Announcements

- Still a few (<5) of proposals unapproved
 - Make sure you have the "approved" email.
- Milestone 1 is coming up
 - Will bring sign-up sheet Thursday

Outline for Today

- Distributed Synchronization
 - Logical Clocks
 - Example

```
```

```
```

Lamport’s Clock

```
```

Application of Lamport’s Clock

- Extends to total order of events
- Event with logical time C_i occurred in process P_m:
 $(C_i, P_m) < (C_k, P_n)$
 iff $C_i < C_k$ || ($C_i == C_k$ && $m < n$)
 - Everybody can decide on order of events
 - Can be used to implemented totally-ordered multicast (e.g., for updating replicas)
Distributed Discrete Event Simulation

- Airtraffic Simulation
 - Processes = Airports
 - Messages = Planes
 - Send = take-off, receive = landing

- FRA Airport:
 - deboard flight
 - clean plane
 - refuel
 - plane departs

From SFO: [9, 6, 4]
From JFK: [5, 2, 9]
To SFO: [3, 10]
To JFK: [9]

DDES (cont’d)

- Naïve algorithm (pessimistic):

  ```
  while (!done) {
    wait until every input queue has at least one message
    remove message with lowest Lamport stamp
    process message to advance local simulation
  }
  ```

- Logical time of first message gives lower bound of future messages from that queue
- Null messages avoid deadlock (Chandy/Misra/Bryant)

Clock Consistency

- Lamport (“Scalar”) clock is
 - Consistent: a → b ⇒ C(a) < C(b)
- But not: C(a) < C(b) ⇒ a → b
 - (not strongly consistent)

- Example on next slide

Lack of Strong Consistency

Vector Clocks (1)

Vector Clocks (2)
Vector Clocks: Strong Consistency

- Definition:
 - \(V(a) < V(b) \):
 - \(V(a) \leq V(b) \) and there exists an \(i \) : \(V_i(a) < V_i(b) \)
 - \(V(a) \leq V(b) \): for all components \(i \) : \(V_i(a) \leq V_i(b) \)

- Strongly consistent:
 - \(a \rightarrow b \iff V(a) < V(b) \)

- Also:
 - \(a \parallel b \iff V(a) \parallel V(b) \)
 - \(\iff \neg (V(a) < V(b) \lor V(b) < V(a)) \)

VC: Proving Strong Consistency

1. \(a \rightarrow b \implies V(a) < V(b) \)
 - Follows from monotonicity

2. \(V(a) < V(b) \implies a \rightarrow b \)
 - Assume \(a \) occurs in \(p \); \(b \) occurs in \(q \); \(p \neq q \)
 - Construct chain:
 \[
 a \rightarrow s_1 \rightarrow r_1 \rightarrow s_2 \rightarrow \ldots \rightarrow r_{n-1} \rightarrow s_n \rightarrow r_n \rightarrow b
 \]
 - \(r_1 \) and up don’t happen on \(p \); \(s_n \) and down don’t happen on \(q \); let \(V(b) = [v_1 \ v_2 \ v_3 \ldots \ v_{p=k} \ldots \ v_{n}] \)
 - Induction:
 - \(r_n \) timestamp had \(v_{p=k} \)
 - \(s_n = s_i \) or \(s_n \) timestamp had \(v = k \); consider \(r_{n+1} \)

Efficiency Considerations

- Scalar clocks:
 - Cheapest, constant message overhead
- Vector clocks:
 - Need \(n \) components for strong consistency
 - Various optimizations: compression, etc.
- Matrix clocks

Summary

- Distributed Synchronization
 - Logical clocks + applications

- Thursday: Clusters
 - Inktomi
 - Google FS

Scratch