Divide and Conquer Algorithms

T. M. Murali

February 19, 2009

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.

Divide and Conquer

- Break up a problem into several parts.
- Solve each part recursively.
- Solve base cases by brute force.
- Efficiently combine solutions for sub-problems into final solution.
- Common use:
- Partition problem into two equal sub-problems of size $n / 2$.
- Solve each part recursively.
- Combine the two solutions in $O(n)$ time.
- Resulting running time is $O(n \log n)$.

Mergesort

Sort
INSTANCE: Nonempty list $L=x_{1}, x_{2}, \ldots, x_{n}$ of integers.
SOLUTION: A permutation $y_{1}, y_{2}, \ldots, y_{n}$ of $x_{1}, x_{2}, \ldots, x_{n}$ such that $y_{i} \leq y_{i+1}$, for all $1 \leq i<n$.

- Mergesort is a divide-and-conquer algorithm for sorting.

1. Partition L into two lists A and B of size $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ respectively.
2. Recursively sort A.
3. Recursively sort B.
4. Merge the sorted lists A and B into a single sorted list.

Merging Two Sorted Lists

- Merge two sorted lists $A=a_{1}, a_{2}, \ldots, a_{k}$ and $B=b_{1}, b_{2}, \ldots b_{l}$.

Maintain a current pointer for each list.
Initialise each pointer to the front of the list.
While both lists are nonempty:
Let a_{i} and b_{j} be the elements pointed to by the current pointers.
Append the smaller of the two to the output list.
Advance the current pointer in the list that the smaller element belonged to.
EndWhile
Append the rest of the non-empty list to the output.

Merging Two Sorted Lists

- Merge two sorted lists $A=a_{1}, a_{2}, \ldots, a_{k}$ and $B=b_{1}, b_{2}, \ldots b_{l}$.

Maintain a current pointer for each list.
Initialise each pointer to the front of the list.
While both lists are nonempty:
Let a_{i} and b_{j} be the elements pointed to by the current pointers.
Append the smaller of the two to the output list.
Advance the current pointer in the list that the smaller element belonged to.
EndWhile
Append the rest of the non-empty list to the output.

- Running time of this algorithm is $O(k+I)$.

Analysing Mergesort

- Worst-case running time for n elements $(T(n))$ is at most the sum of the worst-case running time for $\lfloor n / 2\rfloor$ elements, for $\lceil n / 2\rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- Assume n is a power of 2 .

Analysing Mergesort

- Worst-case running time for n elements $(T(n))$ is at most the sum of the worst-case running time for $\lfloor n / 2\rfloor$ elements, for $\lceil n / 2\rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- Assume n is a power of 2 .

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+c n, n>2 \\
& T(2) \leq c
\end{aligned}
$$

Analysing Mergesort

- Worst-case running time for n elements $(T(n))$ is at most the sum of the worst-case running time for $\lfloor n / 2\rfloor$ elements, for $\lceil n / 2\rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- Assume n is a power of 2 .

$$
\begin{aligned}
& T(n) \leq 2 T(n / 2)+c n, n>2 \\
& T(2) \leq c
\end{aligned}
$$

- Three basic ways of solving this recurrence relation:

1. "Unroll" the recurrence (somewhat informal method).
2. Guess a solution and substitute into recurrence to check.
3. Guess solution in $O()$ form and substitute into recurrence to determine the constants.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

Unrolling the recurrence

Figure 5.1 Unrolling the recurrence $T(n) \leq 2 T(n / 2)+O(n)$.

- Recursion tree has $\log n$ levels.
- Total work done at each level is cn.
- Running time of the algorithm is $c n \log n$.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.
- Inductive step: assume $T(m) \leq c m \log _{2} m$ for all $m<n$.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.
- Inductive step: assume $T(m) \leq c m \log _{2} m$ for all $m<n$. Therefore, $T(n / 2) \leq(c n / 2) \log (n / 2)$.

Substituting a Solution into the Recurrence

- Guess that the solution is $T(n) \leq c n \log n$ (logarithm to the base 2).
- Use induction to check if the solution satisfies the recurrence relation.
- Base case: $n=2$. Is $T(2)=c \leq 2 c \log 2$? Yes.
- Inductive step: assume $T(m) \leq c m \log _{2} m$ for all $m<n$. Therefore, $T(n / 2) \leq(c n / 2) \log (n / 2)$.

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left(\frac{c n}{2} \log \left(\frac{n}{2}\right)\right)+c n \\
& =c n \log \left(\frac{n}{2}\right)+c n \\
& =c n \log n-c n+c n \\
& =c n \log n .
\end{aligned}
$$

Partial Substitution

- Guess that the solution is $k n \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.

Partial Substitution

- Guess that the solution is $k n \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of k will satisfy the recurrence relation.
- $k \geq c$ will work.

Other Recurrence Relations

- Divide into q sub-problems of size $n / 2$ and merge in $O(n)$ time. Two distinct cases: $q=1$ and $q>2$.
- Divide into two sub-problems of size $n / 2$ and merge in $O\left(n^{2}\right)$ time.

$$
T(n)=q T(n / 2)+c n, q=1
$$

Figure 5.3 Unrolling the recurrence $T(n) \leq T(n / 2)+O(n)$.

$$
T(n)=q T(n / 2)+c n, q=1
$$

Figure 5.3 Unrolling the recurrence $T(n) \leq T(n / 2)+O(n)$.

- Each invocation reduces the problem size by a factor of $2 \Rightarrow$ there are $\log n$ levels in the recursion tree.
- At level i of the tree, the problem size is $n / 2^{i}$ and the work done is $c n / 2^{i}$.
- Therefore, the total work done is

$$
\sum_{i=0}^{i=\log n} \frac{c n}{2^{i}}=O(n)
$$

$$
T(n)=q T(n / 2)+c n, q>2
$$

Figure 5.2 Unrolling the recurrence $T(n) \leq 3 T(n / 2)+O(n)$.

$$
T(n)=q T(n / 2)+c n, q>2
$$

Figure 5.2 Unrolling the recurrence $T(n) \leq 3 T(n / 2)+O(n)$.

- There are $\log n$ levels in the recursion tree.
- At level i of the tree, there are q^{i} sub-problems, each of size $n / 2^{i}$.
- The total work done at level i is $q^{i} c n / 2^{i}$.
- Therefore, the total work done is

$$
T(n) \leq \sum_{i=0}^{i=\log n} q^{i} \frac{c n}{2^{i}} \leq
$$

$$
T(n)=q T(n / 2)+c n, q>2
$$

Figure 5.2 Unrolling the recurrence $T(n) \leq 3 T(n / 2)+O(n)$.

- There are $\log n$ levels in the recursion tree.
- At level i of the tree, there are q^{i} sub-problems, each of size $n / 2^{i}$.
- The total work done at level i is $q^{i} c n / 2^{i}$.
- Therefore, the total work done is

$$
T(n) \leq \sum_{i=0}^{i=\log n} q^{i} \frac{c n}{2^{i}} \leq O\left(n^{\log _{2} q}\right)
$$

$$
T(n)=2 T(n / 2)+c n^{2}
$$

- Total work done is

$$
\sum_{i=0}^{i=\log n} 2^{i}\left(\frac{c n}{2^{i}}\right)^{2} \leq
$$

$$
T(n)=2 T(n / 2)+c n^{2}
$$

- Total work done is

$$
\sum_{i=0}^{i=\log n} 2^{i}\left(\frac{c n}{2^{i}}\right)^{2} \leq O\left(n^{2}\right)
$$

