ELECTRONIC COMMERCE SYSTEM USING
JAVA RM|

MEMBER:
Ming L UO(990-22-4595) and Jun WANG(900-20-6643)

ABSTRACT:

Electronic Commerceisavery hot and important areain Internet Applications. It isone
of the mgor mativations for the development and implementation of most famous
commerciad web stes. In this project we use Java RMI(Remote Method Invocation) to
implement a smple Electronic Commerce System which includes Clients, Stores and
Bank. Graphic User Interface is provided in Client site on the basis of Java SWING
package. The number of Clients and stores can be added without changing any source
code. Store and bank act as RMI server, while Client uses calback technique to avoid
possible nested RMI call and provide amore practical way of implementation. The core
concept of this project isinvoking methods implemented remotely and using nonblocking
mullti-thread archetecture, so asynchronized purchasing and confirming is dlowed in this
system. Also this project gives us an opportunity to abtain insight of designing distributed
systems, such as remote access, concurrent events, nonblocking calls and Java security
policy.

MOTIVATION

There are huge demands of Electronic Commerce in a current networked world. Y ou can
buy and bid lots of stuff in the net. As computer major students we would like to see what
is happening under hood of the Ecommerce system. Java language has the advantage of
platform independence and web browser integration. With RMI(Remote Method
Invocation) we can develop digtributed system eesily. This project isasmplified
Ecommerce system to let us understand deeply about the mechanism of remote cdlling in
adigtributed system.

SYSTEM DESCRIPTION
2.1 Introduction

This system consists of Clients, Stores and Bank. Store and Bank act as RMI server while
Client use callback technique to avoid possible nested RMI call. Each complete purchase
activity involves Purchase Request(Client to Store), Confirm Request(Store to Bank),
Cdlback for Verify(Bank to Client), Giving Verify Result(Client to Bank), Giving

Confirm Result(Bank to Store) and Giving Information Back To Client(Store to Client).

2.2 Structure
Hereisthe abstract picture on the way the system works.

Store 1..8

Purchase Request
) Request for
Give Confirmation
Confirmati

Notify Result
Information

(Callback)

Give
Verifying
result

request for
Verifying
(Callback)

Fig 1. System Architecture

RMI Interface Definition:

On Client gtethereis no RMI server. We designed this architecture for two reasons. One
isto avoid the possible nested call of RMI. Figure 2 shows the architecture of three

sarvers architecture.

Client Store Bank

Fig 2. Three Servers Architecture

This does not mean using three servers modd will unavoidably cause this problem, but
we do agree that it is more probe to introduce defects and we think our architecture is
safer and more delegate. The other reason we use call back isthat it is unnatura to
require the client to start a server when he/she wants to buy something in the net. So our
architecture is more naturd. Figure 3 shows how the Callback is transported to the two
savers The Cdlback actudly is an interface for client implementation package. Using
thisinterface, other objects (in this case store and bank) can access client only via
predefined functions. After it is passed to Store and Bank, interact with clientina
predicable way.

Client Cdlback

Pass the callback interface to RMIStore

Store Server

Pass the callback interface to RMIBank

Bank Server

Fig 3. Cdlback Interface transporting
Here is the source code of al the interface definitions:
package commerce,

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Callback extends Remote

{
/Icalled by bank

/***

* confirmthis customer spending this amount of money using this account
* inthis store.

***/

public boolean confirm(String acct, Sring sname, double amt) throws
RemoteException;

//called by store

/***

* return the result of this purchase

***/

public void getNotify(boolean b) throws RemoteException;

public interface RMISore extends java.r mi.Remote

/lcalled by client
/***
* return alist of goods, including itemid, item name, and item price*
***/
public Vector view()

throws java.rmi.RemoteException;
/***
* return purchase success or failure *
***/
public void purchase(String acct, //client account

Vector items, //including gid & qty

Callback client) /lpassit to the bank

throws java.rmi.RemoteException;
public String getName() throws java.rmi.RemoteException; //just used for GUI

public interface RMIBank extends java.rmi.Remote

//called by store

/**

* get the confirmation from the client, *
* authorize or deny the expenditure. *

**/

public boolean verify (String sname, //store name
Sring acct, //client account
double amt, //money amount
Callback client) //call its verify
throws java.rmi.RemoteException;

I mplementation:
Client Site:
We congtruct a Graphic user interface to provide afriendly Human Computer Interface.
x|
Store Marme: Faradise Bird Electronic Card Store
Account # IH******—

0] | Cancel |

User can choose one store among four stores(Paradise Bird Electronic Card Store, Oasis

CD shop, Ubid and 800.com). For security reason the 8-digit account number is

displayed as“********" - After user clicked Ok button, client can view the inventory
from the choosed Store RMI Server by invoking the remote method of “view()” and
display it asfigure 4.

Then user can choose the items from alist of the goods the store have. Theinitid

quantity for each item is 0. After user checked the “Choose CheckBox”, the default value
will be automatically changed to 1. User can change Quantity of goods. As showed in the
picture, the quantity of index 100006 has been changed to 10. User can choose “reset” to
clear dl theinput. After user clicks Buy Button, adiadog for confirmation is displayed.
Thetota amount isaso dislayed asin figure 5. At this point, client can check higher
buying list, decide to buy the Stuff listed or just cancel this purchase activity and return to
the view interface.

- 1o x|
Choose Id MHarme Description Frice Cluantity
O 100001 VEAATIZDCH ATIRage I 8., |31.00 1]
O 100002 WEAATEPTZ000 AL ¥pert 2000 3...|73.00 1]
O 100003 WEAATIRFIZTY AT RAGE Fury .. |109.00 1]
O 100004 WEA-ATIRFEATY (Al Raoge Fury M. |[125.00 1]
O 1000045 WEAATIANYIZ AL All-in-wonde.. |189.00 1]
[v] 00006 SC-YMHT24 TAMAHATZ4 P 0|
v 100007 SC-SBPCI 28 |Sound Blaster ... |31.00 1
O 100008 SC-3B4830 Sound Blaster ... |49.50 1]
O 100004 SC-SEIPLATIN... |Sound Blaster ... |176.00 1]
By | Reszet |

Fig 4 Graphic User Interface--1tem Inventory

When client chooses “OK™ button (figure 5) on confirmation dialog, athread is started on

client ste to handle the following activities. This thread implements the Callback

interface, shows a status diaog to indicate the on-going process of purchasing and later

accepts getNotify() cal from bank and gets purchase success/fallure info from store. We
pass the Calback interface for this purchase thread to store and bank, so bank and store
can cal back to dient for confirmation and notifying.

Eg,il:ustum Confirmation Dialog) x|
Id Marme Crescription Price Cliantity

100008 SC-YMHT 24 YAMAHA T24 P (14450 10

100007 SC-5BPCI128 |Sound Blaster .. {31.00 1

The total amountis 176.00

1k Cancel

Fig 5 Customer Confirmation Dialog

Store Site:

Store preserves the information of inventory in afile (can be upgraded to a database if we
can solve the database policy problem in the graduate lab). RMIStore receives the view
request from Client site and returns inventory information. After client sends out the Buy
Vector (the list of buying things) by cdling RMIStore purchase(), Store starts a thread
which computes the total amount and ddliversit to the bank together with the and the
client account and the Callback interface it gets.

Why we use multi-thread architecture on store Sde? Since different stores actualy are
digtinct RMIStore servers, which means they react the same behavior toward the same
externa stimuli. So we only need to consder the Stuation of purchases happened in the
same gore. If the store waits for bank verification and bank waits for client confirmation
in one purchase, the same store can not process other clients requests. To alow queries
and purchases happening concurrently, we decide to apply multi-thread architecture. One
thread processes only one purchase from the client site. So thereis no blocking problem
in our system.

Bank Site:

Managing user account information and asking client for confirmation toward one certain
purchase are the main tasks of bank server. Bank will determine a user account isvalid or
not according to user profiles. If it isvalid, is there enough money on it? If both cases
ether the account is not vaid or there is not enough money on it the bank will return
falure information to store and as aresult store will inform client that the transaction

fals

Client can choose to confirm one purchase or not. The bank will return corresponding
result to store due to client’ sresponse. And there will be the corresponding changes on
user account information (e.g. the amount of money in this account) if client choose to
corfirm.

Figure 6 shows a complete procedure of a successful purchase.

SUMMARY:

The god of this project isto implement adigtributed system using Java RMI. We now
understand deeper about the mechanism that RMI works. We find out through practice
that RMI gives us afeasble way to invoke methods implemented in remote machines,
and that we need to add more operations and serious consderations of things like stub,
policy etc. besides operationd part due to remote communications. However, a
distributed system can be implemented easily in Java, and the attribute of platform
independency brought in by Java language makesiit not difficult to trangport the whole
system. Actudly this project isfirst developed on the Unix platform, and later we migrate
the client part to Windows platform (due to the machine limitations in graduate | &b).

We have a deeper understanding of the concurrent issue and deploying Threads now.
During our developing process severd traps did show up. At first astore server might be
blocked when it was waiting for some response from bank. Later we introduce threads to
our system to avoid blocking. There are a bit ponders on data consistency too. We decide
after carefully comparing severd mechanisms we can think out that preserving account
information only on bank site and making every decison about account by bank isa
preferred ideato ensure client data consstency.

This system il has much room for extensons. At the beginning we thought of using
JDBC to preserver inventory information on store sde and client account information on
bank sde (now we are using files). But we tried and failed because we have no
Adminigtrator privilege for accessing the database we set up. About introducing more
banks issue (since now our system has dready implemented random numbers of clients
and gores interaction without any need to modify source code, only by adding some data
filesfor stores and account entry for bank profile), there are severd ways. Oneway is
adding a proxy to decide which bank the store should look up for from the account
number. Stores can send its request information to this proxy center and this proxy routes
the request to certain bank.

