
Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Network Flow

T. M. Murali

March 28, April 2, and 4, 2013

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Maximum Flow and Minimum Cut

I Two rich algorithmic problems.

I Fundamental problems in combinatorial optimization.

I Beautiful mathematical duality between flows and cuts.

I Numerous non-trivial applications:

I Bipartite matching.

I Data mining.

I Project selection.

I Airline scheduling.

I Baseball elimination.

I Image segmentation.

I Network connectivity.

I Open-pit mining.

I Network reliability.

I Distributed computing.

I Egalitarian stable matching.

I Security of statistical data.

I Network intrusion detection.

I Multi-camera scene reconstruction.

I Gene function prediction.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

History

(Soviet Rail Network, Tolstoi, 1930; Harris and Ross, 1955; Alexander Schrijver,
Math Programming, 91: 3, 2002.)

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flow Networks
I Use directed graphs to model transporation networks:

I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.

I A flow network is a directed graph G (V ,E )
I Each edge e ∈ E has a capacity c(e) > 0.
I There is a single source node s ∈ V .
I There is a single sink node t ∈ V .
I Nodes other than s and t are internal.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flow Networks
I Use directed graphs to model transporation networks:

I edges carry traffic and have capacities.
I nodes act as switches.
I source nodes generate traffic, sink nodes absorb traffic.

I A flow network is a directed graph G (V ,E )
I Each edge e ∈ E has a capacity c(e) > 0.
I There is a single source node s ∈ V .
I There is a single sink node t ∈ V .
I Nodes other than s and t are internal.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Defining Flow

I In a flow network G (V ,E ), an s-t flow is a function f : E → R+ such that

(i) (Capacity conditions) For each e ∈ E , 0 ≤ f (e) ≤ c(e).
(ii) (Conservation conditions) For each internal node v ,∑

e into v

f (e) =
∑

e out of v

f (e)

I The value of a flow is ν(f ) =
∑

e out of s f (e).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Maximum-Flow Problem

Maximum Flow

INSTANCE: A flow network G

SOLUTION: The flow with largest value in G , where the maximum is
taking over all possible flows on G .

I Output should assign a flow value to each edge in the graph.

I The flow on each edge should satisfy the capacity condition.

I The flow into and out of each internal node should satisfy the conservation
conditions.

I The value of the output flow, i.e., the total flow out of the source node in the
output flow, must be the largest over all possible flows on G .

I Assumptions:

1. No edges enter s, no edges leave t.
2. There is at least one edge incident on each node.
3. All edge capacities are integers.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Maximum-Flow Problem

Maximum Flow

INSTANCE: A flow network G

SOLUTION: The flow with largest value in G , where the maximum is
taking over all possible flows on G .

I Output should assign a flow value to each edge in the graph.

I The flow on each edge should satisfy the capacity condition.

I The flow into and out of each internal node should satisfy the conservation
conditions.

I The value of the output flow, i.e., the total flow out of the source node in the
output flow, must be the largest over all possible flows on G .

I Assumptions:

1. No edges enter s, no edges leave t.
2. There is at least one edge incident on each node.
3. All edge capacities are integers.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Examples of Flows

20

30

10

2010

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Examples of Flows

20

30

10

2010

0 0

0

0 0

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Examples of Flows

20

30

10

2010

10 0

10

0 10

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Examples of Flows

20

30

10

2010

10 10

0

0 0

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Examples of Flows

20

30

10

2010

10 10

10

0 10

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Examples of Flows

20

30

10

2010

20 10

10

0 10

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Examples of Flows

20

30

10

2010

20 10

10

10 20

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.
I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).
2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).

3. Idea to increase flow: Push flow along edges with leftover capacity and undo
flow on edges already carrying flow.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.
I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).

2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).
3. Idea to increase flow: Push flow along edges with leftover capacity and undo

flow on edges already carrying flow.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.
I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).
2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).

3. Idea to increase flow: Push flow along edges with leftover capacity and undo
flow on edges already carrying flow.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Developing the Algorithm

I No known dynamic programming algorithm.
I Let us take a greedy approach.

1. Start with zero flow along all edges (Figure 7.3(a)).
2. Find an s-t path and push as much flow along it as possible (Figure 7.3(b)).
3. Idea to increase flow: Push flow along edges with leftover capacity and undo

flow on edges already carrying flow.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Residual Graph

I Given a flow network G (V ,E ) and a flow f on G , the residual graph Gf of G
with respect to f is a directed graph such that

(i) (Nodes) Gf has the same nodes as G .
(ii) (Forward edges) For each edge e = (u, v) ∈ E such that f (e) < c(e), Gf

contains the edge (u, v) with a residual capacity c(e)− f (e).
(iii) (Backward edges) For each edge e ∈ E such that f (e) > 0, Gf contains the

edge e′ = (v , u) with a residual capacity f (e).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Augmenting Paths in a Residual Graph
I Let P be a simple s-t path in Gf .

I b = bottleneck(P, f ) is the minimum
residual capacity of any edge in P.

I The following operation augment(f ,P)
yields a new flow f ′ in G :

I e is forward edge in Gf ⇒ flow increases
along e in G .

I e = (u, v) is backward edge in Gf ⇒ flow
decreases along (v , u) in G .

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Augmenting Paths in a Residual Graph
I Let P be a simple s-t path in Gf .

I b = bottleneck(P, f ) is the minimum
residual capacity of any edge in P.

I The following operation augment(f ,P)
yields a new flow f ′ in G :

I e is forward edge in Gf ⇒ flow increases
along e in G .

I e = (u, v) is backward edge in Gf ⇒ flow
decreases along (v , u) in G .

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path.
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that b = bottleneck(P, f ) ≤

residual capacity of (u, v).

I e is a forward edge:
0 ≤ f (e) ≤ f ′(e) = f (e) + b ≤ f (e) +

(
c(e)− f (e)

)
= c(e).

I e is a backward edge: c(e) ≥ f (e) ≥ f ′(e) = f (e)− b ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P.

Four cases to work out.

After augmentation

Residual graph

Forward Forward

Flow into v increases by b

Flow out of v increases by b

After augmentation

Residual graph

Backward Backward

Flow into v decreases by b

Flow out of v decreases by b

After augmentation

Residual graph

Forward Backward

Flow into v increases by b and decreases by b

Flow out of v does not change

After augmentation

Residual graph

ForwardBackward

Flow into v does not change

Flow out of v increases by b and decreases by b

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path.
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.

I Capacity condition on e = (u, v) ∈ Gf : Note that b = bottleneck(P, f ) ≤
residual capacity of (u, v).

I e is a forward edge:
0 ≤ f (e) ≤ f ′(e) = f (e) + b ≤ f (e) +

(
c(e)− f (e)

)
= c(e).

I e is a backward edge: c(e) ≥ f (e) ≥ f ′(e) = f (e)− b ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P.

Four cases to work out.

After augmentation

Residual graph

Forward Forward

Flow into v increases by b

Flow out of v increases by b

After augmentation

Residual graph

Backward Backward

Flow into v decreases by b

Flow out of v decreases by b

After augmentation

Residual graph

Forward Backward

Flow into v increases by b and decreases by b

Flow out of v does not change

After augmentation

Residual graph

ForwardBackward

Flow into v does not change

Flow out of v increases by b and decreases by b

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path.
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that b = bottleneck(P, f ) ≤

residual capacity of (u, v).

I e is a forward edge:
0 ≤ f (e) ≤ f ′(e) = f (e) + b ≤ f (e) +

(
c(e)− f (e)

)
= c(e).

I e is a backward edge: c(e) ≥ f (e) ≥ f ′(e) = f (e)− b ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P.

Four cases to work out.

After augmentation

Residual graph

Forward Forward

Flow into v increases by b

Flow out of v increases by b

After augmentation

Residual graph

Backward Backward

Flow into v decreases by b

Flow out of v decreases by b

After augmentation

Residual graph

Forward Backward

Flow into v increases by b and decreases by b

Flow out of v does not change

After augmentation

Residual graph

ForwardBackward

Flow into v does not change

Flow out of v increases by b and decreases by b

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path.
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that b = bottleneck(P, f ) ≤

residual capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + b ≤ f (e) +
(
c(e)− f (e)

)
= c(e).

I e is a backward edge: c(e) ≥ f (e) ≥ f ′(e) = f (e)− b ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P.

Four cases to work out.

Before augmentation

Forward edge

After augmentation

Residual graph

After augmentation

Residual graph

Forward Forward

Flow into v increases by b

Flow out of v increases by b

After augmentation

Residual graph

Backward Backward

Flow into v decreases by b

Flow out of v decreases by b

After augmentation

Residual graph

Forward Backward

Flow into v increases by b and decreases by b

Flow out of v does not change

After augmentation

Residual graph

ForwardBackward

Flow into v does not change

Flow out of v increases by b and decreases by b

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path.
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that b = bottleneck(P, f ) ≤

residual capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + b ≤ f (e) +
(
c(e)− f (e)

)
= c(e).

I e is a backward edge: c(e) ≥ f (e) ≥ f ′(e) = f (e)− b ≥ f (e)− f (e) = 0.

I Conservation condition on internal node v ∈ P.

Four cases to work out.

Before augmentation

Forward edge

After augmentation

Residual graph

After augmentation

Residual graph

Forward Forward

Flow into v increases by b

Flow out of v increases by b

After augmentation

Residual graph

Backward Backward

Flow into v decreases by b

Flow out of v decreases by b

After augmentation

Residual graph

Forward Backward

Flow into v increases by b and decreases by b

Flow out of v does not change

After augmentation

Residual graph

ForwardBackward

Flow into v does not change

Flow out of v increases by b and decreases by b

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path.
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that b = bottleneck(P, f ) ≤

residual capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + b ≤ f (e) +
(
c(e)− f (e)

)
= c(e).

I e is a backward edge: c(e) ≥ f (e) ≥ f ′(e) = f (e)− b ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P.

Four cases to work out.

After augmentation

Residual graph

Forward Forward

Flow into v increases by b

Flow out of v increases by b

After augmentation

Residual graph

Backward Backward

Flow into v decreases by b

Flow out of v decreases by b

After augmentation

Residual graph

Forward Backward

Flow into v increases by b and decreases by b

Flow out of v does not change

After augmentation

Residual graph

ForwardBackward

Flow into v does not change

Flow out of v increases by b and decreases by b

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of augment(f ,P)

I A simple s-t path in the residual graph is an augmenting path.
I Let f ′ be the flow returned by augment(f ,P).
I Claim: f ′ is a flow. Verify capacity and conservation conditions.

I Only need to check edges and internal nodes in P.
I Capacity condition on e = (u, v) ∈ Gf : Note that b = bottleneck(P, f ) ≤

residual capacity of (u, v).
I e is a forward edge:

0 ≤ f (e) ≤ f ′(e) = f (e) + b ≤ f (e) +
(
c(e)− f (e)

)
= c(e).

I e is a backward edge: c(e) ≥ f (e) ≥ f ′(e) = f (e)− b ≥ f (e)− f (e) = 0.
I Conservation condition on internal node v ∈ P. Four cases to work out.

After augmentation

Residual graph

Forward Forward

Flow into v increases by b

Flow out of v increases by b

After augmentation

Residual graph

Backward Backward

Flow into v decreases by b

Flow out of v decreases by b

After augmentation

Residual graph

Forward Backward

Flow into v increases by b and decreases by b

Flow out of v does not change

After augmentation

Residual graph

ForwardBackward

Flow into v does not change

Flow out of v increases by b and decreases by b

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Ford-Fulkerson Algorithm

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Analysis of the Ford-Fulkerson Algorithm

I Running time
I Does the algorithm terminate?
I If so, how many loops does the algorithm take?

I Correctness: if the algorithm terminates, why does it output a maximum
flow?

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers.

Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).

v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Termination of the Ford-Fulkerson Algorithm

I Claim: at each stage, flow values and residual capacities are integers. Prove
by induction.

I Claim: Flow value strictly increases when we apply augment(f ,P).
v(f ′) = v(f ) + bottleneck(P, f ) > v(f ).

I Claim: Maximum value of any flow is C =
∑

e out of s c(e).

I Claim: Algorithm terminates in at most C iterations.

I Claim: Algorithm runs in O(mC ) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?

I Can we characterise the magnitude of the flow in terms of the structure of
the graph? For example, for every flow f , ν(f ) ≤ C =

∑
e out of s c(e).

I Is there a better bound?

I Idea: An s-t cut is a partition of V into sets A and B such that s ∈ A and
t ∈ B.

I Capacity of the cut (A,B) is c(A,B) =
∑

e out of A c(e).
I Intuition: For every flow f , ν(f ) ≤ c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?

I Can we characterise the magnitude of the flow in terms of the structure of
the graph? For example, for every flow f , ν(f ) ≤ C =

∑
e out of s c(e).

I Is there a better bound?

I Idea: An s-t cut is a partition of V into sets A and B such that s ∈ A and
t ∈ B.

I Capacity of the cut (A,B) is c(A,B) =
∑

e out of A c(e).
I Intuition: For every flow f , ν(f ) ≤ c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?
I Can we characterise the magnitude of the flow in terms of the structure of

the graph? For example, for every flow f , ν(f ) ≤ C =
∑

e out of s c(e).
I Is there a better bound?
I Idea: An s-t cut is a partition of V into sets A and B such that s ∈ A and

t ∈ B.

I Capacity of the cut (A,B) is c(A,B) =
∑

e out of A c(e).
I Intuition: For every flow f , ν(f ) ≤ c(A,B).

A B

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Ford-Fulkerson Algorithm

I How large can the flow be?
I Can we characterise the magnitude of the flow in terms of the structure of

the graph? For example, for every flow f , ν(f ) ≤ C =
∑

e out of s c(e).
I Is there a better bound?
I Idea: An s-t cut is a partition of V into sets A and B such that s ∈ A and

t ∈ B.
I Capacity of the cut (A,B) is c(A,B) =

∑
e out of A c(e).

I Intuition: For every flow f , ν(f ) ≤ c(A,B).

A B

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Some Useful Notation

A B

f out(v) =
∑

e out of v

f (e) f in(v) =
∑

e into v

f (e)

For S ⊆ V ,

f out(S) =
∑

e out of S

f (e) f in(S) =
∑

e into S

f (e)

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

A B

I Let f be any s-t flow and (A,B) any s-t cut.

I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, 0 = f out(v)− f in(v).
I Summing up all these equations, ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A
(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

A B

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, 0 = f out(v)− f in(v).
I Summing up all these equations, ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A
(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

A B

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).

I For every other node v ∈ A, 0 = f out(v)− f in(v).
I Summing up all these equations, ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A
(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

A B

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, 0 = f out(v)− f in(v).

I Summing up all these equations, ν(f ) =
∑

v∈A
(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A
(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

A B

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, 0 = f out(v)− f in(v).
I Summing up all these equations, ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A
(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

A B

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, 0 = f out(v)− f in(v).
I Summing up all these equations, ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A
(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) = f out(A)− f in(A).

I Corollary: ν(f ) = f in(B)− f out(B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Fun Facts about Cuts

A B

I Let f be any s-t flow and (A,B) any s-t cut.
I Claim: ν(f ) = f out(A)− f in(A).

I ν(f ) = f out(s) and f in(s) = 0⇒ ν(f ) = f out(s)− f in(s).
I For every other node v ∈ A, 0 = f out(v)− f in(v).
I Summing up all these equations, ν(f ) =

∑
v∈A

(
f out(v)− f in(v)

)
.

I An edge e that has both ends in A or both ends out of A does not contribute.
I An edge e that has its tail in A contributes f (e).
I An edge e that has its head in A contributes −f (e).

I
∑

v∈A
(
f out(v)− f in(v)

)
=
∑

e out of A f (e)−
∑

e into A f (e) = f out(A)− f in(A).
I Corollary: ν(f ) = f in(B)− f out(B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Important Fact about Cuts

A B

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Important Fact about Cuts

A B

I ν(f ) ≤ c(A,B).

ν(f ) = f out(A)− f in(A)

≤ f out(A) =
∑

e out of A

f (e)

≤
∑

e out of A

c(e) = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flows and Min-Cuts

I Let f be any s-t flow and (A,B) any s-t cut. We proved ν(f ) ≤ c(A,B).

I Very strong statement: The value of every flow is ≤ capacity of any cut.

I Corollary: The maximum flow is at most the smallest capacity of a cut.

I Question: Is the reverse true? Is the smallest capacity of a cut at most the
maximum flow?

I Answer: Yes, and the Ford-Fulkerson algorithm computes this cut!

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flows and Cuts

I Let f̄ denote the flow computed by the Ford-Fulkerson algorithm.

I Enough to show ∃ s-t cut (A∗,B∗) such that ν(f̄ ) = c(A∗,B∗).

I When the algorithm terminates, the residual graph has no s-t path.

I Claim: If f is an s-t flow such that Gf has no s-t path, then there is an s-t
cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).

I Claim applies to any flow f such that Gf has no s-t path, and not just to the
flow f̄ computed by the Ford-Fulkerson algorithm.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Flows and Cuts

I Let f̄ denote the flow computed by the Ford-Fulkerson algorithm.

I Enough to show ∃ s-t cut (A∗,B∗) such that ν(f̄ ) = c(A∗,B∗).

I When the algorithm terminates, the residual graph has no s-t path.

I Claim: If f is an s-t flow such that Gf has no s-t path, then there is an s-t
cut (A∗,B∗) such that ν(f ) = c(A∗,B∗).

I Claim applies to any flow f such that Gf has no s-t path, and not just to the
flow f̄ computed by the Ford-Fulkerson algorithm.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then

f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then

f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then

f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then

f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Proof of Claim Relating Flows to Cuts

I Claim: f is an s-t flow and Gf has no s-t path ⇒ ∃ s-t cut (A∗,B∗),
ν(f ) = c(A∗,B∗).

I A∗ = set of nodes reachable from s in Gf , B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that
u ∈ A∗, v ∈ B∗, then f (e) = c(e).

I Claim: If e′ = (u′, v ′) such that
u′ ∈ B∗, v ′ ∈ A∗, then f (e′) = 0.

I Claim: ν(f ) = c(A∗,B∗).

ν(f ) = f out(A)− f in(A)

=
∑

e out of A

f (e)−
∑

e into A

f (e)

=
∑

e out of A

c(e)−
∑

e into A

0 = c(A,B).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flow Min-Cut Theorem

I The flow f̄ computed by the Ford-Fulkerson algorithm is a maximum flow.

I Given a flow of maximum value, we can compute a minimum s-t cut in O(m)
time.

I In every flow network, there is a flow f and a cut (A,B) such that
ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem: in every flow network, the maximum value of
an s-t flow is equal to the minimum capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers, then there is a
maximum flow f where f (e), the value of the flow on edge e, is an integer
for every edge e in G .

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flow Min-Cut Theorem

I The flow f̄ computed by the Ford-Fulkerson algorithm is a maximum flow.

I Given a flow of maximum value, we can compute a minimum s-t cut in O(m)
time.

I In every flow network, there is a flow f and a cut (A,B) such that
ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem: in every flow network, the maximum value of
an s-t flow is equal to the minimum capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers, then there is a
maximum flow f where f (e), the value of the flow on edge e, is an integer
for every edge e in G .

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Max-Flow Min-Cut Theorem

I The flow f̄ computed by the Ford-Fulkerson algorithm is a maximum flow.

I Given a flow of maximum value, we can compute a minimum s-t cut in O(m)
time.

I In every flow network, there is a flow f and a cut (A,B) such that
ν(f ) = c(A,B).

I Max-Flow Min-Cut Theorem: in every flow network, the maximum value of
an s-t flow is equal to the minimum capacity of an s-t cut.

I Corollary: If all capacities in a flow network are integers, then there is a
maximum flow f where f (e), the value of the flow on edge e, is an integer
for every edge e in G .

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Real-Valued Capacities

I If capacities are real-valued, Ford-Fulkerson algorithm may not terminate!

I But Max-Flow Min-Cut theorem is still true. Why?

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Bad Augmenting Paths

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity.

Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity. Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity. Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Improving Ford-Fulkerson Algorithm

I Bad case for Ford-Fulkerson algorithm is when the bottleneck edge is the
augmenting path has a low capacity.

I Idea: decrease number of iterations by picking s-t path with bottleneck edge
of largest capacity. Computing this path can slow down each iteration
considerably.

I Modified idea: Maintain a scaling parameter ∆ and choose only augmenting
paths with bottleneck capacity at least ∆.

I Gf (∆): residual network restricted to edges with residual capacities ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Scaling Max-Flow Algorithm

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Correctness of the Scaling Max-Flow Algorithm

I Flow and residual capacities are integer valued throughout.

I When ∆ = 1, Gf (∆) and Gf are identical.

I Therefore, when the scaling algorithm terminates, the flow is a maximum
flow.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm I

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most

1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm I

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.

I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm I

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm I

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm I

I ∆-scaling phase: one iteration of the algorithm’s outer loop, with ∆ fixed.

I Claim: the number of ∆-scaling phases is at most 1 + dlog2 Ce.
I Need to bound the number of iterations in each ∆-scaling phase.

I Claim: During a ∆-scaling phase, each iteration increases the flow by ≥ ∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

c(e)− f (e) < ∆.

I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) < ∆.

I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).

I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

c(e)− f (e) < ∆.

I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) < ∆.

I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.

I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

c(e)− f (e) < ∆.

I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) < ∆.

I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .

I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

c(e)− f (e) < ∆.

I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) < ∆.

I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then

c(e)− f (e) < ∆.
I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) < ∆.

I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then c(e)− f (e) < ∆.

I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) < ∆.

I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then c(e)− f (e) < ∆.
I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then

f (e′) < ∆.
I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then c(e)− f (e) < ∆.
I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then f (e′) < ∆.

I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then c(e)− f (e) < ∆.
I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then f (e′) < ∆.
I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Value of Flow at the End of a ∆-Scaling Phase
I Let f be the flow at the end of a ∆-scaling phase.
I Claim: Then there is an s-t cut in (A,B) in G such that

ν(f ) ≤ ν(f̄ ) ≤ c(A,B) ≤ ν(f ) + m∆

I There is no s-t path in Gf (∆).
I Let A∗ be the set of nodes reachable from s in Gf (∆); B∗ = V − A∗.
I Claim: (A∗,B∗) is an s-t cut in G .
I Claim: If e = (u, v) such that u ∈ A∗, v ∈ B∗, then c(e)− f (e) < ∆.
I Claim: If e′ = (u′, v ′) such that u′ ∈ B∗, v ′ ∈ A∗, then f (e′) < ∆.
I Claim: ν(f ) ≥ c(A∗,B∗)−m∆.

ν(f ) = f out(A∗)− f in(A∗)

=
∑

e out of A∗

f (e)−
∑

e into A∗

f (e)

≥
∑

e out of A∗

(c(e)−∆)−
∑

e into A∗

∆

≥
∑

e out of A∗

c(e)−
∑
e in G

∆

≥ c(A∗,B∗)−m∆.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm II

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: At the end of the some ∆-scaling phase, let value of ∆ be Γ and let

f ′ be the flow: ν(f ′) ≥ ν(f̄ )−mΓ.

I In the next ∆-scaling phase, the value of ∆ is Γ/2. Let f be the flow at the
end of this phase.

I Since each iteration increases the flow by ≥ Γ/2, if the current ∆-scaling phase
continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2mΓ/2 ≥ ν(f̄ ).

I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Running time of the Scaling Max-Flow Algorithm II

I Claim: the number of augmentations in a ∆-scaling phase is ≤ 2m.
I Base case: In the first ∆-scaling phase, each edge incident on s can be used in

at most one augmenting path.
I Induction: At the end of the some ∆-scaling phase, let value of ∆ be Γ and let

f ′ be the flow: ν(f ′) ≥ ν(f̄ )−mΓ.
I In the next ∆-scaling phase, the value of ∆ is Γ/2. Let f be the flow at the

end of this phase.
I Since each iteration increases the flow by ≥ Γ/2, if the current ∆-scaling phase

continues for more than 2m iterations, then ν(f ) ≥ ν(f ′) + 2mΓ/2 ≥ ν(f̄ ).
I Claim: the running time of the scaling max-flow algorithm is O(m2 log C ).

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial: polynomial in the magnitudes of the numbers in the
input.

I Scaling algorithm runs in time polynomial in the size of the input (the graph
and the number of bits needed to represent the capacities).

I Desire a strongly polynomial algorithm: running time is depends only on the
size of the graph and is independent of the numerical values of the capacities
(as long as numerical operations take O(1) time).

I Edmonds-Karp, Dinitz: choose augmenting path to be the shortest path in
Gf (use breadth-first search). Algorithm runs in O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc.

I Chapter 7.4: Preflow-push max-flow algorithm that is not based on
augmenting paths. Runs in O(n2m) or O(n3) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial: polynomial in the magnitudes of the numbers in the
input.

I Scaling algorithm runs in time polynomial in the size of the input (the graph
and the number of bits needed to represent the capacities).

I Desire a strongly polynomial algorithm: running time is depends only on the
size of the graph and is independent of the numerical values of the capacities
(as long as numerical operations take O(1) time).

I Edmonds-Karp, Dinitz: choose augmenting path to be the shortest path in
Gf (use breadth-first search). Algorithm runs in O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc.

I Chapter 7.4: Preflow-push max-flow algorithm that is not based on
augmenting paths. Runs in O(n2m) or O(n3) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow



Introduction Ford-Fulkerson Algorithm Scaling Max-Flow Algorithm

Other Maximum Flow Algorithms

I Running time of the Ford-Fulkerson algorithm is O(mC ), which is
pseudo-polynomial: polynomial in the magnitudes of the numbers in the
input.

I Scaling algorithm runs in time polynomial in the size of the input (the graph
and the number of bits needed to represent the capacities).

I Desire a strongly polynomial algorithm: running time is depends only on the
size of the graph and is independent of the numerical values of the capacities
(as long as numerical operations take O(1) time).

I Edmonds-Karp, Dinitz: choose augmenting path to be the shortest path in
Gf (use breadth-first search). Algorithm runs in O(mn) iterations.

I Improved algorithms take time O(mn log n), O(n3), etc.

I Chapter 7.4: Preflow-push max-flow algorithm that is not based on
augmenting paths. Runs in O(n2m) or O(n3) time.

T. M. Murali March 28, April 2, and 4, 2013 Network Flow


	Introduction
	Ford-Fulkerson Algorithm
	Scaling Max-Flow Algorithm

