
A Survey of Peer-to-Peer Storage Techniques for Distributed File Systems  
 
 

Ragib Hasan‡† Zahid Anwar‡† William Yurcik‡ Larry Brumbaugh‡ Roy Campbell†  
 

‡National Center for Supercomputing Applications 
†Department of Computer Science 

University of Illinois at Urbana Champaign 
{rhasan,anwar, byurcik, ljbrumb}@ncsa.uiuc.edu, roy@cs.uiuc.edu  

 
 

Abstract 
 

The popularity of distributed file systems continues 
to grow. Reasons they are preferred over traditional 
centralized file systems include fault tolerance, 
availability, scalability and performance. In addition, 
Peer-to-Peer (P2P) system concepts and scalable 
functions are being incorporated into the domain of 
file systems. This survey paper explores the design 
paradigms and important issues that relate to such 
systems and discusses the various research activities in 
the field of Distributed Peer- to-Peer file systems.  
 
1. Introduction 
 

In the recent years, Peer-to-Peer system research 
has grown significantly. Using a large scale distributed 
network of machines has become an important element 
of distributed computing due to the phenomenal 
popularity of Peer-to-Peer (P2P) services like Napster 
[19], Gnutella [10], Kazaa [14] and Morpheus [17]. 
Though these systems are more famous for file-
sharing, and related legal problems, P2P systems are 
becoming a very promising and exciting area of 
research. P2P systems offer a decentralized, self-
sustained, scalable, fault tolerant and symmetric 
network of machines providing an effective balancing 
of storage and bandwidth resources. 

 
File Systems have been a basic element of Systems 

research. Efforts have focused on providing a stable, 
reliable, efficient central storage system with certain 
performance constraints. Experience has shown that a 
distributed approach is better for achieving these goals. 
Early efforts included SUN NFS, CODA, Plan 9, XFS 
and SFS. Initial efforts emphasized sharing data in a 
secure and reliable way. Important features of these 
systems included a client-server architecture that was 
fundamental to their design caching, replication and 
availability. 

 
Internet growth resulted in a new approach, the 

building of distributed file system. As the host nodes 
storing the shared objects became more geographically 
distributed and diverse, new criteria and performance 
constraints like availability, fault tolerance, security, 
robustness and location mechanisms became important 
issues in designing distributed file systems. 

 
In recent years, P2P systems have emerged as a 

viable architecture for implementing distributed file 
systems. In a P2P network, end users share resources 
via direct exchange between computers. Information is 
distributed among the member nodes instead of 
concentrated at a single server. A pure peer-to-peer 
system is a distributed system without centralized 
control, where the software running at each node is 
equivalent in functionality. A P2P system should be 
highly scalable, available, distributed and more or less 
symmetric. The attractive properties of a Peer-to-Peer 
architecture have generated many research efforts in 
building distributed P2P file systems. Because of the 
success in this area, P2P systems are almost certain to 
become a major part of current and future research 
activities in file systems. This survey paper attempts to 
explore the inherent properties of such systems and 
analyze the characteristics of some major distributed 
P2P file systems. Also, the comparative advantage and 
disadvantages of each system are discussed in detail. 

 
The rest of the paper is organized as follows: 

Section 2 discusses the benefits of using P2P systems 
over other distributed storage mechanisms. Section 3 
explores design issues and desired properties of 
distributed P2P file systems. Section 4 identifies major 
research distributed P2P file systems, analyzing their 
comparative suitability depending upon selected 
criteria. Section 5 presents an analysis of the open 
problems. A summary and conclusions follow in 
Section 6.  



 
2. Justification of Using P2P Architecture 
for File System Design 
 

The term Peer-to-Peer refers to a class of systems 
and applications that employ distributed resources to 
perform a function in a decentralized manner. Each 
node potentially has the same responsibility. Shared 
items can include CPU cycles (SETI@Home) or 
Storage space (Napster [19], Gnutella [10], OceanStore 
[15]). 

 
Basic P2P system goals are decentralization, ad hoc 

connectivity, reduced cost of ownership and 
anonymity. P2P has more decentralized control and 
data compared to alternatives. P2P is potentially more 
scalable than centralized and client-server solutions. 
The basic defining feature of a P2P system is that it is 
characterized by direct access between peer computers, 
not through a centralized server. 

 
Androutsellis-Theotokis et al. [2] defined P2P as 

“applications that take advantage of resources (storage, 
cycles, content, human presence) available at the edges 
of the Internet.” According to [2], “the “litmus test'” 
for P2P is: 

• Does it treat variable connectivity and temporal 
network addresses as the norm? 

• Does it give the nodes at the edges of the network 
significant autonomy?" 

 
In lieu of the above definition, a noticeable 

characteristic of P2P systems is that they have 
interesting self-organizing capacity, in that the 
topology of a P2P network can often change as nodes 
enter or leave the system. Important issues in a P2P 
system are considerably different than in traditional 
distributed systems, However, P2P systems provide 
certain advantages over conventional file systems that 
justify their usage in building distributed file system. 
For example, compared to the client-server model, P2P 
systems provide inherent scalability and availability of 
resources. They take advantage of the redundancy of 
the resources and construct a coherent view of the 
system using decentralized, independent components. 
The diverse nature of P2P systems and the large-scale 
distributed structure ensures the fault tolerance and 
resolute nature of P2P systems as compared with client 
server systems. The sheer number of nodes 
participating in P2P architecture contributes to 
advantage such as being adaptable, scalable and self-
organizing. These essential features contrast distinctly 
with traditional client-server approaches that are 

limited by their lack of scalability and robustness in 
cases of component failures. 

 
To make ubiquitous computing become a reality, 

the computing devices must become reliable, resilient 
and have distributed access to data. With this view in 
mind, the P2P system architecture appears to be most 
suitable to ensure the changing storage requirements of 
next-generation computing. The P2P architecture can 
help reduce storage system costs and allow cost 
sharing by using existing infrastructures and bundling 
resources from different sites. Resource aggregation 
adds value beyond the mere accumulation of resources 
and provides a rich, robust platform on which to build 
persistent storage systems. Considering all these 
factors, the P2P model should be very useful in 
designing the future generation distributed file 
systems. 

 
3. Design Issues in P2P File Systems 
 

Peer-to-Peer systems have basic properties that 
separate them from conventional distributed systems. 
Inherently, P2P systems are loosely coupled, and no 
performance guarantee can be provided; but the system 
as a whole contains common characteristics that affect 
its behavior in varying circumstances. This section 
discusses different design issues of a P2P file system 
and the potential effect of the issues on performance. 
 
3.1 Symmetry 
 

P2P systems are characterized by symmetry among 
the roles of the participating nodes. It assumes no 
special capability of certain nodes that would mark 
them separate from the rest of the nodes. Conventional 
client-server systems are asymmetric and the servers 
are often more powerful than the clients. However, in 
P2P systems, all peers are symmetric. They have the 
ability to function both as a client and a server. 
 
3.2 Decentralization 
 

P2P systems are decentralized by nature. Hence, 
P2P systems have mechanisms supporting distributed 
storage, processing, information sharing, etc. This 
allows increased extensibility, resilience to faults and 
higher system availability [16]. However, getting a 
global view of the system state is difficult. Also, 
system behavior no longer remains deterministic. 
Another problem is the issue of joining a group and 
discovering the peers belonging to that group.  
 



3.3 Operation with Unmanaged Volunteer 
Participants 
 

An important P2P design issue is that the 
participation of a given element can neither be 
expected nor enforced. System elements and storage 
nodes are not managed by any centralized authority. 
They are assumed to be prone to failure and removed 
from the system at any time. The system should be 
robust enough to survive the removal or failure of 
nodes at any moment. 
 
3.4 Fast Resource Location 
 

One of the most important P2P design issues is the 
method used for resource location. As resources are 
distributed in diverse peers, an efficient mechanism for 
object location becomes the deciding factor in the 
performance of such systems. The mechanism should 
be capable of adapting to a changing network topology. 

 
Contrary to the P2P concept, Napster uses a 

centralized directory of object locations that proves to 
be a bottleneck. Gnutella [10] incorporates object 
location using non-scalable flooding. Elaborate 
schemes have been developed to solve this problem 
efficiently. Notable currently used object location and 
routing systems include Chord [26], Pastry [24], 
Tapestry [27] and CAN [23].  Pastry and Tapestry uses 
Plaxton [22] trees, basing their routing on address 
prefixes. This approach is a generalization of 
hypercube routing. However, Pastry and Tapestry add 
robustness, dynamism and self-organizing properties to 
the Plaxton scheme. Chord [26] uses the numerical 
difference with the destination address to route 
messages. This is unlike Pastry [24] or Tapestry [27] 
that use successively longer address prefixes with the 
destination. The Content Addressable Network or 
CAN [23] uses a d-dimensional space to route 
messages; with each node maintaining a O(d) sized 
routing table and any node within O(dN1/d) hops and 
the routing table does not grow with network size. 

 
An important location strategy used in several 

systems is Distributed Hash Table (DHT). It uses 
hashing of file or resource names to locate the object. 
Kelips [12] is a DHT based system, which has the 
advantage of being efficient and scalable as well as 
using O(n1/2) space per node and O(1) lookup times. 

 
3.5 Load Balancing 
 

Load balancing is an important issue in building 
robust P2P file systems. The system should be able to 
make optimal distribution of resources based on 

capability and availability of node resources. The 
system should have mechanisms for preventing the 
build up of hotspots, locations where the load is 
disproportionately high. Also, it should be possible to 
rebalance the system based on usage patterns. 
 
3.6 Churn Protection 
 

Churn describes the fast oscillations in the P2P 
system caused by the rapid joining and leaving of 
nodes. It occurs when there is a node failure and 
corresponding joining of new nodes at the same time. 
Churn causes reduced performance in any distributed 
system. One form of a denial of service attack is to 
introduce churn in a system. Hence, a P2P distributed 
file system should be able to resist the churn effect. 
 
3.7 Anonymity 
 

In a distributed storage system, anonymity is an 
important issue to ensure resistance to censorship. 
There is need for resistance to attempts by third parties 
to deny access to information and provide anonymity 
for both the producers and consumers of information. 
 
3.8 Scalability 
 

Scalability implies the ability of the system to 
support millions of peers into a peer-to-peer system. 
Traditional distributed systems usually are not scalable 
beyond a few hundreds or thousands of nodes. 

 
3.9 Persistence of Information 
 

A P2P system should be able to provide persistent 
access to data. Methods should be present to ensure 
that even in the case of untrusted peers, the data stored 
in the system is safe, protected against destruction, and 
highly available in a transparent manner. 
 
3.10 Security 
 

Security from attacks and system failure are design 
goals for every system. P2P systems are built on 
unmanaged, geographically distributed hosts and data 
security is the systems responsibility. Encryption, 
different coding schemes, etc can help achieve this.  
 
4. Some Existing Systems 

 
Designing a P2P file system that can implement all 

the properties described in Section 3 is exceedingly 
difficult. Recently, a number of efforts have been made 
to achieve most of the goals. However, most of these 
systems utilize specific properties or mechanisms and 



specialize in particular fields. This section discusses 
some existing P2P based distributed file systems. 
 
4.1 FreeNet 
 

Freenet [3,7] is an adaptive peer-to-peer file system 
that enables the publication, replication and retrieval of 
data while protecting the anonymity of the authors, 
data location and the readers. It uses probabilistic 
routing to preserve the anonymity of its users, data 
publishers, and data hosts. Basically, Freenet operates 
as a location-independent distributed file system across 
many individual computers that allow files to be 
inserted, stored and requested anonymously. The 
design goals of Freenet are: anonymity; deniability for 
the storers of information; resistance to 3rd party 
access; dynamic storage and routing; and decentralized 
policy. 
 
4.1.2 Location and Access Mechanisms Freenet 
identifies files by keys obtained through a hash 
function, Current implementations of Freenet use 160 
bit SHA1 cryptographic function as the hashing 
method. The key may be keyword signed key (KSK), 
Signed Subspace key (SSK) or Content Hash Key 
(CHK). Using any of the hash mappings, the source of 
the search sends queries. The query may be locally 
processed, or on failure may be routed to the 
lexicographically closest matching node according to 
the routing table. Communications by Freenet nodes 
are encrypted and are routed through other nodes to 
make it extremely difficult to determine who is 
requesting the information and what its content is. 
 

On receipt of an insert request, a node first checks 
its own storage to see whether the key is already taken. 
In case of collisions, the user tries again using a 
different key. If the key is not found, the node looks up 
the nearest key in its routing table and forwards the 
insert request to the corresponding node that 
propagates through the nodes until the hops-to-live 
limit is reached. If there is no key collision, a success 
message is propagated back to the original sender. The 
data follows along the path established and is stored in 
nodes along the way. Data is stored in an LRU fashion 
and older unused information gradually fades away. 
 

               Table 1. Freenet Tradeoffs 
 

Advantages Disadvantages 
Freenet attempts to provide 
anonymity both for producers 
and consumers of information. 

Anonymity requirements limit 
reliability and performance, since 
the probabilistic routing 
mechanism stops forming of any 
coherent topology among servers. 

Performance analysis shows: as 
the network converges, median 

An unpopular file might 
disappear from the network if all 

request path length drops. nodes decide to drop its copies.  
Network is scalable up to a 
million nodes with a median 
path length of just 30. 

Dictionary attacks to modify of 
requested files en route is 
possible for files stored under 
keyword-signed keys. 

Replicate popular data items 
transparently near requesting 
node. With time, the network 
routing learns and remembers 
requests for better performance. 

Denial-of-Service attack through 
insertion of a large number of 
junk files. 
 

The network is robust against 
quite large failures. 

The flat namespace produces 
globally unique identifiers and 
versioning might become a 
problem as the system grows 

The popularity of each site's 
material causes the system to 
actually alter its topology 

Suffers from problems of 
establishing initial network 
connection. 

Hashing renders Freenet 
unusable for random searches 

No search mechanism. A 
standard search allows attacks to 
take out specific content holders 

Rewards popular material and 
allows unpopular material to 
disappear quietly. 

Scalability, resilience testing in a 
real world scenario is lacking. 

 
4.2 CFS 
 

Cooperative File System (CFS) [5] is a peer-to-peer 
read only storage system developed at MIT with the 
following design goals: provable guarantee for 
efficiency, robustness, load balancing and scalability. 
 
4.2.1 Mechanism. CFS uses Distributed Hash table 
(Dhash) for storage of blocks. The file system is 
designed as a set of blocks distributed over the CFS 
servers. A file is divided into constituent blocks that 
are stored among different nodes. CFS has 3 layers: FS 
which interprets blocks as files and presents a file 
system interface to applications, DHash, distributed 
hash table that stores unstructured data blocks reliably 
and Chord [26] which maintains routing tables for 
lookup and query management 

CFS is a read only system from the perspective of 
the users. However, the publishers can update their 
work. Key based authentication is used. 
 

Table 2. CFS Tradeoffs 
 

Advantages Disadvantages 
Quota on publishers provides a 
security advantage 

Maintaining a single file in many 
blocks introduce overhead of 
fetching the blocks 

Dividing a large file into 
chunks removes the problem 
that one node may not have the 
capacity to store the whole file  

To enhance performance, CFS 
sacrifices anonymity. So, it does 
not provide the same censorship-
resistance as Freenet 

Caching and replications 
decreases response time 

 

Usage of Chord allows 
logarithmic lookup times 

 

Distributed storage of a file 
allows parallel block retrieval  

 



 
4.3 PAST 
 

PAST [25] is a large scale P2P persistent storage 
management system. It is comprised of self-organizing, 
Internet Based overlay network of storage nodes which 
route file queries in a cooperative manner, perform 
replica storage and caching. 
 
4.3.1 Mechanism. PAST is built on top of the Pastry 
[24] lookup system. The nodes form an overlay 
network. A 128-bit node identifier that is assigned 
quasi-randomly uniquely identifies each node. This 
uniformly chosen random identifier ensures load 
balancing. Files also have a file id that is a SHA-1 hash 
of the file name and the public key of the client. The 
Pastry layer handles the lookup requests. Replications 
enable fast lookup and transmission. To retrieve a file, 
a client uses its fileID, and in some cases, the 
decryption key. For the client, PAST provides three 
main sets of operations. 

• Insert: store a file replicated k times, k being a 
user specified number, 

• Lookup: reliably retrieve a copy of the file 
identified by fileId if it exists in the PAST 

• Reclaim: reclaim the storage occupied by k 
copies of the file. 

 
4.3.2 Security using Smart-Cards. The system uses 
smart-card key based techniques for security, load 
balancing and free storage re-allocation by replica 
diversion. 

Table 3. PAST Tradeoffs 
 

Advantages Disadvantages 
There is no restriction that 
Pastry must to be used.  Due to 
modular design, Chord, CAN 
or others can also be used. 

PAST stores a single large file 
without breaking it into smaller 
chunks (as in CFS). This is not 
efficient or fault tolerant. 

Files in PAST are immutable, 
so multiple files cannot have 
the same fileId. 

PAST is an archive and storage 
system, rather than a general-
purpose file system utility. 

Smart cards are not used in 
other systems. 

 

 
4.4 IVY 
 

IVY [18] is a read/write peer-to-peer file systems 
that is distributed and decentralized and able to support 
multiple users concurrently. The system is based on a 
set of logs and the DHash distributed hash. It provides 
an NFS-like file system view to the users, while at the 
same time; it can detect conflicting modifications and 
recover from network failure. 
 

4.4.1 Mechanism. The IVY file system is based on a 
set of logs that each participant keeps to record the 
changes made to the system. Each user scans and 
synchronizes the logs. Snapshot mechanisms prevent 
scanning of all but the most recent log. The logs are 
themselves stored in DHash. IVY overcomes the 
overhead of multiple accesses and locking. It also uses 
version vectors for synchronization. Integrity of each 
block is ensured by either content hash key or public 
key. Since logs are stored indefinitely, recovery is 
always possible in case of network partitions. The total 
system state is a composite of all the individual logs. 
Periodically, each participant takes snapshots to avoid 
future scanning of the entire log. 
 

Table 4. IVY Tradeoffs 
Advantages Disadvantages 

It enables writing with reading.  
Other systems discussed so far 
seem to be read only systems. 

Slow. Ivy is 2 to 3 times slower 
than NFS [18] 

No need for explicit trust 
between the hosts 

Conflicting log records 
generated. Explicit conflict 
resolution tools have to be used. 

 
4.5 OceanStore 
 

OceanStore [15] is a proposed system to provide 
distributed access to persistent nomadic data in a 
uniform global scenario. It is designed using a 
cooperative utility model in which consumers pay the 
service providers certain fees to ensure access to 
persistent storage. The service providers in turn use 
utility model to form agreement and resource sharing. 
Data stored in OceanStore 
 
4.5.1 Mechanism. Using mainly untrusted servers, 
OceanStore caches data anywhere in the network, with 
encryption. This provides high availability and 
prevention of denial-of-service type of attacks. 
Persistent objects are uniquely identified by a Global 
ID (GUID) and are located by either a non-
deterministic but fast algorithm (Attenuated Bloom 
Filters) or a slower deterministic algorithm (Modified 
Plaxton Trees [22]). OceanStore uses ACL for 
restricting write access to data, while read access is 
available with the key. Updates are achieved using the 
Byzantine agreement protocol between the primary 
replica and the secondaries. For high performance, 
OceanStore also provides self-monitoring introspection 
mechanisms for data migration based on access 
patterns. This is also used to detect clusters and 
improve routing performance. 
 

Table 5. OceanStore Tradeoffs 
 

Advantages Disadvantages 
It is suitable for ubiquitous The system is still in the 



systems.  Disassociating the 
information from any particular 
fixed location, and making it 
available everywhere is very 
beneficial. 

implementation phase. The main 
weakness is the practicability. A 
real world deployment and 
testing will bring out many real 
world problems. 
 

The Introspection mechanism 
[15] is a learning process, and 
the system starts to makes 
smart decisions based on the 
access patterns. 

"Caching data anywhere and 
everywhere", this approach is not 
secure enough because read 
access is controlled by only the 
owner's public encryption key 
 

 
 
4.6 Farsite 
 

Farsite [1] is a symbiotic, serverless, distributed file 
system. It works among cooperating but not 
completely trusting the clients. The goal is to provide 
high availability and reliability for file storage, security 
and resistance to Byzantine threats. Reliability and 
availability is ensured through replication of the whole 
file. Farsite has a collection of interacting and 
Byzantine-fault-tolerant replica groups arranged in a 
tree overlaying the file system namespace. It has 
cryptographic checksums of indirection pointers that 
are replicated in a Byzantine-fault-tolerant manner. 
Data stored in the servers is encrypted and replicated in 
a non-byzantine way. Alternatively, the design allows 
use of erasure coding for replication [1]. 
 
4.6.1 Mechanism. Farsite first encrypts the contents of 
the files to prevent unauthorized reads. Digital 
signatures are used to prevent an unauthorized user to 
write a file. After encryption, replicas of the file are 
made and they are distributed to other client machines. 
 

Replication provides reliability thru long term data 
persistence and immediate availability of requested file 
data. Directory group members share replicated 
metadata. File data is replicated on multiple file hosts.  
 

Table 6. Farsite Tradeoffs 
 

Advantages Disadvantages 
It replaces physical security of 
a server in a locked room with 
virtual security: cryptography, 
randomized replication, and 
Byzantine fault-tolerance 
Farsite is designed to support 
typical desktop file I/O 
workloads in academic and 
corporate environments, not 
high-performance I/O of 
scientific applications or write 
sharing of database apps. 

Farsite uses a lazy update 
scheme. The content of newly 
written files will briefly reside on 
only one machine. Loss of that 
machine will result in loss of the 
update. The directory service 
must keep track of which replicas 
contain up-to-date data, so that 
users will not accidentally access 
out-of-date versions of files. 

Minimal administrative effort 
to initially configure and 
almost no central 
administration to maintain. 

Uses O(dn^(1/d) ) size routing 
tables to route in O(d) hops, but 
does not address rapid 
membership changes. 

Designed to be highly scalable, It is not designed for high-

with capacity for up to 105 
machines. 

bandwidth applications, and must 
deal with servers less reliable 
than one large-scale file system. 

 
4.7 Kelips 
 

Kelips [12] is a P2P file system that achieves faster 
file look-up time and more stability to failures and 
churn, at the cost of increased memory usage and 
constant background communication overhead. 
Specifically, it achieves O(1) lookup time, at the cost 
of memory usage of square root N.  This can be 
compared to other DHT P2P Systems CFS, PAST that 
ensure log(n) for lookup and memory usage. 

 
4.7.1 Mechanism The system hashes a node to k 
affinity groups. Each node maintains group views 
(entries for all nodes within the group), and a constant 
number of contacts for all other groups and file tuples 
for all files stored in the group. This requires square 
root n storage, when k is optimized. Information is 
maintained through gossip-style information 
dissemination that has logarithmic latency.  In 
addition, bandwidth consumed per node is constant.  

 
Lookups consist of hashing the file to group 

number, sending a lookup request to a member of the 
group, and then retrieving the file tuple info for the 
lookup. Insertions are done by hashing the file to the 
group number, sending an insert request to a member 
of the group, and the contact picking up a random node 
in the group as the store.  

 
Because latency of gossip protocol and bandwidth 

limit results in incomplete soft state maintenance, the 
above lookup and insertion can fail; in that case multi-
hop rerouting is used. 

 
Table 7. Kelips Tradeoffs 

 
Advantages Disadvantages 

High Churn Resistance- 
Recovery from failure of half 
the nodes within seconds 

Uses a constant communication 
overhead and data quality may 
lag if updates occur too rapidly. 
Memory requirement high. 

Lookups succeed even under 
failures  

Gossip architectures may only 
allow weak consistency.  

P2P system with a lookup cost 
equal to Full index duplication 
O(1) and a memory utilization 
of  O(sqrt(N)) << O(N) 

Locality and Security issues not 
considered 

 
4.8 FastTrack 

 
FastTrack based systems are more popularly known 

as “file sharing” systems because the objects are 
immutable, and as a result the vast majority of objects 



are fetched at most once per client. The FastTrack 
network is supposedly one of the most popular P2P 
File systems today with over 5 million simultaneous 
users sharing up to 900 million files [20].  It’s a hybrid 
between Gnutella and Napster and takes advantage of 
“healthier” participants in the system. The underlying 
technology in Kazaa, KazaaLite, and Grokster 
(FastTrack clients) is a proprietary protocol, but some 
details are available. 

 
 

4.8.1 Mechanism Fast Track is built upon active 
clients known as ‘supernodes’ that store a directory 
listing (<filename,peer pointer>), similar to Napster 
servers. Supernode membership changes over time and 
any peer can become (and stay) a supernode, provided 
it has earned enough reputation. Peers search by 
contacting a nearby supernode. 

 
Kazaa clients supply Kazaa-specific “usernames” as 

an HTTP header in each transaction- period of time. 
Kazaa control traffic, primarily consists of queries and 
their responses, and is encrypted. Kazaa file-transfer 
traffic consists of unencrypted HTTP transfers; all 
transfers include Kazaa-specifc HTTP headers (e.g.,“X 
-Kazaa-IP”). These headers provide information to 
identify precisely which object is being transferred in a 
given transaction. When a client attempts to download 
an object, that object may be downloaded in pieces 
(often called “chunks”) from several sources over a 
long period of time. A “transaction” is a single HTTP 
transfer between a client and a server, and a “request” 
is a set of transactions a client participates in to 
download an entire object. A failed transaction occurs 
when a client successfully contacts a remote peer, but 
that remote peer returns an HTTP 500 error code. 

 
Table 8. FastTrack Tradeoffs 

 
Advantages Disadvantages 

FastTrack object popularity 
distribution is not Zipf unlike 
many other P2P file systems 
and the Web workloads. The 
popularity distribution for large 

New clients generate most of the 
load [11] in Kazaa, and older 
clients consume fewer bytes as 
they age because of attrition: 
clients leave the system 

objects is much flatter than Zipf 
would predict 
 

permanently as they grow older.  
Older clients interact with the 
system at a constant rate, asking 
for less during interactions. 

Supernodes liken to Napter’s 
centralized server technique 
and Gnutella’s flooding. 

SuperNodes are points of 
vulnerabilities that can be used to 
bring down the entire system. 

 
4.9 BitTorrent 

One of the more recently developed and immensely 
studied P2P file systems is BitTorrent [4]. Studies on 
Internet backbones indicate that it is one of the most 
popular networks [13]. Its traffic made up 53 per cent 
of all P2P traffic in June 2004 [21].  BitTorrent is a 
file-download protocol and relies on other (global) 
components, such as websites, for finding files. The 
most popular website for this purpose is suprnova.org. 

 
4.9.1 Mechanism In BitTorrent [BITORRENT], files 
are split up into fixed-size chunks (on the order of a 
thousand per file), and the downloaders of a file barter 
for chunks of it by uploading and downloading them in 
a tit-for-tat-like manner to prevent parasitic behavior. 
Each peer is responsible for maximizing its own 
download rate by contacting suitable peers, and peers 
with high upload rates will with high probability also 
be able to download with high speeds. When a peer has 
finished downloading a file, it may become a seed by 
staying online for a while and sharing the file for free, 
i.e., without bartering. 

 
Table 9. Bittorrent Tradeoffs 

 
Advantages Disadvantages 

Global components ensure a 
high level of integrity of both 
the content and the meta-data 
(less fake-file problems) at the 
price of system availability 
(opposite to FastTrack) 

Global components (e.g 
suprnova.org ) sometime fail. 
Mirrors rarely survive longer than 
a few days due to the high 
demands of over 1,200,000 daily 
visitors (Oct 2004). In general, 
trackers are a frequent target for 
denial-of-service attacks and are 
costly to operate due to GBytes 
of daily bandwidth consumption. 

Peers are ‘punished’ for seeding, as their Internet connections are 
then used at maximum capacity to the benefit of other (downloading) 
peers. Instead peers should be given an incentive to seed, possibly at 
a bandwidth of their own choosing. 

 
Table 10.  Comparison of Different Peer-to-Peer File System 

 
System 

 
    Attribute 

Location 
Scheme 

Lookup 
Time 

Load 
Balancing 

Scal-
ability 

Encryp-
tion 

Adapta- 
bility 

Anony
mity 

File Or Chunk 
Stored 

Data 
Persistence 

Read 
/Write 

Freenet Probabilistic 
Routing 

Random-
ized Yes Not highly 

scalable Yes Yes Yes Complete file Not 
Persistent 

Read 
Only 

CFS Chord O(log N) Yes Yes No Yes No Blocks Yes Read 
Only 

PAST Pastry O(log N) Yes Yes Smart Card 
Public Key Yes No Complete file Yes Read 

Only 
Ivy Chord O(log N) No Yes No Yes No Logs stored Yes Read/ 



Write 

OceanStore Tapestry O(log N) Yes, using 
introspection Yes Yes Yes No Fragments (deep 

archival storage) Yes Read/ 
Write 

Farsite Byzantine 
Groups N/A Yes ~105 hosts Yes Yes No File 

Yes, but max 
of 1/3 faulty 
machines  

Read/ 
Write 

Kelips Gossip 
Dissemination O(1) Yes Yes No Yes No Complete File Yes Read 

Only 

FastTrack Super Nodes N/A Yes Yes Only Partial 
(MetaData)  Yes Yes Chunks No Read 

Only 

BitTorrent Global 
Components 

Determ-
inistic Yes Yes No Yes Yes Chunks No Read 

Only 
 
5. Open Problems and Future Research 
 

Peer-to-Peer File Systems are gradually becoming 
more sophisticated and achieving many of the design 
goals described in Section 3. However, clearly a lot of 
improvements are yet to occur. This section discusses 
open problems in P2P file System research and 
explores future research possibilities. 
 
5.1 Open Problems 

 
To achieve widespread success, P2P-based File 

systems have to solve the following open problems:  
• Most P2P file systems discussed in this survey 

were designed as academic research projects. 
Only the Freenet system has been deployed in 
real world situations. Most of the system 
performance analyses are derived from controlled 
data simulations, not actual system deployment. 

• Even the best of the current generation P2P file 
systems is unable to provide the high-bandwidth 
requirements of most data intensive applications. 

• The mechanism for assigning Globally Unique 
File Identifier is ambiguous in most systems. In 
systems that use a content hash key, changing of 
a small amount of data would change the key. 

• Storing data in untrusted hosts geographically 
apart may allow unauthorized access to the data. 
Encryption provides safeguard but does not stop 
dictionary based or brute force offline attacks on 
the data if malicious users have access to it. Since 
most of the systems do not assume trust for the 
peers, data security may thus be compromised. 

• Distributed Denial of Service attacks can be made 
on P2P hosts. Also, a malicious user posing as a 
valid peer can introduce junk files into the 
system, reducing the overall performance. 

• Malicious users can also create churns that will 
degrade system performance, hamper system 
convergence and the location mechanisms. 

• In a P2P file system, there are few mechanisms to 
ensure the authenticity of a document or provide 
elaborate access controls to the object. 

• Inherently, there are no administration 
mechanisms that can be enforced in very large 
scale distributed peer-to-peer system. 
Consequently, it is difficult to enforce 
administrative policies. 

• In P2P systems, it is not possible to provide 
performance guarantees like atomicity of 
operations and transactional semantics 

• According to [6], autonomy, efficiency and 
robustness are closely related in the way that less 
autonomy allows better search and deterministic 
locating methods with bounded time [26]. Also, 
in [6], Daswani et al state that providing fine-
granularity tuning between autonomy and 
efficiency within a single system is another 
interesting open area of research. Needs may vary 
even for a single user who wants some files to be 
stored locally while having access to others in a 
distributed manner. In such cases, it is better to 
design a single system that adapts to user needs 
and policies rather than having different systems 
geared for different purposes. 

 
Unless these open problems are resolved, P2P file 

systems will find it difficult to gain acceptance for 
serious deployment in real life scenarios. 
 
5.2 Integration with Grid 
 

The Grid Computing Movement [9] attempts to 
create an infrastructure based, virtual organization of 
enterprises and entities to enable fruitful utilization and 
sharing of resources. Initially, this sounds totally 
opposite to the P2P paradigm that has no infrastructure 
or administrative bindings. However, these two 
seemingly different paradigms are converging towards 
a single unified resource-sharing environment. Both 
P2P and Grid deal with the efficient handling of large-
scale resources. Both use existing network structure 
underlays to implement their schemes. Grid computing 
has traditionally focused on deployment of highly 
efficient and high performance services and 
applications. Moreover, P2P systems were developed 
keeping the inherent unreliability of the host machines 



in mind. These two different approaches have led to 
different design ideas of the grid and the P2P systems. 

 
Foster et al [8] say that in the end, the two 

communities will converge even though they seem to 
be two opposite sides of the computing spectrum. Each 
is gradually adopting the advantages of the other one. 
In the context of P2P based file systems, this implies 
the possibility of increasingly applying or extending 
the current P2P Distributed File System concepts to the 
realm of Grid Computing, thus converging the two 
paradigms into a unified domain of distributed resource 
sharing. This is an exciting possibility for the future of 
Peer-to-Peer Distributed File Systems. 
 
6. Conclusion 
 

In this survey, various properties of the Peer-to-Peer 
based distributed file systems were discussed. CFS, 
Freenet, PAST, Ivy, OceanStore, and Farsite systems 
are built on the basic P2P philosophy: a loosely 
structured network of independent hosts. Application 
of the P2P System concepts into distributed file system 
research has enabled development of competent file 
systems. With decentralization, symmetry, robustness, 
availability and persistence of data, P2P Distributed 
File systems are now an important part of file system 
research. Despite existing limitations, these systems 
hold promise to fulfill the ultimate requirements of the 
upcoming computing environments. 
 
7. Bibliography 
 
[1] A. Adya et al, “FARSITE: Federated, Available, and Reliable 
Storage for an Incompletely Trusted Environment,” Usenix OSDI, 
2002. 
 
[2] S. Androutsellis-Theotokis and D. Spinellis, “A Survey of Peer-
to-Peer File Sharing Technologies,” Athens Univ. of Economics and 
Business White Paper (WHP-2002-03), 2002. 
 
[3] I. Clarke et al “Freenet: A Distributed Anonymous Information 
Storage and Retrieval System,” Workshop on Design Issues in 
Anonymity and Unobservability, 2000, pp. 46-66. 
 
[4] B. Cohen, “Incentives Build Robustness in BitTorrent”, 
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, 
USA, May 2003. 
 
[5] F. Dabek et al “Wide-Area Cooperative Storage with CFS”, 
Usenix SOSP, 2001. 
 
[6] N. Daswani, H. Garcia-Molina and B. Yang. “Open Problems in 
Data-sharing Peer-to-peer Systems”, ICDT 2003 
 
[7] FreeNet. http://freenet.sourceforge.net 
 
[8] I. Foster and A. Iamnitchi. “On Death, Taxes and the 
Convergence of Peer-to-Peer and Grid Computing”. IPTPS 2003 
 

[9] I. Foster, “Grid: A New Infrastructure For 21st Century Science”, 
Physics Today, 2002 
 
[10] The Gnutella Protocol Specification, 2000. 
<http://dss.clip2.com/GnutellaProtocol04.pdf> 
 
[11] K. P. Gummadi et al, “Measurement, Modeling and Analysis of 
a Peer-to-Peer File-Sharing Workload”, SOSP 2003. 
 
[12] I. Gupta, K. Birman, P. Linga, A. Demers, and R. van Renesse. 
“Kelips: Building an Efficient and Stable P2P DHT Through 
Increased Memory and Background Overhead”. IPTPS 2003. 
 
[13] T. Karagiannis, A. Broido, N. Brownlee, kc claffy, and M. 
Faloutsos,”Is P2p Dying Or Just Hiding?”, Globecom, 2004. 
 
[14] Kazaa. www.kazaa.com 
 
[15] J. Kubiatowicz et al “OceanStore: An Architecture for Global-
Scale Persistent Storage”, ACM ASPLOS, 2000. 
 
[16] A. Mauthe and D. Hutchison. “Peer-to-Peer Computing: 
Systems, Concepts and Characteristics”. Praxis in der 
Informationsverarbeitung & Kommunikation (PIK), K. G. Sauer 
Verlag, Special Issue on Peer-to-Peer volume 26 March 2003. 
 
[17] Morpheus. www.morpheus.com 
 
[18] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen, “Ivy: A 
Read/Write Peer-to-Peer File System”. OSDI 2002. 
 
[19] Napster Inc. www.napster.com 
 
[20] J Olsson, “FastTrack and KaZaA: The Number Of Users 
Decreases”. http://www.axisnova.com/articles/article_109.shtml 
 
[21] A. Parker. “The True Picture Of Peer-To-Peer Filesharing”, 
2004. http://www.cachelogic.com/ 
 
[22] C. G. Plaxton, R. Rajaraman, and A. W. Richa. “Accessing 
Nearby Copies Of Replicated Objects In A Distributed 
Environment”. Theory of Computing Systems, 1999 
 
[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. 
“A Scalable Content-Addressable Network”. ACM SIGCOMM, 
August 2001. 
 
[24] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed 
Object Location And Routing For Large-Scale Peer-To-Peer 
Systems", IFIP/ACM Middleware, 2001. 
 
[25] A. Rowstron and P. Druschel. “Storage Management And 
Caching In PAST, A Large-Scale, Persistent Peer-To-Peer Storage 
Utility”. ACM SOSP, 2001. 
 
[26] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoek, and H. 
Balakrishnan. “Chord: A Scalable Peer-to-peer Lookup Service for 
Internet Applications”. ACM SIGCOMM, August 2001. 
 
[27] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. “Tapestry: An 
Infrastructure for Fault-resilient Wide-area Location and Routing”. 
Technical Report UCB//CSD-01-1141, U.C. Berkeley, April 2001. 


