
Homework 4

CS 5114 (Fall 2013)

Assigned on Tuesday, February 26, 2013.
Submit PDF solutions by email to the TA

by the beginning of class on Tuesday, March 5, 2013.

Instructions:

• You are not allowed to consult any sources other than your textbook, the slides on the course web
page, your own class notes, the TA, and the instructor. In particular, do not use a search engine.

• Do not forget to typeset your solutions. Every mathematical expression must be typeset as a mathe-
matical expression, e.g., the square of n must appear as n2 and not as “nˆ2”. Students can use the
LATEX version of the homework problems to start entering their solutions.

• Describe your algorithms as clearly as possible. The style used in the book is fine, as long as your de-
scription is not ambiguous. Explain your algorithm in words. A step-wise description is fine. However,
if you submit detailed pseudo-code without an explanation, we will not grade your solutions.

• Do not make any assumptions not stated in the problem. If you do make any assumptions, state them
clearly, and explain why the assumption does not decrease the generality of your solution.

• Do not describe your algorithms only for a specific example you may have worked out.

• You must also provide a clear proof that your solution is correct (or a counter-example, where appli-
cable). Type out all the statements you need to complete your proof. You must convince us that you
can write out the complete proof. You will lose points if you work out some details of the proof in your
head but do not type them out in your solution.

• Describe an analysis of your algorithm and state and prove the running time. You will only get partial
credit if your analysis is not tight, i.e., if the bound you prove for your algorithm is not the best upper
bound possible.

Problem 1 (10 points) Solve the recurrence T (n) = T (b
√
nc) + 1. In words, the T (n) is the running time

of an algorithm that creates one sub-problem of the size equal to the square root of n, solves this
sub-problem recursively, and spends one more unit of time. You can assume that T (1) = T (2) = 1 and
that n ≥ 2 in the recurrence relation.

Problem 2 (30 points) You are given three algorithms to solve the same problem of size n. Analyse each
algorithm in O() notation. Provide a clear proof of the analysis. Which algorithm would you choose
and why? In other words, write down which algorithm is asymptotically the fastest and provide a
proof why this algorithm is asymptotically the fastest of all three. If you can directly apply a formula
we discussed in class, feel free to do so. For some sub-problems, you will have to come up with proofs
from scratch, although your proofs will follow the general outlines we have used in class. Remember
to prove your solution by induction, even if you use the “unrolling” method to guess a solution.

(i) Algorithm A solves the problem by dividing it into five sub-problems of half the size, recursively
solving each sub-problem, and then combining the solutions in linear time.

(ii) Algorithm B solves the problem by dividing it into two sub-problems of size n − 1, recursively
solving each subproblem, and then combining the solutions in constant time.

(iii) Algorithm C solves the problem by dividing it into three sub-problems of size n/3, recursively
solving each sub-problem, and then combining the solutions in O(n2) time.

1



CS 5114 (Fall 2013): Homework 4

Problem 3 (25 points) Solve exercise 1 in Chapter 5 (page 246) of your textbook. Note that you cannot
delete elements from the databases. The only operation you are allowed is to query the kth smallest
value in one of the databases. You are likely to come up with an algorithm that somehow eliminates
parts of each database and recurses on the remaining parts. Be sure to prove that whatever elements
you return from the recursive calls are related to the the median element in the original set of 2n
values, i.e., in the conquer step, how can you be sure that you have computed the median of the 2n
values from the elements returned by the recursive calls?

Problem 4 (35 points) Solve exercise 3 in Chapter 5 (pages 246–247) of your textbook. Let us call the
equivalence class with more than n/2 cards the important class. It is enough for your algorithm to
return a card that belongs to this class, if it exists, or no card at all. Note that the problem specifies that
the only operation you can perform on a pair of cards is to decide if they are equivalent. You cannot
perform any other operation, e.g., compare them in order to sort them. Your proof of correctness must
clearly address why your algorithm will find a set of important class, if it exists. For instance, if you
divide the cards into two sets of n/2 cards each and find the important class in each subset, why should
the important class(es) found by the recursive calls have any relation to the important class for all n
cards?

2


