CS 5114

Solutions to Midterm Exam March 2, 2000

[30] 1. Rank the following functions by order of growth; that is, name the functions g_1, g_2, g_3, g_4 so that $g_1 = \omega(g_2)$, $g_2 = \omega(g_3)$, and $g_3 = \omega(g_4)$. (Note that the ranking is strict.)

$$\frac{5n^7 + 2.7n^3}{3.5n^4 + 17n}$$
 $2^{3 \lg n \lg \lg n}$ $\lg(n!)$ $\frac{n^3}{(\lg n)^2}$.

Prove your ranking.

First express each function asymptotically as a power of n:

$$\frac{5n^{7} + 2.7n^{3}}{3.5n^{4} + 17n} = \Theta(n^{3})$$

$$2^{3 \lg n \lg \lg n} = n^{3 \lg \lg n}$$

$$\lg(n!) = \Theta(n \lg n)$$

$$= \Theta\left(n^{1 + (\lg \lg n)/(\lg n)}\right)$$

$$\frac{n^{3}}{(\lg n)^{2}} = \Theta\left(n^{3 - 2(\lg \lg n)/(\lg n)}\right).$$

Notice that the asymptotic result for $\lg(n!)$ was obtained in the solutions for Homework 1. It is clear that the ranking should be

$$g_1(n) = 2^{3 \lg n \lg \lg n}$$

$$g_2(n) = \frac{5n^7 + 2.7n^3}{3.5n^4 + 17n}$$

$$g_3(n) = \frac{n^3}{(\lg n)^2}$$

$$g_4(n) = \lg(n!).$$

The ranking is clear BECAUSE the previous asymptotic expressions are in similar forms (as powers of n).

If the rankings were just "guessed", then a proof of the rankings might go as follows:

•

$$\lim_{n \to \infty} \frac{g_1(n)}{g_2(n)} = \lim_{n \to \infty} \frac{2^{3 \lg n \lg \lg n} (3.5n^4 + 17n)}{5n^7 + 2.7n^3}$$

$$= \lim_{n \to \infty} \frac{n^{3 \lg \lg n} (3.5n^4 + 17n)}{5n^7 + 2.7n^3}$$

$$= \lim_{n \to \infty} \frac{n^{3 \lg \lg n - 3} (3.5n^7 + 17n^4)}{5n^7 + 2.7n^3}$$

$$= \lim_{n \to \infty} (7/10)n^{3 \lg \lg n - 3}$$

$$= \infty,$$

because $3 \lg \lg n - 3 > 0$ for sufficiently large n.

•

$$\lim_{n \to \infty} \frac{g_2(n)}{g_3(n)} = \lim_{n \to \infty} \frac{(5n^7 + 2.7n^3)(\lg n)^2}{(3.5n^4 + 17n)n^3}$$

$$= \lim_{n \to \infty} \frac{(5n^7 + 2.7n^3)(\lg n)^2}{3.5n^7 + 17n^4}$$

$$= \lim_{n \to \infty} (10/7)(\lg n)^2$$

$$= \infty,$$

because $(\lg n)^2 \to \infty$ as $n \to \infty$.

•

$$\lim_{n \to \infty} \frac{g_3(n)}{g_4(n)} = \lim_{n \to \infty} \frac{n^3}{(\lg n)^2 \lg(n!)}$$
$$= \infty,$$

because $(\lg n)^2 \lg(n!) = o(n^2)$.

[30] 2. Give asymptotic upper and lower bounds for T(n) in each of the following recurrences. Make your bounds as tight as possible and prove them.

A.
$$T(n) = 4T(n/3) + n^{1/2}$$

B.
$$T(n) = 27T(n/13) + 3^n$$

A. We apply the Master Theorem with a=4, b=3, and $f(n)=n^{1/2}$. Since $\log_b a=\log_3 4>1$, we get that case 1 of the Master Theorem applies, from which we obtain

$$T(n) = \Theta\left(n^{\log_3 4}\right).$$

B. We apply the Master Theorem with a=27, b=13, and $f(n)=3^n$. Since f(n) is asymptotically greater than any polynomial in n, including $n^{\log_b a}$, we get that case 3 of the Master Theorem applies, from which we obtain

$$T(n) = \Theta(f(n))$$
$$= \Theta(3^n).$$

[40] 3. Consider the following counting variation of the knapsack problem that counts the number of ways that some of the N items can fit exactly into a knapsack of size M.

KNAPSACK COUNTING PROBLEM

INSTANCE: N items 1, 2, ..., N with positive integer sizes $s_1, s_2, ..., s_N$; a positive integer knapsack size M.

SOLUTION: The count C of the number of sets of items $S \subset \{1, 2, ..., N\}$ such that $\sum_{i \in S} s_i = M$.

If we define a predicate f on sets of items by

$$f(S) = \begin{cases} 1 & if \text{if } \sum_{i \in S} s_i = M; \\ 0 & \text{otherwise,} \end{cases}$$

then the solution to the instance is $C = \sum_{S \subset \{1,2,\dots,N\}} f(S)$.

EXAMPLE. Given the instance with N=5, M=7, and

$$\begin{aligned}
 s_1 &= 1 \\
 s_2 &= 7 \\
 s_3 &= 4 \\
 s_4 &= 3 \\
 s_5 &= 3,
 \end{aligned}$$

we get C=4, since the following subsets of items have sizes summing to M:

$${s_1, s_4, s_5}$$
 ${s_2}$ ${s_3, s_4}$ ${s_3, s_5}$.

- **A.** Use the dynamic programming paradigm to develop an algorithm to return C for an instance of the KNAPSACK COUNTING PROBLEM¹. Give pseudocode for your algorithm.
- **B**. Analyze the time and space complexity of your algorithm.
- C. Fill in the table of values for subproblems that result from executing your algorithm on the example above.

¹ If you wish, you may take the subproblems to consist of items 1, 2, ..., i and knapsack size j, where $1 \le i \le N$ and $0 \le j \le M$. The value to store for subproblem i, j is then E[i, j], the count of subsets of $\{1, 2, ..., i\}$ that exactly fit in a knapsack of size j.

```
KCP(N; s_1, s_2, \cdots, s_N; M)
       \triangleright Handle the base case, j = 0.
2
       for i \leftarrow 1 to N
3
             do E[i,0] \leftarrow 1
4
       \triangleright Handle the base case, i = 1.
       for j \leftarrow 0 to M
5
             do if s_i = j
6
7
                      then E[i, 0] \leftarrow 1
8
                      _{
m else}
                              E[i,0] \leftarrow 0
9

→ Handle the general case.

10
       for i \leftarrow 2 to N
             do for j \leftarrow 1 to M
11
12
                       do if s_i > j
13
                              then E[i,j] \leftarrow E[i-1,j]
                              else E[i,j] \leftarrow E[i-1,j] + E[i-1,j-s_i]
\triangleright \text{ Return } C
14
15
       return E[N, M]
```

Figure 1: Dynamic programming algorithm for the Knapsack Counting Problem.

A. Using the suggestion, we take the subproblems to consist of items 1, 2, ..., i and knapsack size j, where $1 \le i \le N$ and $0 \le j \le M$. The value to store for subproblem i, j is then E[i, j], the count of subsets of $\{1, 2, ..., i\}$ that exactly fit in a knapsack of size j.

The base cases occur when j=0 and E[i,0]=1 (the empty set); and when i=1 and

$$E[1,j] = \begin{cases} 1 & \text{if } s_1 = j; \\ 0 & \text{otherwise.} \end{cases}$$

The general case occurs when $2 \le i \le N$ and $1 \le j \le M$. We have

$$E[i,j] = \begin{cases} E[i-1,j] & \text{if } s_i > j; \\ E[i-1,j] + E[i-1,j-s_i] & \text{if } s_i \leq j. \end{cases}$$

The pseudocode for the resulting dynamic programming algorithm KCP can be found in Figure 1.

B. For each of N(M+1) subproblems, the algorithm remembers one integer. Hence the space complexity is $\Theta(NM)$. The time to compute each E[i,j] is $\Theta(1)$. Hence the time complexity is also $\Theta(NM)$.

C. Here is the table

j									
		0	1	2	3	4	5	6	7
	1	1	1	0	0	0	0	0	0
	2	1	1	0	0	0	0	0	1
i	3	1	1	0	0	1	1	0	1
	4	1	1	0	1	2	1	0	2
	5	1	1	0	2	3	1	1	4