
Graphs Shortest Paths Minimum Spanning Trees Implementation

Greedy Graph Algorithms

T. M. Murali

February 7, 12, and 14, 2013

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Graphs

I Model pairwise relationships (edges) between objects (nodes).

I Undirected graph G = (V ,E): set V of nodes and set E of edges, where
E ⊆ V × V . Elements of E are unordered pairs.

I Directed graph G = (V ,E): set V of nodes and set E of edges, where
E ⊆ V × V . Elements of E are ordered pairs.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Applications of Graphs

I Useful in a large number of applications:

computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

I Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Applications of Graphs

I Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

I Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Applications of Graphs

I Useful in a large number of applications: computer networks, the World Wide
Web, ecology (food webs), social networks, software systems, job scheduling,
VLSI circuits, cellular networks, . . .

I Problems involving graphs have a rich history dating back to Euler.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Shortest Path Problem

I G (V ,E) is a connected directed graph. Each edge e has a length le ≥ 0.

I V has n nodes and E has m edges.

I Length of a path P is the sum of the lengths of the edges in P.

I Goal is to determine the shortest path from a specified start node s to each
node in V .

I Aside: If G is undirected, convert to a directed graph by replacing each edge
in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Shortest Path Problem

I G (V ,E) is a connected directed graph. Each edge e has a length le ≥ 0.

I V has n nodes and E has m edges.

I Length of a path P is the sum of the lengths of the edges in P.

I Goal is to determine the shortest path from a specified start node s to each
node in V .

I Aside: If G is undirected, convert to a directed graph by replacing each edge
in G by two directed edges.

Shortest Paths

INSTANCE: A directed graph G (V ,E), a function l : E → R+, and a
node s ∈ V

SOLUTION: A set {Pu, u ∈ V }, where Pu is the shortest path in G
from s to u.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Example of Dijkstra’s Algorithm

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I “Greedily” add a node v to S that is closest to s.

I d ′(v) = length of shortest path from s to v using only nodes in S .
I To compute the shortest paths: store the predecessor u that minimises d ′(v).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I “Greedily” add a node v to S that is closest to s.

I d ′(v) = length of shortest path from s to v using only nodes in S .
I To compute the shortest paths: store the predecessor u that minimises d ′(v).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I “Greedily” add a node v to S that is closest to s.

I d ′(v) = length of shortest path from s to v using only nodes in S .
I To compute the shortest paths:

store the predecessor u that minimises d ′(v).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Dijkstra’s Algorithm

I Maintain a set S of explored nodes: for each node u ∈ S , we have
determined the length d(u) of the shortest path from s to u.

I “Greedily” add a node v to S that is closest to s.

I d ′(v) = length of shortest path from s to v using only nodes in S .
I To compute the shortest paths: store the predecessor u that minimises d ′(v).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: d(u) is correct for all nodes u ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor on the

path Pv . Could there be a shorter path P from s to v?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis:

d(u) is correct for all nodes u ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor on the

path Pv . Could there be a shorter path P from s to v?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: d(u) is correct for all nodes u ∈ S .

I Inductive step: we add the node v to S . Let u be the v ’s predecessor on the
path Pv . Could there be a shorter path P from s to v?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: d(u) is correct for all nodes u ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor on the

path Pv . Could there be a shorter path P from s to v?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Proof of Correctness

I Let Pu be the shortest path computed for a node u.
I Claim: Pu is the shortest path from s to u.
I Prove by induction on the size of S .

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: d(u) is correct for all nodes u ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor on the

path Pv . Could there be a shorter path P from s to v?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?

I Union of shortest paths from a fixed source s forms a tree; paths not
necessarily computed by Dijkstra’s algorithm.

I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.

I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.
I Pv : shortest path from s to a node v , d(v): length of Pv .

I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.
I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).

I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.
I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).

I Suppose union of shortest paths from s contains a cycle involving nodes
v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.
I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.
I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)

k∑
i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.
I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments about Dijkstra’s Algorithm

I Algorithm cannot handle negative edge lengths. We will discuss the
Bellman-Ford algorithm in a few weeks.

I Union of shortest paths output by Dijkstra’s algorithm forms a tree. Why?
I Union of shortest paths from a fixed source s forms a tree; paths not

necessarily computed by Dijkstra’s algorithm.
I Pv : shortest path from s to a node v , d(v): length of Pv .
I If u is the second-to-last node on Pv , then d(v) = d(u) + l(u,v).
I If u precedes w on Pv , then d(w) = d(u) + l(u,w), i.e., d(w)− d(u) = l(u,w).
I Suppose union of shortest paths from s contains a cycle involving nodes

v1, v2, . . . vk in that order around the cycle.

d(vi)− d(vi−1) = l(vi−1, vi), for each 2 ≤ i ≤ k

d(v1)− d(vk) = l(vk , v1)
k∑

i=2

(
d(vi)− d(vi−1)

)
+ d(v1)− d(vk) =

k∑
i=2

l(vi−1, vi) + l(vk , v1)

0 =
k∑

i=2

l(vi−1, vi) + l(vk , v1)

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Dijkstra’s Algorithm

I How many iterations are there of the while loop?

n − 1.

I In each iteration, for each node v 6∈ S , compute

d ′(v) = min
e=(u,v),u∈S

d(u) + le

.

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Dijkstra’s Algorithm

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node v 6∈ S , compute

d ′(v) = min
e=(u,v),u∈S

d(u) + le

.

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Dijkstra’s Algorithm

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node v 6∈ S , compute

d ′(v) = min
e=(u,v),u∈S

d(u) + le

.

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Dijkstra’s Algorithm

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node v 6∈ S , compute

d ′(v) = min
e=(u,v),u∈S

d(u) + le

.

I Running time per iteration is

O(m), yielding an overall running time of
O(nm).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Dijkstra’s Algorithm

I How many iterations are there of the while loop? n − 1.

I In each iteration, for each node v 6∈ S , compute

d ′(v) = min
e=(u,v),u∈S

d(u) + le

.

I Running time per iteration is O(m), yielding an overall running time of
O(nm).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.

I Store the minima d ′(v) for each node v ∈ V − S in a priority queue.
I Determine the next node v to add to S using ExtractMin.
I After adding v to S , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w),

1. Set d ′(w) = d(v) + l(v,w).
2. Update w ’s key to the new value of d ′(w) using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked? n − 1 and
m times, respectively. Total running time is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue.
I Determine the next node v to add to S using ExtractMin.
I After adding v to S , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w),

1. Set d ′(w) = d(v) + l(v,w).
2. Update w ’s key to the new value of d ′(w) using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked? n − 1 and
m times, respectively. Total running time is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue.
I Determine the next node v to add to S using ExtractMin.
I After adding v to S , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w),

1. Set d ′(w) = d(v) + l(v,w).
2. Update w ’s key to the new value of d ′(w) using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked?

n − 1 and
m times, respectively. Total running time is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue.
I Determine the next node v to add to S using ExtractMin.
I After adding v to S , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w),

1. Set d ′(w) = d(v) + l(v,w).
2. Update w ’s key to the new value of d ′(w) using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked? n − 1 and
m times, respectively.

Total running time is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

A Faster implementation of Dijkstra’s Algorithm

I Observation: If we add v to S , d ′(w) changes only for v ’s neighbours.
I Store the minima d ′(v) for each node v ∈ V − S in a priority queue.
I Determine the next node v to add to S using ExtractMin.
I After adding v to S , for each neighbour w of v , compute d(v) + l(v ,w).
I If d(v) + l(v ,w) < d ′(w),

1. Set d ′(w) = d(v) + l(v,w).
2. Update w ’s key to the new value of d ′(w) using ChangeKey.

I How many times are ExtractMin and ChangeKey invoked? n − 1 and
m times, respectively. Total running time is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Network Design

I Connect a set of nodes using a set of edges with certain properties.

I Input is usually a graph and the desired network (the output) should use
subset of edges in the graph.

I Example: connect all nodes using a cycle of shortest total length.

This
problem is the NP-complete traveling salesman problem.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Network Design

I Connect a set of nodes using a set of edges with certain properties.

I Input is usually a graph and the desired network (the output) should use
subset of edges in the graph.

I Example: connect all nodes using a cycle of shortest total length. This
problem is the NP-complete traveling salesman problem.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

I Given an undirected graph G (V ,E) with a cost ce > 0 associated with each
edge e ∈ E .

I Find a subset T of edges such that the graph (V ,T) is connected and the
cost

∑
e∈T ce is as small as possible.

Minimum Spanning Tree

INSTANCE: An undirected graph G (V ,E) and a function c : E → R+

SOLUTION: A set T ⊆ E of edges such that (V ,T) is connected and
the

∑
e∈T ce is as small as possible.

I Claim: If T is a minimum-cost solution to this network design problem then
(V ,T) is a tree.

I A subset T of E is a spanning tree of G if (V ,T) is a tree.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

I Given an undirected graph G (V ,E) with a cost ce > 0 associated with each
edge e ∈ E .

I Find a subset T of edges such that the graph (V ,T) is connected and the
cost

∑
e∈T ce is as small as possible.

Minimum Spanning Tree

INSTANCE: An undirected graph G (V ,E) and a function c : E → R+

SOLUTION: A set T ⊆ E of edges such that (V ,T) is connected and
the

∑
e∈T ce is as small as possible.

I Claim: If T is a minimum-cost solution to this network design problem then
(V ,T) is a tree.

I A subset T of E is a spanning tree of G if (V ,T) is a tree.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Minimum Spanning Tree (MST)

I Given an undirected graph G (V ,E) with a cost ce > 0 associated with each
edge e ∈ E .

I Find a subset T of edges such that the graph (V ,T) is connected and the
cost

∑
e∈T ce is as small as possible.

Minimum Spanning Tree

INSTANCE: An undirected graph G (V ,E) and a function c : E → R+

SOLUTION: A set T ⊆ E of edges such that (V ,T) is connected and
the

∑
e∈T ce is as small as possible.

I Claim: If T is a minimum-cost solution to this network design problem then
(V ,T) is a tree.

I A subset T of E is a spanning tree of G if (V ,T) is a tree.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

I Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle.

Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.

Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected.

Reverse-Delete algorithm

I Which of these algorithms works? All of them!

I Simplifying assumption: all edge costs are distinct.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

I Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle.

Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.

Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected.

Reverse-Delete algorithm

I Which of these algorithms works? All of them!

I Simplifying assumption: all edge costs are distinct.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

I Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle.

Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.

Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected.

Reverse-Delete algorithm

I Which of these algorithms works?

All of them!

I Simplifying assumption: all edge costs are distinct.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

I Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle. Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.
Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected. Reverse-Delete algorithm

I Which of these algorithms works? All of them!

I Simplifying assumption: all edge costs are distinct.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Greedy Algorithm for the MST Problem

I Template: process edges in some order. Add an edge to T if tree property is
not violated.

Increasing cost order Process edges in increasing order of cost. Discard an
edge if it creates a cycle. Kruskal’s algorithm

Dijkstra-like Start from a node s and grow T outward from s: add the
node that can be attached most cheaply to current tree.
Prim’s algorithm

Decreasing cost order Delete edges in order of decreasing cost as long as
graph remains connected. Reverse-Delete algorithm

I Which of these algorithms works? All of them!

I Simplifying assumption: all edge costs are distinct.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Example of Prim’s and Kruskal’s Algorithms

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

I Does the edge of smallest cost belong to an MST?

Yes.

I Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

I Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

I Does the edge of smallest cost belong to an MST? Yes.

I Which edges must belong to an MST?

I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

I Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

I Does the edge of smallest cost belong to an MST? Yes.

I Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

I Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

I Does the edge of smallest cost belong to an MST? Yes.

I Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

I Which edges cannot belong to an MST?

I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Characterising MSTs

I Does the edge of smallest cost belong to an MST? Yes.

I Which edges must belong to an MST?
I What happens when we delete an edge from an MST?
I MST breaks up into sub-trees.
I Which edge should we add to join them?

I Which edges cannot belong to an MST?
I What happens when we add an edge to an MST?
I We obtain a cycle.
I Which edge in the cycle can we be sure does not belong to an MST?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts

I A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

I Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .

I cut(S) is a cut because deleting the edges in cut(S) disconnects S from
V − S .

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Graph Cuts

I A cut in a graph G (V ,E) is a set of edges whose removal disconnects the
graph (into two or more connected components).

I Every set S ⊂ V (S cannot be empty or the entire set V) has a corresponding
cut: cut(S) is the set of edges (v ,w) such that v ∈ S and w ∈ V − S .

I cut(S) is a cut because deleting the edges in cut(S) disconnects S from
V − S .

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Cut Property

I When is it safe to include an edge in an MST?

I Let S ⊂ V , S is not empty or equal to V .
I Let e be the cheapest edge in cut(S).
I Claim: every MST contains e.
I Proof: exchange argument. If a supposed MST T does not contain e, show

that there is a tree with smaller cost than T that contains e.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Cut Property

I When is it safe to include an edge in an MST?
I Let S ⊂ V , S is not empty or equal to V .
I Let e be the cheapest edge in cut(S).
I Claim: every MST contains e.

I Proof: exchange argument. If a supposed MST T does not contain e, show
that there is a tree with smaller cost than T that contains e.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Cut Property

I When is it safe to include an edge in an MST?
I Let S ⊂ V , S is not empty or equal to V .
I Let e be the cheapest edge in cut(S).
I Claim: every MST contains e.
I Proof: exchange argument. If a supposed MST T does not contain e, show

that there is a tree with smaller cost than T that contains e.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

I Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

I Claim: Kruskal’s algorithm outputs an MST.

1. For every edge e added, demonstrate the existence of S and V − S such that
e and S satisfy the cut property.

I If e = (u, v), let S be the set of nodes connected to u in the current graph T .
I Why is e the cheapest edge in cut(S)?

2. Prove that the algorithm computes a spanning tree.

I (V ,T) contains no cycles by construction.
I If (V ,T) is not connected, then exists a subset S of nodes not connected to

V − S . What is the contradiction?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

I Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

I Claim: Kruskal’s algorithm outputs an MST.
1. For every edge e added, demonstrate the existence of S and V − S such that

e and S satisfy the cut property.

I If e = (u, v), let S be the set of nodes connected to u in the current graph T .
I Why is e the cheapest edge in cut(S)?

2. Prove that the algorithm computes a spanning tree.

I (V ,T) contains no cycles by construction.
I If (V ,T) is not connected, then exists a subset S of nodes not connected to

V − S . What is the contradiction?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

I Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

I Claim: Kruskal’s algorithm outputs an MST.
1. For every edge e added, demonstrate the existence of S and V − S such that

e and S satisfy the cut property.
I If e = (u, v), let S be the set of nodes connected to u in the current graph T .

I Why is e the cheapest edge in cut(S)?

2. Prove that the algorithm computes a spanning tree.

I (V ,T) contains no cycles by construction.
I If (V ,T) is not connected, then exists a subset S of nodes not connected to

V − S . What is the contradiction?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

I Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

I Claim: Kruskal’s algorithm outputs an MST.
1. For every edge e added, demonstrate the existence of S and V − S such that

e and S satisfy the cut property.
I If e = (u, v), let S be the set of nodes connected to u in the current graph T .
I Why is e the cheapest edge in cut(S)?

2. Prove that the algorithm computes a spanning tree.

I (V ,T) contains no cycles by construction.
I If (V ,T) is not connected, then exists a subset S of nodes not connected to

V − S . What is the contradiction?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

I Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

I Claim: Kruskal’s algorithm outputs an MST.
1. For every edge e added, demonstrate the existence of S and V − S such that

e and S satisfy the cut property.
I If e = (u, v), let S be the set of nodes connected to u in the current graph T .
I Why is e the cheapest edge in cut(S)?

2. Prove that the algorithm computes a spanning tree.
I (V ,T) contains no cycles by construction.

I If (V ,T) is not connected, then exists a subset S of nodes not connected to
V − S . What is the contradiction?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Kruskal’s Algorithm

I Kruskal’s algorithm:
I Start with an empty set T of edges.
I Process edges in E in increasing order of cost.
I Add the next edge e to T only if adding e does not create a cycle. Discard e

if it creates a cycle.

I Claim: Kruskal’s algorithm outputs an MST.
1. For every edge e added, demonstrate the existence of S and V − S such that

e and S satisfy the cut property.
I If e = (u, v), let S be the set of nodes connected to u in the current graph T .
I Why is e the cheapest edge in cut(S)?

2. Prove that the algorithm computes a spanning tree.
I (V ,T) contains no cycles by construction.
I If (V ,T) is not connected, then exists a subset S of nodes not connected to

V − S . What is the contradiction?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

I Prim’s algorithm: Maintain a tree (S ,U)
I Start with an arbitrary node s ∈ S and U = ∅.
I Add the node v to S and the edge e to U that minimise

min
e=(u,v),u∈S,v 6∈S

ce ≡ min
e∈cut(S)

ce .

I Stop when S = V .

I Claim: Prim’s algorithm outputs an MST.

1. Prove that every edge inserted satisfies the cut property.

I In each iteration, S is the set added in the algorithm and e is the cheapest edge
in cut(S) by construction.

2. Prove that the graph constructed is a spanning tree.

I Why are there no cycles in (V ,T)?
I Why is (V ,T) connected?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

I Prim’s algorithm: Maintain a tree (S ,U)
I Start with an arbitrary node s ∈ S and U = ∅.
I Add the node v to S and the edge e to U that minimise

min
e=(u,v),u∈S,v 6∈S

ce ≡ min
e∈cut(S)

ce .

I Stop when S = V .

I Claim: Prim’s algorithm outputs an MST.
1. Prove that every edge inserted satisfies the cut property.

I In each iteration, S is the set added in the algorithm and e is the cheapest edge
in cut(S) by construction.

2. Prove that the graph constructed is a spanning tree.

I Why are there no cycles in (V ,T)?
I Why is (V ,T) connected?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

I Prim’s algorithm: Maintain a tree (S ,U)
I Start with an arbitrary node s ∈ S and U = ∅.
I Add the node v to S and the edge e to U that minimise

min
e=(u,v),u∈S,v 6∈S

ce ≡ min
e∈cut(S)

ce .

I Stop when S = V .

I Claim: Prim’s algorithm outputs an MST.
1. Prove that every edge inserted satisfies the cut property.

I In each iteration, S is the set added in the algorithm and e is the cheapest edge
in cut(S) by construction.

2. Prove that the graph constructed is a spanning tree.

I Why are there no cycles in (V ,T)?
I Why is (V ,T) connected?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

I Prim’s algorithm: Maintain a tree (S ,U)
I Start with an arbitrary node s ∈ S and U = ∅.
I Add the node v to S and the edge e to U that minimise

min
e=(u,v),u∈S,v 6∈S

ce ≡ min
e∈cut(S)

ce .

I Stop when S = V .

I Claim: Prim’s algorithm outputs an MST.
1. Prove that every edge inserted satisfies the cut property.

I In each iteration, S is the set added in the algorithm and e is the cheapest edge
in cut(S) by construction.

2. Prove that the graph constructed is a spanning tree.
I Why are there no cycles in (V ,T)?

I Why is (V ,T) connected?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of Prim’s Algorithm

I Prim’s algorithm: Maintain a tree (S ,U)
I Start with an arbitrary node s ∈ S and U = ∅.
I Add the node v to S and the edge e to U that minimise

min
e=(u,v),u∈S,v 6∈S

ce ≡ min
e∈cut(S)

ce .

I Stop when S = V .

I Claim: Prim’s algorithm outputs an MST.
1. Prove that every edge inserted satisfies the cut property.

I In each iteration, S is the set added in the algorithm and e is the cheapest edge
in cut(S) by construction.

2. Prove that the graph constructed is a spanning tree.
I Why are there no cycles in (V ,T)?
I Why is (V ,T) connected?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Cycle Property

I When can we be sure that an edge cannot be in any MST?

I Let C be any cycle in G and let e = (v ,w) be the most expensive edge in C .

I Claim: e does not belong to any MST of G .

I Proof: exchange argument. If a supposed MST T contains e, show that
there is a tree with smaller cost than T that does not contain e.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Cycle Property

I When can we be sure that an edge cannot be in any MST?

I Let C be any cycle in G and let e = (v ,w) be the most expensive edge in C .

I Claim: e does not belong to any MST of G .

I Proof: exchange argument. If a supposed MST T contains e, show that
there is a tree with smaller cost than T that does not contain e.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Cycle Property

I When can we be sure that an edge cannot be in any MST?

I Let C be any cycle in G and let e = (v ,w) be the most expensive edge in C .

I Claim: e does not belong to any MST of G .

I Proof: exchange argument. If a supposed MST T contains e, show that
there is a tree with smaller cost than T that does not contain e.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

I Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

I Claim: the Reverse-Delete algorithm outputs an MST.

1. Show that every edge deleted belongs to no MST.

I A deleted edge must belong to some cycle C .
I Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .

2. Prove that the graph remaining at the end is a spanning tree.

I (V ,E ′) is connected at the end, by construction.
I If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

I Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

I Claim: the Reverse-Delete algorithm outputs an MST.
1. Show that every edge deleted belongs to no MST.

I A deleted edge must belong to some cycle C .
I Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .

2. Prove that the graph remaining at the end is a spanning tree.

I (V ,E ′) is connected at the end, by construction.
I If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

I Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

I Claim: the Reverse-Delete algorithm outputs an MST.
1. Show that every edge deleted belongs to no MST.

I A deleted edge must belong to some cycle C .
I Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .

2. Prove that the graph remaining at the end is a spanning tree.

I (V ,E ′) is connected at the end, by construction.
I If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

I Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

I Claim: the Reverse-Delete algorithm outputs an MST.
1. Show that every edge deleted belongs to no MST.

I A deleted edge must belong to some cycle C .
I Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .

2. Prove that the graph remaining at the end is a spanning tree.
I (V ,E ′) is connected at the end, by construction.

I If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The
algorithm would have deleted that edge.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Optimality of the Reverse-Delete Algorithm

I Reverse-Delete algorithm: Maintain a set E ′ of edges.
I Start with E ′ = E .
I Process edges in decreasing order of cost.
I Delete the next edge e from E ′ only if (V ,E ′) is connected after deletion.
I Stop after processing all the edges.

I Claim: the Reverse-Delete algorithm outputs an MST.
1. Show that every edge deleted belongs to no MST.

I A deleted edge must belong to some cycle C .
I Since the edge is the first encountered by the algorithm, it is the most

expensive edge in C .

2. Prove that the graph remaining at the end is a spanning tree.
I (V ,E ′) is connected at the end, by construction.
I If (V ,E ′) contains a cycle, consider the costliest edge in that cycle. The

algorithm would have deleted that edge.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments on MST Algorithms

I To handle multiple edges with the same length, perturb each length by a
random infinitesimal amount. Read the textbook.

I Any algorithm that constructs a spanning tree by including edges that satisfy
the cut property and deleting edges that satisfy the cycle property will yield
an MST!

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Prim’s Algorithm

I Maintain a tree (S ,U).
I Start with an arbitrary node s ∈ V and U = ∅.
I Add the node v to S and the edge e to U that minimise

min
e∈cut(S)

ce .

I Stop when S = V .

I Sorting edges takes O(m log n) time.

I Implementation is very similar to Dijkstra’s algorithm.

I Maintain S and store attachment costs a(v) = mine∈cut(S) ce for every node
v ∈ V − S in a priority queue.

I At each step, extract minimum v from priority queue and update the
attachment costs of the neighbours of v .

I Total of n − 1 ExtractMin and m ChangeKey operations, yielding a
running time of O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Prim’s Algorithm

I Maintain a tree (S ,U).
I Start with an arbitrary node s ∈ V and U = ∅.
I Add the node v to S and the edge e to U that minimise

min
e∈cut(S)

ce .

I Stop when S = V .

I Sorting edges takes O(m log n) time.

I Implementation is very similar to Dijkstra’s algorithm.

I Maintain S and store attachment costs a(v) = mine∈cut(S) ce for every node
v ∈ V − S in a priority queue.

I At each step, extract minimum v from priority queue and update the
attachment costs of the neighbours of v .

I Total of n − 1 ExtractMin and m ChangeKey operations, yielding a
running time of O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Kruskal’s Algorithm

I Start with an empty set T of edges.

I Process edges in E in increasing order of cost.

I Add the next edge e to T only if adding e does not create a cycle.

I Sorting edges takes O(m log n) time.

I Key question: “Does adding e = (u, v) to T create a cycle?”
I Maintain set of connected components of T .
I Find(u): return the name of the connected component of T that u belongs

to.
I Union(A,B): merge connected components A and B.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Implementing Kruskal’s Algorithm

I Start with an empty set T of edges.

I Process edges in E in increasing order of cost.

I Add the next edge e to T only if adding e does not create a cycle.

I Sorting edges takes O(m log n) time.

I Key question: “Does adding e = (u, v) to T create a cycle?”
I Maintain set of connected components of T .
I Find(u): return the name of the connected component of T that u belongs

to.
I Union(A,B): merge connected components A and B.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

I How many Find invocations does Kruskal’s algorithm need?

2m.

I How many Union invocations does Kruskal’s algorithm need? n − 1.

I Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

I Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

I How many Find invocations does Kruskal’s algorithm need? 2m.

I How many Union invocations does Kruskal’s algorithm need?

n − 1.

I Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

I Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

I How many Find invocations does Kruskal’s algorithm need? 2m.

I How many Union invocations does Kruskal’s algorithm need? n − 1.

I Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

I Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

I How many Find invocations does Kruskal’s algorithm need? 2m.

I How many Union invocations does Kruskal’s algorithm need? n − 1.

I Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

I Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Analysing Kruskal’s Algorithm

I How many Find invocations does Kruskal’s algorithm need? 2m.

I How many Union invocations does Kruskal’s algorithm need? n − 1.

I Textbook describes two implementations of Union-Find: (see appendix to
this set of slides)

I Each Find takes O(1) time, k invocations of Union take O(k log k) time in
total.

I Each Find takes O(log n) time and each invocation of Union takes O(1)
time.

I Total running time of Kruskal’s algorithm is O(m log n).

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Graphs Shortest Paths Minimum Spanning Trees Implementation

Comments on Union-Find and MST

I The Union-Find data structure is useful to maintain the connected
components of a graph as edges are added to the graph.

I The data structure does not support edge deletion efficiently.

I Current best algorithm for MST runs in O(mα(m, n)) time (Chazelle 2000)
and O(m) randomised time (Karger, Klein, and Tarjan, 1995).

I Holy grail: O(m) deterministic algorithm for MST.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure

I Abstraction of the data structure needed by Kruskal’s algorithm.

I Maintain disjoint subsets of elements from a universe U of n elements.

I Each subset has an name. We will set a set’s name to be the identity of some
element in it.

I Support three operations:

1. MakeUnionFind(U): initialise the data structure with elements in U.
2. Find(u): return the identity of the subset that contains u.
3. Union(A,B): merge the sets named A and B into one set.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

I Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

I Implementing the operations:

1. MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2. Find(s): return Component[s] in O(1) time.
3. Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

I Union is very slow because we cannot efficiently find the elements that
belong to a set.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

I Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

I Implementing the operations:

1. MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2. Find(s): return Component[s] in O(1) time.
3. Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

I Union is very slow because we cannot efficiently find the elements that
belong to a set.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

I Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

I Implementing the operations:

1. MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2. Find(s): return Component[s] in O(1) time.
3. Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

I Union is very slow because

we cannot efficiently find the elements that
belong to a set.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 1

I Store all the elements of U in an array Component.
I Assume identities of elements are integers from 1 to n.
I Component[s] is the name of the set containing s.

I Implementing the operations:

1. MakeUnionFind(U): For each s ∈ U, set Component[s] = s in O(n) time.
2. Find(s): return Component[s] in O(1) time.
3. Union(A,B): merge B into A by scanning Component and updating each

index whose value is B to the value A. Takes O(n) time.

I Union is very slow because we cannot efficiently find the elements that
belong to a set.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 2

I Optimisation 1: Use an array Elements
I Indices of Elements range from 1 to n.
I Elements[s] stores the elements in the subset named s in a list.

I Execute Union(A,B) by merging B into A in two steps:

1. Updating Component for elements of B in O(|B|) time.
2. Append Elements[B] to Elements[A] in O(1) time.

I Union takes Ω(n) in the worst-case.

I Optimisation 2: Store size of each set in an array (say, Size). If
Size[B] ≤ Size[A], merge B into A. Otherwise merge A into B. Update
Size.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 2

I Optimisation 1: Use an array Elements
I Indices of Elements range from 1 to n.
I Elements[s] stores the elements in the subset named s in a list.

I Execute Union(A,B) by merging B into A in two steps:

1. Updating Component for elements of B in O(|B|) time.
2. Append Elements[B] to Elements[A] in O(1) time.

I Union takes Ω(n) in the worst-case.

I Optimisation 2: Store size of each set in an array (say, Size). If
Size[B] ≤ Size[A], merge B into A. Otherwise merge A into B. Update
Size.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

I MakeUnionFind(S) and Find(u) are as before.

I Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

I Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

I Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

I MakeUnionFind(S) and Find(u) are as before.

I Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

I Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

I Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

I MakeUnionFind(S) and Find(u) are as before.

I Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

I Any sequence of k Union operations takes O(k log k) time.

I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

I Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

I MakeUnionFind(S) and Find(u) are as before.

I Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

I Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.

I Intuition: running time of Union is dominated by updates to Component.
Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

I Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

I MakeUnionFind(S) and Find(u) are as before.

I Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

I Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

I Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

I MakeUnionFind(S) and Find(u) are as before.

I Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

I Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

I Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Analysis of Implementation 2

I MakeUnionFind(S) and Find(u) are as before.

I Union(A,B): Running time is proportional to the size of the smaller set,
which may be Ω(n).

I Any sequence of k Union operations takes O(k log k) time.
I k Union operations touch at most 2k elements.
I Intuition: running time of Union is dominated by updates to Component.

Charge each update to the element being updated and bound number of
charges per element.

I Consider any element s. Every time s’s set identity is updated, the size of the
set containing s at least doubles ⇒ s’s set can change at most log(2k) times
⇒ the total work done in k Union operations is O(k log k).

I Find is fast in the worst case, Union is fast in an amortised sense. Can we
make both operations worst-case efficient?

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

I Goal: Implement Find in O(log n) and Union in O(1) worst-case time.

I Represent each subset in a tree using pointers:
I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

I Implementing Find(u): follow pointers from u to the root of u’s tree.

I Implementing Union(A,B): make smaller tree’s root a child of the larger
tree’s root. Takes O(1) time.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

I Goal: Implement Find in O(log n) and Union in O(1) worst-case time.
I Represent each subset in a tree using pointers:

I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

I Implementing Find(u): follow pointers from u to the root of u’s tree.
I Implementing Union(A,B): make smaller tree’s root a child of the larger

tree’s root. Takes O(1) time.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

I Goal: Implement Find in O(log n) and Union in O(1) worst-case time.
I Represent each subset in a tree using pointers:

I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

I Implementing Find(u): follow pointers from u to the root of u’s tree.

I Implementing Union(A,B): make smaller tree’s root a child of the larger
tree’s root. Takes O(1) time.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Implementation 3

I Goal: Implement Find in O(log n) and Union in O(1) worst-case time.
I Represent each subset in a tree using pointers:

I Each tree node contains an element and a pointer to a parent.
I The identity of the set is the identity of the element at the root.

I Implementing Find(u): follow pointers from u to the root of u’s tree.
I Implementing Union(A,B): make smaller tree’s root a child of the larger

tree’s root. Takes O(1) time.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Find in Implementation 3

I Why does Find(u) take O(log n) time?

I Number of pointers followed equals the number of times the identity of the
set containing u changed.

I Every time u’s set’s identity changes, the set at least doubles in size ⇒ there
are O(log n) pointers followed.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Find in Implementation 3

I Why does Find(u) take O(log n) time?

I Number of pointers followed equals the number of times the identity of the
set containing u changed.

I Every time u’s set’s identity changes, the set at least doubles in size ⇒ there
are O(log n) pointers followed.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

I Every time we invoke Find(u), we follow the same set of pointers.

I Path compression: make all nodes visited by Find(u) children of the root.

I Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

I Every time we invoke Find(u), we follow the same set of pointers.

I Path compression: make all nodes visited by Find(u) children of the root.

I Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

I Every time we invoke Find(u), we follow the same set of pointers.

I Path compression: make all nodes visited by Find(u) children of the root.

I Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

Appendix: Union-Find

Union-Find Data Structure: Improving Implementation 3

I Every time we invoke Find(u), we follow the same set of pointers.

I Path compression: make all nodes visited by Find(u) children of the root.

I Can prove that total time taken by n Find operations is O(nα(n)), where
α(n) is the inverse of the Ackermann function, and grows e-x-t-r-e-m-e-l-y
s-l-o-w-l-y with n.

T. M. Murali February 7, 12, and 14, 2013 Greedy Graph Algorithms

	Graphs
	Shortest Paths
	Minimum Spanning Trees
	Implementation
	Appendix
	Appendix: Union-Find

