1 can sayKn−1

fact , for some n ≥ 1,
where fact is flat. Let ˆfactn ≡ fact and ˆfact i ≡ ei can sayKi

ˆfact i+1, for i ∈ {0..n− 1}.
Note that fact0 = ˆfact0. Then the assertion A says fact0 if fact1, ..., factm, c is trans-
lated into a set of n + 1 Datalog rules as follows.

(a) We add the Datalog rule A saysk ˆfact0 ← A saysk fact1, ..., A saysk factm, c where
k is a fresh variable.

(b) For each i ∈ {1..n}, we add a Datalog rule

A says∞ ˆfact i ←
x saysKi−1

ˆfact i,

A says∞ x can sayKi−1
ˆfact i

where x is a fresh variable.

3. Finally, for each Datalog rule created above of the form A saysk e verbphrase ← ...
we add a rule

A saysk x verbphrase←
A saysk x can act as e,
A saysk e verbphrase

where x is a fresh variable. Note that k is not a fresh variable, but either a constant
or a variable taken from the original rule.
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Example For example, the assertion

A says B can say∞ y can say0 C can read z if y can read Foo

is translated into

A saysk B can say∞ y can say0 C can read z ← A saysk y can read Foo

A says∞ y can say0 C can read z ←
x says∞ y can say0 C can read z ,
A says∞ x can say∞ y can say0 C can read z

A says∞ C can read z ←
x says0 C can read z ,
A says∞ x can say0 C can read z

in Steps 2a and 2b. Finally, in Step 3, the following rules are also added:

A saysk x can say∞ y can say0 C can read z ←
A saysk x can act as B,
A saysk B can say∞ y can say0 C can read z

A says∞ x can say0 C can read z ←
A saysk x can act as y,
A says∞ y can say0 C can read z

A says∞ x can read z ←
A saysk x can act as C,
A says∞ C can read z

Intuitively, the says subscript keeps track of the delegation depth, just like the D in the
three semantic rules in Section 2. This correspondence is reflected in the following theorem
that relates the Datalog translation to the SecPAL semantics.

Theorem 5.3. (Soundness and completeness) Let P be the Datalog translation of the
assertion context AC. A saysD fact ∈ Tω

P (∅) iff AC, D |= A says fact .

6 Datalog evaluation with tabling

In the section above, we showed how a set of SecPAL assertions can be translated into an
equivalent constrained Datalog program. This section deals with the problem of evaluating
such a program, that is, given a query of the form e says∞ fact , finding all instances of the
query that are in Tω

P (∅).
In the context of deductive databases, the bottom-up approach is most often used for

Datalog evaluation. There, the program’s model (i.e., its least fixed-point) is computed
once and for all. This has the advantage that it is a complete, terminating procedure, and
query evaluation is fast once the fixed-point has been constructed.
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However, bottom-up evaluation is not suitable for SecPAL, as the assertion context is
not constant. In fact, it may be completely different between different requests. Computing
the model for every request is not efficient as it results in the evaluation of irrelevant goals.
Furthermore, the queries we are interested in are usually fully or partially instantiated, so
a top-down, goal-directed approach seems more appropriate.

The most widely-known top-down evaluation algorithm is SLD resolution, as used for
Prolog. Unfortunately, SLD resolution can run into infinite loops even for safe Datalog
programs, if some of the predicates have recursive definitions, as is the case for can say
or can act as assertions. The problem remains even if instead of a depth-first a breadth-
first search strategy is employed: the looping occurs because the SLD search tree is infinite.
Tabling, or memoing, is an efficient approach for guaranteeing termination by incorporating
some bottom-up techniques into a top-down resolution strategy. The basic idea is to prune
infinite search trees by keeping a table of encountered subgoals and their answers, and to
compute a subgoal only if it is not already in the table [42, 16, 11].

We present here a deterministic algorithm based on tabling. The algorithm constructs
a directed acyclic proof graph by assembling and connecting nodes. A node can either be
a root node of the form 〈P 〉, where P is a literal, or it can be a sextuple 〈P ; ~Q; c;S; ~nd;Rl〉
where the literal P is its index, the list of literals ~Q its subgoals, c its constraint, the literal
S its partial answer, the list of nodes ~nd its child nodes, and Rl its rule. If the list of
subgoals is nonempty, its head is the node’s current subgoal. A node with an empty list of
subgoals and a true constraint (i.e., of the form 〈 ; [ ]; True;S; ; 〉) is an answer node, and
S is its answer. Intuitively, the list of subgoals (originally taken from the body of rule Rl)
contains the literals that still have to be solved for the query indexed by P . The subgoals
are solved from left to right, hence the head of the list is the current subgoal. When the
current subgoal can be resolved against another answer node, the latter is added to the list
of child nodes. This may entail instantiations of variables which will narrow down both the
constraint c and the partial answer S. The partial answer may eventually become a proper
answer if all subgoals have been solved and the constraint is valid.

The algorithm makes use of two tables. The answer table Ans is a mapping from literals
to sets of answer nodes. The wait table Wait is a mapping from literals to sets of nodes
with nonempty lists of subgoals. Ans(P ) contains all answer nodes pertaining to the query
〈P 〉 found so far. Wait(P ) is a list of all those nodes whose current subgoal is waiting for
answers from 〈P 〉. Whenever a new answer for 〈P 〉 is produced, the computation of these
waiting nodes is resumed.

Before presenting the algorithm in detail, we define a number of terms. simplify denotes
a function on constraints whose return value is always an equivalent constraint, and if the
argument is ground, the return value is either True or False. The infix operators :: and @
denote the cons and the append operations on lists, respectively. Let P and Q range over
literals. A variable renaming for P is an injective substitution whose range consists only
of variables. A fresh renaming of P is a variable renaming for P such that the variables
in its range have not appeared anywhere else. A substitution θ is more general than θ′ iff
there exists a substitution ρ such that θ′ = θρ. A substitution θ is a unifier of P and Q
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Resolve-Clause(〈P 〉)
Ans(P ) := ∅;
foreach (Q← ~Q, c) ∈ P do

if nd = resolve(〈P ;Q :: ~Q; c;Q; [ ];Rl〉, P ) exists then
Process-Node(nd)

Process-Answer(nd)
match nd with 〈P ; [ ]; c; ; ; 〉 in

if nd /∈ Ans(P ) then
Ans(P ) := Ans(P ) ∪ {nd};

foreach nd′ ∈Wait(P ) do
if nd′′ = resolve(nd′, nd) exists then

Process-Node(nd′′)

Process-Node(nd)
match nd with 〈P ; ~Q; c; ; ; 〉 in

if ~Q = [ ] then
Process-Answer(nd)

else match ~Q with Q0 :: in
if there exists Q′

0 ∈ dom(Ans)
such that Q0 ⇒ Q′

0 then
Wait(Q′

0) := Wait(Q′
0) ∪ {nd};

foreach nd′ ∈ Ans(Q′
0) do

if nd′′ = resolve(nd, nd′) exists then
Process-Node(nd′′)

else
Wait(Q0) := {nd};
Resolve-Clause(〈Q0〉)

Figure 1: A tabled resolution algorithm for evaluating Datalog queries.

iff Pθ = Qθ. A substitution θ is a most general unifier of P and Q iff it is more general
than any other unifier of P and Q. When P and Q are unifiable, they also have a most
general unifier that is unique up to variable renaming. We denote it by mgu(P,Q). Finding
the most general unifier is relatively simple (see [27] for an overview) but there are more
intricate algorithms that run in linear time, see e.g. [37, 34]. P is an instance of Q iff
P = Qθ for some substitution θ, in which case we write P ⇒ Q.

A node nd ≡ 〈P ;Q :: ~Q; c;S; ~nd;Rl〉 and a literal Q′ are resolvable iff Q′′ is a fresh
renaming of Q′, θ ≡ mgu(Q,Q′′) exists and d ≡ simplify(cθ) 6= False. Their resolvent is
nd′′ ≡ 〈P ; ~Qθ; d;Sθ; ~nd;Rl〉, and θ is their resolution unifier. We write resolve(nd,Q′) =
nd′′ if nd and Q′ are resolvable. By extension, a node nd ≡ 〈P ;Q :: ~Q; c;S; ~nd;Rl〉 and
an answer node nd′ ≡ 〈 ; [ ]; True;Q′; ; 〉 are resolvable iff nd and Q′ are resolvable with
resolution unifier θ, and their resolvent is nd′′ ≡ 〈P ; ~Qθ; d;Sθ; ~nd@[nd′];Rl〉. We write
resolve(nd, nd′) = nd′′ if nd and nd′ are resolvable.

Figure 1 shows the pseudocode of our Datalog evaluation algorithm. Let P be a literal
and Ans be an answer table. AnswersP(P,Ans) is defined as

{θ : 〈 ; ; ;S; ; 〉 ∈ Ans(P ′), S = Pθ, dom(θ) ⊆ vars(P )}

if there exists a literal P ′ ∈ dom(Ans) such that P ⇒ P ′. In other words, if the supplied an-
swer table already contains a suitable answer set, we can just return the existing answers. If
no such literal exists in the domain of Ans and if the call Resolve-Clause(〈P 〉) terminates
with initial answer table Ans and an initially empty wait table, then AnswersP(P,Ans) is
defined as

{θ : 〈 ; ; ;S; ; 〉 ∈ Ans′(P ), S = Pθ, dom(θ) ⊆ vars(P )}

where Ans′ is the modified answer table after the call. In all other cases AnswersP(P,Ans)
is undefined. Theorem 6.2 states the termination, soundness and completeness properties
of AnswersP . These properties will be exploited in Section 7 where we present an algorithm
for evaluating composite authorization queries.
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At first sight, completeness with respect to Tω
P (∅) depends on P being Datalog-safe,

i.e., all variables in the head literal must occur in a body literal. However, the translation
of a safe SecPAL assertion context does not always result in a Datalog-safe program. We
define an alternative notion of safety for Datalog programs that is satisfied by the SecPAL
translation and that still preserves completeness. Every parameter position of a predicate
is associated with either IN or OUT. A Datalog clause is IN/OUT-safe iff any OUT-
variable in the head also occurs as an OUT-variable in the body, and any IN-variable in
a body literal also occurs as IN-variable in the head or as OUT-variable in a preceding
body literal. A Datalog program P is IN/OUT-safe iff all its clauses are IN/OUT-safe.
A query P is IN/OUT-safe iff all its IN-parameters are ground.

Theorem 6.1. If AC is a safe assertion context and P its Datalog translation then there
exists an IN/OUT assignment to predicate parameters in P such that P is IN/OUT-safe.

An answer table Ans is sound (with respect to some program P) iff for all P ∈
dom(Ans): 〈P ′; [ ]; True;S; ; 〉 ∈ Ans(P ) implies P = P ′, S ⇒ P , and S ∈ Tω

P (∅). Ans is
complete (with respect to P) iff for all P ∈ dom(Ans): S ∈ Tω

P (∅) and S ⇒ P implies that
S is the answer of an answer node in Ans(P ). Note, in particular, that the empty answer
table is sound and complete.

Theorem 6.2. (soundness, completeness, termination) Let Ans be a sound and
complete answer table, P an IN/OUT-safe program and P an IN/OUT-safe query. Then
AnswersP(P,Ans) = Θ is defined, finite and equal to {θ : Pθ ∈ Tω

P (∅), dom(θ) ⊆ vars(P )}.

Actually, the modified answer table after evaluation is still sound and complete and
contains enough information to reconstruct the complete proof graph for each answer: an
answer node 〈 ; ; ;S; ~nd;Rl〉 is interpreted to have edges pointing to each of its child nodes
~nd and an edge pointing to the rule Rl. Appendix B shows how this Datalog proof graph
can be converted back into a corresponding SecPAL proof graph.

7 Evaluation of authorization queries

Based on the algorithm from the previous section, we can now show how to evaluate complex
authorization queries as defined in Section 3.

In the following, let AC be an assertion context and P its Datalog translation, and let ε
be the empty substitution. We define the function AuthAnsAC on authorization queries as
follows.
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AuthAnsAC(e says fact) = AnswersP(e says∞ fact , ∅)
AuthAnsAC(q1, q2) = {θ1θ2 | θ1 ∈ AuthAnsAC(q1) and θ2 ∈ AuthAnsAC(q2θ1)}

AuthAnsAC(q1 or q2) = AuthAnsAC(q1) ∪AuthAnsAC(q2)

AuthAnsAC(not(q)) =

 {ε} if vars(q) = ∅ and AuthAnsAC(q) = ∅
∅ if vars(q) = ∅ and AuthAnsAC(q) 6= ∅
undefined otherwise

AuthAnsAC(c) =

 {ε} if |= c
∅ if vars(c) = ∅ and 6|= c
undefined otherwise

The following theorem shows that AuthAnsAC is an algorithm for evaluating safe autho-
rization queries.

Theorem 7.1. (Finiteness, soundness, and completeness of authorization query
evaluation) For all safe assertion contexts AC and safe authorization queries q,

1. AuthAnsAC(q) is defined and finite, and

2. AC, θ ` q iff θ ∈ AuthAnsAC(q).

The evaluation of the base case e says fact calls the function AnswersP with an empty
answer table. But since the answer table after each call remains sound and complete (it
will just have a larger domain), a more efficient implementation could initialize an empty
table only for the first call in the evaluation of an authorization query, and then reuse the
existing, and increasingly populated, answer table for each subsequent call to AnswersP .

Finally, the following theorem states that SecPAL has polynomial data complexity (see
e.g. [2, 13] for a definition and discussion of data versus program complexity). Data com-
plexity is a sensible measure for the tractability of policy languages as the size of the exten-
sional database (the number of “plain facts”) typically exceeds the size of the intensional
database (the number of “rules”) by several orders of magnitude.

Theorem 7.2. Let M be the number of flat atomic assertions (i.e., those without condi-
tional facts) in AC and N be the maximum length of constants occurring in these assertions.
The time complexity of computing AuthAnsAC is polynomial in M and N .

8 Discussion

Related work The earliest authorization policy languages to support the trust manage-
ment paradigm were PolicyMaker and Keynote [8, 7]. Quite a few other policy languages
have been developed since. SPKI/SDSI [18] is an experimental IETF standard using cer-
tificates to specify decentralized authorization. Authorization certificates grant permissions
to subjects specified either as public keys, or as names defined via linked local name spaces
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[41], or as k-out-of-n threshold subjects. Grants can have validity restrictions and indicate
whether they may be delegated.

XrML [12] (and its offspring, MPEG-21 REL) is an XML-based language targeted at
specifying licenses for Digital Rights Management. Grants may have validity restrictions
and can be conditioned on other existing or deducible grants. A grant can also indicate
under which conditions it may be delegated to others.

XACML [36] is another XML-based language for describing access control policies. A
policy grants capabilities to subjects that satisfy the specified conditions. Deny policies
explicitly state prohibitions. XACML defines a number of policy combination rules for
resolving conflicts between permitting and denying policies such as First-Applicable, Deny-
Override or Permit-Override. XACML does not support delegation and is thus not well
suited for decentralized authorization.

The OASIS SAML [35] standards define XML formats and protocols for exchanging
authenticated user identities, attributes, and authorization decisions, such as whether a
particular subject has access to a particular object. SAML messages do not themselves
express authorization rules or policies.

The original Globus security architecture [20] for grid computing defines a general secu-
rity policy for subjects and objects belonging to multiple trust domains, with cross-domain
delegation of access rights. More recent computational grids rely on specific languages,
such as Akenti [43], Permis [10], and XACML, to define fine-grained policies, and exchange
SAML or X.509 certificates to convey identity, attribute, and role information. Version 1.1
of XACML has a formal semantics [24] via a purely functional implementation in Haskell.
To the best of our knowledge, XACML and SecPAL are the only authorization languages
for grid computing that have formal semantics.

Policy languages such as Binder [14], SD3 [26], Delegation Logic (DL) [29] and the RT
family of languages [32] use Datalog as basis for their syntax and semantics. To support
attribute-based delegation, these languages allow predicates to be qualified by an issuing
principal. Cassandra [5, 4] and RTC [31] are based on Datalog with Constraints [25, 38]
for higher expressiveness. The Cassandra framework also defines a transition system for
evolving policies and supports automated credential retrieval and automated trust negotia-
tion. Lithium [22] is a language for reasoning about digital rights and is based on a slightly
different fragment of first order logic that can express negation, in the conclusion as well
as in the premises of policy rules. It was not designed for decentralized trust management,
however, and lacks dedicated features for controlling delegation.

Lampson, Burrows, Abadi, and Wobber [28] develop a theory of authentication and
access control in which a “speaks for” relation defines when the right to assert a statement
is delegated from one principal to another. SecPAL’s “can say” relation can be seen as a
specialized form of “speaks for” in their theory.

In the following, we discuss in detail how SecPAL compares with other languages.

Syntactic simplicity. Usability is one of the main obstacles in the industrial deployment
of policy technology. Purely XML-based languages such as XACML or XrML are difficult
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to read due to the verbosity of XML documents. In contrast, logic-based languages such
as Cassandra, Binder, Lithium, SD3, or RT tend to have a more concise syntax. However,
the users who would be writing the policies (e.g. system administrators) are usually not
acquainted with formal logic, and are deterred by the high level of abstraction and the
syntax based on formal logic found in these languages [3]. In contrast, the syntax of
SecPAL essentially consists of simple, succinct sentences in English.

Semantic simplicity. To be practically usable, a policy language should not only have
a simple, readable syntax, but also a simple, intuitive semantics. The XACML rule se-
mantics is simple enough that a natural language specification may be sufficient, but at
the expense of limited expressiveness. XrML is specified in terms of a very complex autho-
rization algorithm [12, Section 5.8]. SPKI/SDSI does not have a formal foundation either.
The unintended semantic complexities of policy languages without a precise semantics be-
come apparent when a formalization is attempted retroactively, as in the case of post-hoc
formalizations for XACML [24], XrML [23] or SPKI/SDSI [1, 30].

Lithium uses exactly the syntax and semantics of (a fragment of) first order logic.
Binder, SD3 and RT are defined in terms of their translation into Datalog, and DL in
terms of a translation into pure Prolog. Cassandra and RTC are defined via translations
into Datalog with Constraints. In contrast, the SecPAL assertion semantics is defined by
the three deduction rules in Section 2 that directly reflect the intuition suggested by the
syntax. We believe that our proof-theoretic approach enhances simplicity and clarity, far
more than if we had instead taken the Datalog translation in Section 5 as the language
specification.

Termination and tractability. A query evaluation algorithm must be sound and com-
plete with respect to the language semantics, and must always terminate and be tractable.
Halpern and Weissman have shown for a fragment of XrML that the given evaluation al-
gorithm returns unintended results and is intractable. It was recently proved that the
evaluation algorithms of XrML 2.0 and the related MPEG-REL 21 are not guaranteed to
terminate1. The analysis in [30] shows that the algorithm for SPKI/SDSI is incomplete;
in fact, the language is likely to be undecidable due to the complex structure of SPKI’s
authorization tags.

Binder, SD3 and RT are tractable as they are equivalent to Datalog. RTC achieves
tractability by allowing only simple, unary constraints. In Cassandra, termination and
tractability properties depend on the complexity of the chosen constraint domain; estab-
lishing these properties formally can be tedious. In SecPAL, tractability is guaranteed
by the purely syntactic (and thus simple) safety conditions, even if the chosen constraint
domain would have resulted in undecidability or intractability with Cassandra or RTC .
Lithium is a tractable fragment of first order logic that is characterised by syntactic as well
semantic conditions. In particular, a bipolarity condition restricts the polarity of predicates

1Personal communication, Vicky Weissman. To be published shortly.
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in a formula written in conjunctive normal form.

Delegation and local names. Attribute-based delegation of authority between admin-
istrative domains is the main building block of authorization policies in distributed systems.
XACML does not provide any constructs for expressing delegation. Lithium does not have
any delegation constructs either, and it is also not possible in Lithium to encode recursive
delegation because of the bipolarity restrictions.

In Binder, SD3, RT and Cassandra, delegation from A to B can be expressed as (in
SecPAL-like syntax) “A says fact if B says fact”. These languages also support linked local
role name spaces (as in the SDSI part of SPKI/SDSI) that can be regarded as a form of
delegation. For example, in RT one could write

Alice.friend← Alice.relative.spouse

to express that Alice regards all her relatives’ spouses as friends but delegates the definition
of the local name spouse to her relatives. This can be expressed in SecPAL as

Alice says x is a friend if
r is a relative of Alice,
x is a spouse of r

Alice says r can say∞ x is a spouse of r if
r is a relative of Alice

Binder, SD3, RT and Cassandra cannot control re-delegation, e.g. they cannot express
depth- or width-restricted delegation. SecPAL makes the delegation step explicit and thus
allows for more fine-grained delegation control.

SPKI/SDSI has a boolean delegation depth flag that corresponds to the 0 or∞ subscript
in can say but cannot express any other integer delegation depths. In XrML and DL, the
delegation depth can be specified, and can be either an integer or ∞. However, in both
languages, the depth restrictions can be defeated. Consider the following three SecPAL
assertions:

Alice says Bob can say0 fact .
Bob says fact if fact ′.
Bob says Charlie can say∞ fact ′.

Alice delegates authority over fact to Bob, but disallows him to re-delegate. In XrML and
DL, Bob could use policies corresponding to the second and third assertions to re-delegate
fact to Charlie via fact ′, thereby circumventing the depth specification. SecPAL semantics
prevents this by threading the depth restriction through the entire branch of the proof;
this is a corollary of Proposition 2.5. It would be much harder to design a semantics with
this guaranteed property if the depth restriction could be any arbitrary integer; this is also
why XrML and DL cannot be easily “fixed” to support integer delegation depth that is
immune to this kind of attack. In SecPAL, arbitrary integer delegation depths can be safely
expressed by nested can say0 facts.
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Constraints. Datalog is the basis of many policy languages such as DL, Binder, SD3,
and RT. Datalog has many advantages. It closely resembles conditional sentences in natural
language. It is recursive, monotonic, decidable and tractable. However, Datalog is not
expressive enough in practice as it lacks function symbols and constraints. The more
expressive Datalog with Constraints is taken as the basis for RTC and Cassandra. Adding
constraints to a language is nontrivial, as they not only affect the language’s expressiveness,
but also its computational complexity and decidability. In RTC , tractability is achieved
by restricting the constraint domain to certain subclasses of unary constraints. This is
too restrictive in practice: some policies for example require inequality constraints or path
constraints on two variables. The benchmark policy for electronic health records in [3]
makes use of a much more powerful constraint domain for which evaluation is decidable but
intractable in Cassandra. Another problem with Datalog with Constraints is that constraint
domains must be equipped with operations such as satisfaction checking or existential
quantifier elimination that can be hard to implement. Ease of implementation is crucial for
the success of a standard.

The solution adopted for SecPAL is based on the observation that a wide range of
constraints are used in authorization policies, but they are used in a very restricted way:
they relate to variables whose values always become instantiated during runtime. Therefore,
rather than restricting the expressiveness of the constraint domain as is done in previous
approaches, we should make sure that constraints will be ground during runtime: this
is taken care of by SecPAL’s safety conditions. This approach preserves decidability and
tractability while allowing more powerful constraints than in Cassandra or RTC . Moreover,
it also greatly simplifies the evaluation algorithm, thus making it much easier to implement.

Negation Some policies such as separation of duties inherently depend on a condition
being false. Cassandra supports a very restricted form of negated body predicates (and the
related aggregation operation). Lithium is the only policy language that can express real
logical negation (as opposed to negation as failure) both as condition and as conclusion,
which is useful for analysing merged policies. Most other policy languages with recursion do
not allow negated conditions, as the combination of the two can increase the computational
complexity and lead to non-unique models. Negation inside policy rules also leads to non-
monotonicity; the consequences of such policies can be confusing and are generally hard to
comprehend and to foresee.

Our solution is based on the observation that for most policies, the negated conditions
can be effectively separated from recursion. We can do the recursive computation first,
and then query for negated conditions at the end. Therefore, SecPAL assertions may
not include negated conditional facts, but SecPAL authorization queries can consist of
a composition of possibly negated atomic queries. Moving negations into the top-level
authorization queries makes for clearer policies. Furthermore, SecPAL authorization queries
could easily be extended by even more powerful composition operators such as aggregation
(as in Cassandra), restricted universal quantification or threshold operators (as in RTT [32])
without changing the assertion semantics and without affecting the complexity results.
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Authorization queries can also express prohibitions similar to deny policies in XACML.
For example, by defining a predicate cannot we could write a Deny-Overrides authorization
query as follows:

Alice says x can read f, not(Alice says x cannot read f)

More elaborate conflict resolution rules such as assertions with different priorities could
also be encoded on the level of authorization queries. Just as with negative conditions,
prohibition makes policies less comprehensible and should be used sparingly, if at all [19, 15].

Conclusions We presented a policy language that we believe is simpler and more intuitive
than existing languages, due to the resemblance of its syntax to natural language, its small
semantic specification and its purely syntactic safety conditions. Despite its simplicity,
SecPAL supports fine-grained delegation control and highly expressive constraints that are
needed in practice but cannot be expressed in other languages. If authorization queries are
extended by an aggregation operator (which can be done without modifying the assertion
semantics and without sacrificing polynomial data complexity), SecPAL can express the
entire benchmark policy in [3].

A SecPAL prototype, including an auditing infrastructure, is being implemented as part
of a project investigating access control solutions for large-scale Grid computing environ-
ments. A primary focus of this effort is on developing flexible and robust mechanisms for
expressing trust relationships and constrained delegation of rights within a uniform authen-
tication and authorization framework. Scenarios, similar to the one described in Section 1,
have been demonstrated using the prototype. At the time of writing, the prototype only
supports atomic authorization queries.
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A Assertion expiration and revocation

In SecPAL, expiration dates can be expressed as ordinary verb phrase parameters:

UCambridge says Alice is a student till 31/12/2007 if currentTime() ≤ 31/12/2007

Sometimes it should be up to the acceptor to specify an expiration date or set their own
recency requirements [40]. In this case, the assertion could just contain the date without
enforcing it:

UCambridge says Alice is a student till 31/12/2007

An acceptor can then use the date to enforce their own recency requirements:

Admin says x is entitled to discount if
x is a student till date,
currentTime() ≤ date,
date− currentTime() ≤ 1 year

Assertions may have to be revoked before their scheduled expiration date. To deal
with compromise of an issuer’s key, we can use existing key revocation mechanisms. But
sometimes the issuer needs to revoke their own assertions. For instance, the assertion in
the example above has to be revoked if Alice drops out of her university.

We assume that every assertion M is associated with an identifier (e.g., a serial num-
ber) IDM . Revocation (and delegation of revocation) can then be expressed in SecPAL
by revocation assertions with the verb phrase revokes IDM . For example, the revocation
assertion

A says A revokes ID if currentTime() > 31/7/2007

revokes all assertions that are issued by A and have identifier ID, but only after 31 July
2007.

Definition A.1. (revocation assertion) An assertion is a revocation assertion if it is
safe and of the form

A says A revokes ID if c, or
A says B1 can sayD1

... Bn can sayDn
A revokes ID if c.

Given an assertion context AC and a set of revocation assertions ACrev where AC ∩ACrev =
∅, we remove all assertions revoked by ACrev in AC before an authorization query is evalu-
ated. The filtered assertion context is defined by

AC− {M |M ∈ AC, A is the issuer of M , and ACrev,∞ |= A says A revokes IDM}

The condition that AC and ACrev must be disjoint means that revocation assertions
cannot be revoked (at least not within the language). Allowing revocation assertions to be
revoked by each other causes the same problems and semantic ambiguities as negated body
predicates in logic programming. Although these problems could be formally overcome,
for example by only allowing stratifiable revocation sets or by computing the well-founded
model, these approaches are not simple enough for users to cope with in practice.
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Figure 2: Left: Datalog proof node with parent from Translation Step 1 or 2a. Right:
corresponding SecPAL proof node using Rule (cond).

B Proof graph generation

When testing and troubleshooting policies, it is useful to be able to see a justification
of an authorization decision. This could be some visual or textual representation of a
corresponding proof graph constructed according to the rule system in Section 2.

Given a Datalog program P, a proof graph for P is a directed acyclic graph with the
following properties. Leaf nodes are either Datalog clauses in P or ground constraints
that are valid. Every non-leaf node is a ground instance P ′θ of the head of a clause
P ′ ← P1, . . . , Pn, c, where θ substitutes a constant for each variable occurring in the clause;
the node has as child nodes the clause, the ground instances P1θ, . . . , Pnθ of the body
literals, and the ground instance cθ of the body constaint. A ground literal P occurs in
Tω
P (∅) if and only if there is a proof graph for P with P as a root node. The algorithm

in Figure 1 constructs such a Datalog proof graph during query evaluation of the Datalog
program P obtained by translating an assertion context AC. Each answer to a query is
a root node of the graph. Every non-leaf node is a ground Datalog literal of the form A
saysD fact . Leaf nodes are either Datalog clauses in the program P, or ground constraints
that are valid. (See left panels of Figures 2, 3 and 4.)

Similarly, we can define a notion of proof graph for SecPAL such that there is a derivation
of AC,∞ |= A says fact according to the three deduction rules of Section 2 if and only if
there is a SecPAL proof graph with AC,∞ |= A says fact as a root node.

If during execution of Algorithm 5.2, each generated Datalog clause is labelled with the
algorithm step at which it was generated (i.e., 1, 2a, 2b, or 3), the Datalog proof graph
contains enough information to be easily converted into the corresponding SecPAL proof
graph. The conversion is illustrated in Figures 2, 3 and 4.

C Auxiliary definitions and proofs

C.1 Authorization queries

Lemma C.1. If AC, θ ` q then dom(θ) ⊆ vars(q), and θ grounds all x ∈ dom(θ).

Proof. By induction on the definition of `.
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Figure 3: Left: Datalog proof node with parent from Translation Step 2b. Right: corre-
sponding SecPAL proof node using Rule (can say).

Figure 4: Left: Datalog proof node with parent from Translation Step 3. Right: corre-
sponding SecPAL proof node using Rule (can act as).

Lemma C.2. If AC, θ ` e says fact then dom(θ) = vars(e says fact).

Proof. Follows immediately from the definitions of ` and |=.

Lemma C.3. If I  q : O then for all substitution θ, I − dom(θ)  qθ : O − dom(θ).

Proof. By induction on q.

Corollary C.4. If I  q : O and I ⊆ dom(θ) then qθ is safe.

Lemma C.5. If ∅  q : O and AC, θ ` q then O ⊆ dom(θ).

Proof. By induction on q.
Suppose q ≡ e says fact . Then O = vars(e says fact) = dom(θ), by Lemma C.2.
Suppose q ≡ q1, q2 and θ ≡ θ1θ2. By the induction hypothesis, O1 ⊆ dom(θ1).

Therefore, by Lemma C.3, ∅  q2θ1 : O2 − dom(θ1). Then by the induction hypothe-
sis, O2 − dom(θ1) ⊆ dom(θ2). Therefore, O1 ∪O2 ⊆ dom(θ1θ2).

The other cases are straightforward.

Lemma C.6. If q1, q2 is safe and AC, θ1 ` q1 then q2θ1 is safe.

Proof. From the definition of safety and  it follows that ∅  q1, q2 : O1 ∪ O2 where
∅  q1 : O1. By Lemma C.5, O1 ⊆ dom(θ1). Then by Corollary C.4, q2θ1 is safe.

29



C.2 Translation into constrained Datalog

Lemma C.7. (Soundness) Let P be the Datalog translation of the assertion context AC.
If A saysD fact ∈ Tω

P (∅) then AC, D |= A says fact .

Proof. We assume A saysD fact ∈ Tω
P (∅) and prove the statement by induction on stages

of Tn
P .

Case Step 1 and 2a If A saysD fact is added based on a rule produced by Step 1 or 2a,
then by the inductive hypothesis, AC, D |= A says fact iθ for i = 1...n. Furthermore, cθ is
ground and valid, so by Rule (cond), AC, D |= A says fact .

Case Step 2b If A says∞ fact is added based on a rule produced by Step 2b, then by
the inductive hypothesis, AC,K |= B says fact and AC,∞ |= A says B can sayK fact , for
some B and K. By Rule (can say), AC,∞ |= A says fact .

Case Step 3 If A saysD B verbphrase is added based on a rule produced by Step 3,
then by the inductive hypothesis, AC, D |= A says B can act as C and AC, D |= A says
C verbphrase, for some C. By Rule (can act as), AC, D |= B says C verbphrase.

Lemma C.8. If AC, D |= A says B verbphrase then there exists an assertion in AC of the
form

A says e1 can sayD1
...en can sayDn

e verbphrase′ if ...

for some e and ei, for i = 1...n where n ≥ 0, and verbphrase is an instance of verbphrase′.

Proof. By induction on the SecPAL rules. If the last rule used in the deduction of AC, D |=
A says B verbphrase was (cond), there exists an assertion in AC of the form

A says e verbphrase′ if ...

where B verbphrase = (e verbphrase′)θ.
If the last rule used was (can say), we have AC,∞ |= A says B can sayD B verbphrase.

Therefore, by the induction hypothesis, there exists an assertion in AC of the required form.
If the last rule used was (can act as), we have AC, D |= A says C verbphrase. Therefore,

by the induction hypothesis, there exists an assertion in AC of the required form.

Lemma C.9. (Completeness) Let P be the Datalog translation of the assertion context
AC. If AC, D |= A says fact then A saysD fact ∈ Tω

P (∅).

Proof. We assume AC, D |= A says fact and prove the statement by induction on the
SecPAL rules.
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Case (cond) If the last rule used in the deduction was (cond), (A says fact if fact1,
. . . , factk, c) ∈ AC is translated in Step 1 or 2a. Also, AC, D |= A says fact iθ, and by the
induction hypothesis, A saysD fact iθ ∈∈ Tω

P (∅). Furthermore, S |= cθ and vars(factθ) = ∅,
so by definition of TP , A saysD fact ∈ Tω

P (∅).

Case (can say) If Rule (can say) was used last, we assume

1. D =∞,

2. AC,K |= B says fact , and

3. AC,∞ |= A says B can sayK fact .

By Lemma C.8, there is an assertion in AC of the form

A says e1 can sayD1
...en can sayDn

e can sayK fact ′,

for some e, ei, Di with i = 1...n, n ≥ 0 and where fact is an instance of fact ′. In Step 2b,
this is translated into

A says∞ fact ←
x saysK fact ′,
A says∞ x can sayK fact ′

where x is a fresh variable not occurring anywhere else in the rule, so it can in particular bind
to B. By the induction hypothesis, B saysK fact ∈ Tω

P (∅) and A says∞ B can sayK fact ∈
Tω
P (∅). By definition of TP , A says∞ fact ∈ Tω

P (∅).

Case (can act as) If Rule (can act as) was used last, we assume AC, D |= A says
C verbphrase, and AC, D |= A says B can act as C, where fact = B verbphrase. By the
induction hypothesis, A saysD C verbphrase ∈ Tω

P (∅). This is only possible if there is a rule
in P of the form

A saysk e verbphrase′ ← ...

where C verbphrase = (e verbphrase′)θ for some θ. By Step 3, there must also be a rule in
P of the form

A saysk y verbphrase′ ←
A saysk y can act as e
A saysk e verbphrase′

where y is a fresh variable not occurring anywhere else in the rule, so it can in particular
bind to B. By the induction hypothesis, we also have A saysD B can act as C ∈ Tω

P (∅).
Therefore, by definition of TP , A saysD B verbphrase ∈ Tω

P (∅).

Restatement of Theorem 5.3. (Soundness and completeness) Let P be the Datalog
translation of the assertion context AC. A saysD fact ∈ Tω

P (∅) iff AC, D |= A says fact .

Proof. Follows from Lemmas C.7 and C.9.
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C.3 Datalog evaluation with tabling

The tabling evaluation algorithm in Section 6 can also be described as a non-deterministic
labelled transition system. We present this system in the following because it is easier to
prove properties for it than for the pseudocode in Figure 1. The results for the transition
system apply also to the pseudocode, as the latter is a straight-forward implementation of
the former.

A state is a triple (Nodes,Ans,Wait) where Nodes is a set of nodes, Ans is an answer
table, and Wait is a wait table. A path is a series of 0 or more labelled transitions between
states, as defined in the labelled transition system below. A state S ′ is reachable from a
state S iff there is a path from S to S ′. In the following, let A ] B denote the union of
A and B with the side condition that the sets be disjoint. If Ans is a function mapping
literals to sets of nodes, then Ans[P 7→ A] is a function that maps literals Q to Ans(Q) if
Q ∈ dom(Ans) and Q 6= P and additionally maps P to A.

A state (Nodes,Ans,Wait) is an initial state iff Nodes = {〈P 〉} for some IN/OUT-safe
query P (with respect to the IN/OUT-safe program P), Ans is sound and complete, and
Wait is empty. A state S is a final state iff there is no state S ′ and no label ` such that
S `−→ S ′.

({〈P 〉} ]Nodes,Ans,Wait) ResolveClause−−−−−−−−−→ (Nodes ∪Nodes ′,Ans[P 7→ ∅],Wait)
if Nodes ′ = {nd : Rl ≡ Q← ~Q, c ∈ P,

nd = resolve(〈P ;Q :: ~Q; c;Q; [ ];Rl〉, P ) exists }

({nd} ]Nodes,Ans,Wait)
PropagateAnswer−−−−−−−−−−−→ (Nodes ∪Nodes ′,Ans[P 7→ Ans(P ) ∪ {nd}],Wait)

if nd ≡ 〈P ; [ ]; True; ; ; 〉
nd /∈ Ans(P )
Nodes ′ = {nd′′ : nd′ ∈Wait(P ), nd′′ = resolve(nd′, nd) exists}

({nd} ]Nodes,Ans,Wait)
RecycleAnswers−−−−−−−−−−→ (Nodes ∪Nodes ′,Ans,Wait[Q′ 7→Wait(Q′) ∪ {nd}])

if nd ≡ 〈 ;Q :: ; ; ; ; 〉
∃ Q′ ∈ dom(Ans) : Q⇒ Q′

Nodes ′ = {nd′′ : nd′ ∈ Ans(Q′), nd′′ = resolve(nd, nd′) exists}

({nd} ]Nodes,Ans,Wait)
SpawnRoot−−−−−−−→ (Nodes ∪ {〈Q〉},Ans[Q 7→ ∅],Wait[Q 7→ {nd}])

if nd ≡ 〈 ;Q :: ; ; ; ; 〉
∀ Q′ ∈ dom(Ans) : Q 6⇒ Q′

Lemma C.10. (answer groundness) If (Nodes,Ans,Wait) is reachable from some initial
state and 〈P ; [ ]; c;S; ~nd;Rl〉 ∈ Nodes then S and c are ground and c is valid.

Proof. We prove the following, stronger, invariant by induction on the transition rules. If
〈P 〉 ∈ Nodes then all IN-parameters in P are ground. If 〈P ; ~Q; c;S; ~nd;Rl〉 ∈ Nodes then
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all IN-parameters in S are ground, and all OUT-parameters in S are either ground or
occur as OUT-variable in ~Q. If the node has a current subgoal Q (the head of ~Q), all
IN-parameters of Q are ground.

The statement holds for any initial state because it only contains a root node with
an IN/OUT-safe query. Root nodes are only produced by SpawnRoot transitions. By
induction, all IN-parameters of the current subgoal Q are ground, hence the new root node
〈Q〉 satisfies the required property as well.

Suppose the node is produced by ResolveClause. The IN-parameters in its partial
answer S are ground because it is resolved with P which satisfies the same property, by
the inductive hypothesis. If an OUT-parameter in S is a variable, it must occur as an
OUT-parameter in ~Q, as all rules in P are IN/OUT-safe. If the node has a current
subgoal, its IN-parameters are either already ground in the original rule, or they also occur
as IN-parameters in the head of the rule, Q. But Q is resolved against P which grounds
its IN-parameters by the inductive hypothesis, therefore all IN-parameters in Q are also
grounded by the resolution unifier, which is also applied to the current subgoal.

In all other cases, the node is the resolvent of an existing node 〈P ;Q0 :: ~Q; ;S′; ;Rl〉
with an existing answer node 〈P ′; [ ]; ;S′′; ; 〉, both of which enjoy the stated property
by the inductive hypothesis. All IN-parameters of the partial answer S of the resolvent
are ground because S is the product of applying the resolution unifier to S′ which already
has the same property. For the sake of contradiction, assume an OUT-parameter of S is
neither ground nor occurs as an OUT-parameter in ~Q. Then it must be an OUT-variable
in S′ which occurs as an OUT-variable in Q0. But the resolution unifier unifies Q0 with
(a renaming of) S′′, and S′′ is completely ground, by the inductive hypothesis. But then
the resolution unifier must also ground that variable, which contradicts the assumption.
Finally, if ~Q is non-empty and has a head Q, all its IN-parameters must be ground: if the
corresponding parameter in the rule Rl is a variable, it must be an IN-variable, therefore
it must occur as an IN-variable in the head or as an OUT-variable in a preceding body
literal. In the former case, the corresponding parameter in S (which originates from the
head of Rl) is ground, and thus the parameter in Q is also ground. In the latter case, it
the corresponding OUT-parameter in the preceding Q0 is either ground or grounded by
the resolution unifier, as established before. Either way, the parameter in Q will therefore
also be ground.

Lemma C.11. (node invariant) We write
⋃

Ans as short hand for
⋃

P∈dom(Ans) Ans(P ).

If (Nodes,Ans,Wait) is reachable from some initial state and 〈P ; ~Q; c;S; ~nd;Rl〉 ∈ Nodes
with Rl ≡ R← ~R, d, then:

1. S ⇒ P ;

2. Rl ∈ P;

3. ~nd ⊆
⋃

Ans;
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4. there is some θ such that Rθ = S, and ~Rθ = ~Q′@ ~Q (where ~Q′ are the answers in ~nd),
and dθ is equivalent to c.

Proof. By induction on the transition rules. The statements follow directly from the defi-
nition of the transition rules and from the definition of resolution.

Lemma C.12. (soundness) If (Nodes,Ans,Wait) is reachable from an initial state S0

then Ans is sound.

Proof. By induction on transition rules. The statement holds by definition for S0.
Now assume the state is not an initial state, and let Ans′ be the answer table of the

preceding state. For PropagateAnswer , we only have to consider the new answer nd ≡
〈P ; [ ]; True;S; ~nd;Rl〉. By Lemma C.11, S ⇒ P ; furthermore, Rl ≡ R ← ~R, d ∈ P, and
there exists θ such that Rθ = S and dθ = True. Also, ~Rθ is equal to the set of answers
in ~nd which in turn is a subset of

⋃
Ans′. So by the inductive hypothesis, ~Rθ ⊆ Tω

P (∅).
Therefore, by definition of TP , S ∈ TP(Tω

P (∅)) = Tω
P (∅), as required.

For the other transition rules the statement trivially holds by the inductive hypothesis.

Lemma C.13. (table monotonicity) If S ≡ (Nodes,Ans,Wait) is reachable from an ini-
tial state, and S ′ ≡ (Nodes ′,Ans′,Wait′) is reachable from S, then dom(Ans) ⊆ dom(Ans′),
dom(Wait) ⊆ dom(Wait′), and dom(Wait) ⊆ dom(Ans). For all P ∈ dom(Ans): Ans(P ) ⊆
Ans′(P ). For all P ∈ dom(Wait): Wait(P ) ⊆Wait′(P ).

Proof. By induction on the transition rules. The statements follow from the observation
that PropagateAnswer and RecycleAnswers only increase Ans(P ) and Wait(P ), respec-
tively; SpawnRoot always increases the domains of Ans and Wait; and ResolveClause leaves
Wait unchanged and either increases the domain of Ans (that can only happen if in the
very first transition from the initial state) or leaves Ans unchanged.

Lemma C.14. (completeness) If Sf ≡ (Nodes,Ans,Wait) is a final state reachable from
an initial state S0 then Ans is complete.

Proof. By induction on n in Tn
P(∅). The statement vacuously holds for n = 0.For n > 0,

consider any S ∈ Tn
P(∅), P ∈ dom(Ans) and S ⇒ P . If P is already in the domain of S0’s

answer table the statement holds by definition of initial state and by monotonicity of the
transition rules with respect to the answer table (Lemma C.13). So now assume that P
was added to the domain as a result of a SpawnRoot transition.

By definition of TP , there exists a rule Rl ≡ R ← R1, ..., Rn, c ∈ P and a substitution
θ such that Rθ = S, Riθ ∈ Tn−1

P (∅), and cθ is valid. By the inductive hypothesis, for all
R′

i ∈ dom(Ans) such that Riθ ⇒ R′
i there is an answer node nd′i in Ans(R′

i) with answer
Riθ.

Let P ′ be a fresh renaming of P , θ0 = mgu(R,P ′), and for i = 1..n, let

θi = θi−1mgu(Riθi−1, Riθ).
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Furthermore, let

ndi ≡ 〈P ; [Ri+1θi, ..., Rnθi]; cθi;P ′θi; [nd′1, ..., nd′i];Rl〉

for i = 0..n. Note that ndn is an answer node with answer S, by Lemma C.10. We will
now show that ndn ∈ Ans(P ).

After P is added to the domain of the answer table in the SpawnRoot transition, there
will eventually be a ResolveClause transition producing a new set of nodes that contains
nd0, because 〈P ; [R,R1, ..., Rn]; c;R; [ ];Rl〉 and P are resolvable with resolution unifier θ0.

Suppose for some i = 0..n − 1 that ndi gets produced as a node along a path leading
from S0 to Sf . Then there must be a later RecycleAnswers or a SpawnRoot transition
where ndi is added to the wait table for some R′

i+1 where Ri+1θi ⇒ R′
i+1. Since θi is more

general than θ, we also have Ri+1θ ⇒ R′
i+1, so Ri+1θ is the answer of some answer node in

Ans(R′
i+1), by the inductive hypothesis. Therefore, this answer node is resolved with ndi

either in a PropagateAnswer or a RecycleAnswers transition, and the set of nodes produced
by this transition contains ndi+1.

Therefore, along all paths leading from S0 to Sf the nodes nd0,...,ndn are produced.
Therefore, ndn is eventually added to the answer table for P in a PropagateAnswer tran-
sition, and hence it is in Ans(P ) (by Lemma C.13), as required.

Lemma C.15. (termination and complexity) All transition paths starting from an
initial state are of finite length, and the path lengths are polynomial in the number of facts
(i.e., clauses with empty body) in P.

Proof. Let S be the set of predicate names that occur in the body of a clause in P, and let
C be the number of constants in P that occur as a parameter of a predicate in S. Further,
let N be the number of clauses in P, M the maximum number of distinct variables in the
head of any clause in P, and V the maximum number of distinct variables occurring in the
body of any clause in P. When a root node 〈P 〉 is produced in a SpawnRoot transition,
P is permanently added to the domain of the answer table. Due to the side conditions of
SpawnRoot , such a node is only produced if there is no P ′ in the domain of the answer
table for which P ⇒ P ′. Moreover, the only predicate names and constants that can
occur in a path are the ones that also occur in P, of which there are only finitely many.
Therefore, the number of SpawnRoot transitions is bounded by CM , and thus the number of
ResolveClause transitions is bounded by CMN which is also an upper bound on the number
of nodes produced by ResolveClause. PropagateAnswer and RecycleAnswers both replace
a node with a number of nodes whose subgoal lists are strictly shorter until an answer node
is produced. From any given node, these two transition rules together produce no more
than CV new nodes. Thus the number of nodes produced by them is bounded by CM+V N .

It follows that the length of any path is bounded by 4CM+V N . Hence all path lengths
are polynomial in the number of facts in P as C is proportional to this number.

Theorem C.16. All paths from an initial state ({〈P 〉}, , ) terminate at a final state. The
answer table of any such final state is sound and complete, and its domain contains P .
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Proof. This follows immediately from Lemmas C.15, C.12 and C.14.

Restatement of Theorem 6.1. If AC is a safe assertion context and P its Datalog
translation then there exists an IN/OUT assignment to predicate parameters in P such
that P is IN/OUT-safe.

Proof. Literals introduced by Algorithm 5.2 are of the form e1 sayse2 e3 verbphrase. We
assign OUT to the parameter positions of e1 and e3, and IN to the position of e2. The
parameters in verbphrase are all OUT if e3 verbphrase is a flat fact, and IN otherwise. Then
by inspection and by assertion safety, all OUT variables in the head of a clause produced
by the algorithm also occur in the body, and all IN variables in the body of a clause also
occur in its head.

Restatement of Theorem 6.2. (soundness, completeness, termination) Let Ans
be a sound and complete answer table, P an IN/OUT-safe program and P an IN/OUT-
safe query. Then AnswersP(P,Ans) = Θ is defined, finite and equal to {θ : Pθ ∈
Tω
P (∅), dom(θ) ⊆ vars(P )}.

Proof. This follows directly from Theorem C.16, noting that the pseudocode in Figure 1 is
a deterministic implementation of the labelled transition system.

C.4 Evaluation of authorization queries

Restatement of Theorem 7.1. (Finiteness, soundness, and completeness of au-
thorization query evaluation) For all safe assertion contexts AC and safe authorization
queries q,

1. AuthAnsAC(q) is defined and finite, and

2. AC, θ ` q iff θ ∈ AuthAnsAC(q).

Proof. By induction on the structure of q.
Case q ≡ e says fact

1. By authorization query safety, fact is flat, hence all parameters in e says∞ fact can be
assigned OUT as in the proof of Theorem 6.1, hence q is an IN/OUT-safe Datalog
query. Therefore, AuthAnsAC(q) is defined and finite by Theorem 6.2.

2. Assume AC, θ ` e says fact . This holds iff AC,∞ |= eθ says factθ, by definition
of `. The translated program P is IN/OUT-safe, by Theorem 6.1, and we have
already established above that the query e says∞ fact is also IN/OUT-safe. So by
Theorems 5.3 and 6.2, this holds iff (eθ says∞ factθ) ∈ AnswersP(e says∞ fact).
Since dom(θ) ⊆ vars(e says∞ fact) (by Lemma C.1) and vars(eθ says∞ factθ) = ∅,
this holds iff the most general unifier of the two is θ, and iff θ ∈ AuthAnsAC(e says
fact).
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Case q ≡ q1, q2

1. If q is safe, then q1 must also be safe, so by the induction hypothesis for finiteness,
AuthAnsAC(q1) is defined and finite. By the induction hypothesis for soundness,
θ1 ∈ AuthAnsAC(q1) implies AC, θ1 ` q1. It follows from Lemma C.6 that q2θ1 is safe,
so by the induction hypothesis for finiteness, AuthAnsAC(q2θ1) is defined and finite,
and hence AuthAnsAC(q) is defined and finite.

2. Assume AC, θ ` q1, q2. This holds iff θ = θ1θ2 such that AC, θ1 ` q1 and AC, θ2 `
q2θ1. By the induction hypothesis, this holds iff θ1 ∈ AuthAnsAC(q1) and θ2 ∈
AuthAnsAC(q2θ1) and hence θ ∈ AuthAnsAC(q).

Case q ≡ q1 or q2 The statements follow directly from the induction hypotheses.
Case q ≡ not(q0)

1. By definition of authorization query safety, vars(q0) ⊆ ∅, hence AuthAnsAC(q) is
defined and finite.

2. Assume AC, θ ` not(q0). By definition of `, q0 must be ground. Lemma C.1 im-
plies that θ = ε, therefore AC, ε 0 q0. In other words, there exists no σ such that
AC, σ 0 q0. By the induction hypothesis, this holds iff AuthAnsAC(q0) = ∅ and hence
AuthAnsAC(not(q0)) = {ε}.

Case q ≡ c

1. By definition of authorization query safety, vars(c) ⊆ ∅, hence AuthAnsAC(q) is defined
and finite.

2. This is similar to the previous case.

Restatement of Theorem 7.2. Let M be the number of flat atomic assertions (i.e., those
without conditional facts) in AC and N be the maximum length of constants occurring in
these assertions. The time complexity of computing AuthAnsAC is polynomial in M and
N .

Proof. The number of clauses with empty body in the translated Datalog program is pro-
portional to M . The constants stay unchanged, so the maximum length of any constant
occurring in the set of those clauses is N . From Lemma C.15 and the fact that each step
in the labelled transition system can be computed in time polynomial with respect to N
(as the validity of a ground constraint can be checked in polynomial time), we get that
AnswersP is polynomial-time computable with respect to M and N . The time complexity
of AuthAnsAC for a fixed query is clearly polynomial in the computation time for AnswersP ,
hence it is also polynomial in M and N .
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