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Student Presentations

Wiring cost optimisation and cost-efficiency trade-offs
Scott Clark, Omar Faruqi, Cameron Rader

Degree-based measures of centrality
Branden Arnold, Mostafa Elmary, Madison Wilkins

Betweenness centrality
Aidan Barton, Jose Canahui, Jordan Kuhn

Rich clubs
Team Valkyrie: Shane Davies, Heidi Tubbs, Tianna Woodson

Overlapping modules
Team Wildcards: Kavin Aravind, Tom Evans, Rishi Pulluri

Growth connectomics: generative models for brain networks
William Edmisten, Ethan Gallagher, Sophia Sheikl
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Schedule of Meetings and Presentations

Each group meets me for 60–90 minutes one week before practice
presentation.

I Goal is to discuss details of presentation.
I Come prepared: read your section, find relevant papers, have a talk

outline, ask me quesitons.
Each group meets me for 60–90 minutes about one week before actual
presentation.
Office hours for these meetings: 10am-12pm on Tuesdays and Thursdays,
after Spring break, and by appointment.

Topic First Practice Second Present
meeting meeting

Wiring cost optimisation Mar 13 Mar 20 Apr 3 Apr 10

Degree-based centrality TBD Mar 22 Apr 5 Apr 12

Betweenness Mar 20 Mar 27 Apr 10 Apr 17

Rich clubs Mar 22 Mar 29 Apr 12 Apr 19

Overlapping Modules Mar 27 Apr 3 Apr 17 Apr 24

Growth connectomics Mar 29 Apr 5 Apr 19 Apr 26
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Plan after Spring Break

Invited presentation by Heidi Theussen from Smith Career Center
(March 13)

No class on March 15

Practice presentations (March 20 to April 5)

Presentations (April 10 to Apr 26)

No class on May 1
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Summary of Course Thus Far

Clustering coefficient is a local measure of graph density.

Small world property captures global features of graph density.

Are there intermediate notions of graph density?

We have already considered components, shortest paths, cliques, and
cores.

We have also seen two specific types of modules: cliques and k-cores.
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Why Modules?

Why should (brain) networks be modular?
Do modules exist in brain networks?

How do we define modules and find them?

Do E-R graphs contain modules? No, because all nodes have roughly
the same degree.

Do W-S graphs contain modules? No, although other small-world
networks can contain modules.

But the brain is indeed modular: organ, hemispheres, coarse divisions,
lobes, cytoarchitectural areas, nuclei, etc.

Modularity and hierarchical organisation offer several advantages:
evolvability, flexibility, adaptability, and complexity.
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Modules and Clustering

Finding modules or clusters formed by a set of objects is a widely
studied problem.

Long history in mathematics, statistics, and computer science.

Module ≡ Cluster ≡ Community.
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Definition of Clustering

Given a set of n objects, find the best partition of the objects into subsets
such that each subset contains objects that are similar/close to each other.

How do we measure how similar or close two objects are?

How many subsets?

How do we compare two different partitions?
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Measuring Similarity of Objects

Assume each object specified by a list of values, e.g., x , y , z
coordinates indicating voxel position in an fMRI image.

Distance between two objects p and q is d(p, q).

Euclidean metric: d(p, q) =
√∑

i (pi − qi )2.

Manhattan metric: d(p, q) =
∑

i |pi − qi |.
Other distances: normalised dot product, K-L divergence, relative
entropy, Pearson’s correlation.

Metrics obey triangle inequality: d(p, q) + d(q, r) ≥ d(p, r).
I Euclidean, Manhattan distances are metrics.
I Correlation, dot product are not metrics.
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Hierarchical Clustering

Attempt to recursively find sub-modules within modules.

Natural way to “zoom into” areas of interest.

Represent using a tree or dendrogram.
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Hierarchical Clustering Algorithm

Bottom-up clustering algorithm.

1 Start with every object in its own cluster.
2 Repeat

I Let Ci and Cj be the clusters “nearest” each other.
I Merge Ci and Cj .

3 until all the objects are in one cluster.
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Measuring Distance between Clusters

How do we measure distance between two clusters Ci and Cj?

dmin(Ci ,Cj) = distance between closest pair of objects.
dmax(Ci ,Cj) = distance between farthest pair of objects.
dmean(Ci ,Cj) = average of distances between all pairs of objects.
dcentroid(Ci ,Cj) = d(µi , µj), where µi is the centroid of Ci .
Methods are called minimum linkage, maximum linkage, mean
linkage, and centroid linkage clustering, respectively.

Computing dmin, dmax , davg takes O(ninj) time.
Computing dmean takes O(ni + nj) time.
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Running Time of Hierarchical Clustering

1 Start with every object in its own cluster.
2 Repeat

I Let Di and Dj be the clusters “nearest” each other.
I Merge Di and Dj .

3 until all the objects are in one cluster.

Assume computing distance between two objects takes O(1) time.

Store all O(n2) inter-object distances.

At each iteration, compute distance between every pair of clusters:
takes O(n2) time in total.

There are n iterations, so overall running time is O(nn2) = O(n3).
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Hierarchical Clustering Result
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Definition of Clustering

Given a set of n objects, find the best partition of the objects into subsets
such that each subset contains objects that are similar/close to each other.

How do we measure how similar or close two objects are?

How many subsets?

Not specified in hierarchical clustering.

How do we compare two different partitions?
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Example of Clustering
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Formalising the Clustering Problem

Let U be the set of n objects labelled p1, p2, . . . , pn.
For every pair pi and pj , we have a distance d(pi , pj).
We require d(pi , pi ) = 0, d(pi , pj) > 0, if i 6= j , and
d(pi , pj) = d(pj , pi )

Given a positive integer k , a k-clustering of U is a partition of U into
k non-empty subsets or “clusters” C1,C2, . . .Ck .
The spacing of a clustering is the smallest distance between objects in
two different subsets:

spacing(C1,C2, . . .Ck) = min
1≤i ,j≤k
i 6=j ,

p∈Ci ,q∈Cj

d(p, q)

Clustering of Maximum Spacing
Given a set U of objects, a distance function d : U × U → R+,
and a positive integer k ,
compute a k-clustering of U whose spacing is the largest over all
possible k-clusterings.
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Example of Clustering
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Algorithm for Clustering of Maximum Spacing

Intuition: greedily cluster objects in increasing order of distance.

Let C be a set of n clusters, with each object in U in its own cluster.
Process pairs of objects in increasing order of distance.

I Let (p, q) be the next pair with p ∈ Cp and q ∈ Cq.
I If Cp 6= Cq, add new cluster Cp ∪ Cq to C, delete Cp and Cq from C.

Stop when there are k clusters in C.

Same as Kruskal’s algorithm but do not add last k − 1 edges in MST.
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What is the spacing of the Algorithm’s Clustering?

Let C be the clustering produced by the algorithm.
What is spacing(C)?

It is the cost of the (k − 1)st most expensive
edge in the MST. Let this cost be d∗.

T. M. Murali February 22, 27, and March 1, 2018 Modules



Presentations Hierarchical clustering MST Modularity

What is the spacing of the Algorithm’s Clustering?

Let C be the clustering produced by the algorithm.
What is spacing(C)? It is the cost of the (k − 1)st most expensive
edge in the MST. Let this cost be d∗.

T. M. Murali February 22, 27, and March 1, 2018 Modules



Presentations Hierarchical clustering MST Modularity

Why does the Algorithm Work?

Let C′ be any other clustering.

We will prove that spacing(C′) ≤ d∗.
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spacing(C ′) ≤ d∗: Intuition
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spacing(C ′) ≤ d∗

There must be two objects pi and pj in U in the same cluster Cr in C but in
different clusters in C′:

spacing(C′) ≤ d(pi , pj). But d(pi , pj) could be > d∗.
Suppose pi ∈ C ′s and pj ∈ C ′t in C′.
All edges in the path Q connecting pi and pj in the MST have length ≤ d∗.
In particular, there is an object p ∈ C ′s and an object p′ 6∈ C ′s such that p
and p′ are adjacent in Q.
d(p, p′) ≤ d∗ ⇒ spacing(C′) ≤ d(p, p′) ≤ d∗.
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Disadvantages of Hierarchical Clustering

To get a set of modules, at which level do we cut the dendrogram?

Optimality due to spacing argument applies only to single linkage
clustering.

We need a different definition of module quality that captures
connectivity within and across modules.
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Motivation
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Given an undirected, unweighted graph G = (V ,E ) suppose we
partition the nodes into k modules C = C1,C2, . . .Ck .

How do we measure the “quality” of C?

Intuition: many more edges within modules than among modules.
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Initial Definition of Modularity
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How do we count the number of edges within modules?

For every node u ∈ V , define c(u) as the index of u’s module.

q(C) =
1

m

∑
(u,v)∈E

δ(c(u), c(v)), where δ is the Kronecker delta function

=
1

2m

∑
u,v∈V

a(u, v)δ(c(u), c(v)), where a(u, v) = 1 iff (u, v) is an edge
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Optimising Modularity
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q(C) =
1

2m

∑
u,v∈V

a(u, v)δ(c(u), c(v))

Should we maximise or minimise q(C)? Maximise it.

What is the value of q(C) if we place all nodes in G in a single cluster? 1!
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Two Criteria for High Quality Partitions

1 Nodes are in highly cohesive modules, i.e., nodes within the same
module will be strongly connected with each other.

2 The amount of intramodule connectivity in a good partition will be
greater than expected by chance, as defined by a network in which
edges are placed between nodes at random.

3 Proposed by Newman and Girvan, 2004.
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Configuration Model
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Method to generate random graphs like Erdös-Renyi and
Watts-Strogatz models.
Ensure that the random graphs have the same degree sequence as G ,
but allow self loops and multi-edges.

q(C) =
1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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Configuration Model

1

2 3

4 5 6

7

8

9

10

11

12

13

Cut each edge in G in half.
Each node u has d(u) stubs; total number of stubs is 2m.
For each stub select another stub uniformly at random and connect
them by an edge.

q(C) =
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2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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What is the probability of an edge between nodes u and v?

d(u)d(v)
2m .

q(C) =
1

2m

∑
u,v∈V

d(u)d(v)

2m
δ(c(u), c(v))
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What is the probability of an edge between nodes u and v? d(u)d(v)
2m .

Therefore modularity of the partition of a random graph in the
configuration model into the same modules C = C1,C2, . . .Ck
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Final Definition of Modularity
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q(C) =
1

2m

∑
u,v∈V

(
a(u, v)− d(u)d(v))

2m

)
δ(C (u),C (v))

What is the range of q(C)?

Between -1 and 1.
I q(C) > 0: C has higher intramodule connectivity than expected by

chance from configuration model.
I q(C) = 0: C has same intramodule connectivity as expected in a

random graph.
I q(C) < 0: C has no modular structure.
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Using Modularity

Now that we have defined a nice measure for the quality of a
partition, how do we use it?

Definition of q does not specify the number of clusters.

Hierarchical clustering: Compute modularity after every merge and
output the clustering with the largest value.

Any other clustering algorithm: compute the modularity of the result.

Develop a new algorithm to maximise modularity.
I Maximising modularity is NP-hard.
I We must rely on heuristics to make the modularity as large as possible.
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Greedy Algorithm

Proposed by Newman, 2004.

1 Start with every node in its own module.
2 While there are at least two modules

1 Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.

2 Merge this pair of modules into one.

3 Return the clustering with the largest value of q.

Hierarchical clustering algorithm built directly around maximisation of
q.

Allows q to decrease to preserve the principle of hierarchical
clustering.

Why is the algorithm “greedy”? Merging of two modules cannot be
undone.

T. M. Murali February 22, 27, and March 1, 2018 Modules



Presentations Hierarchical clustering MST Modularity

Greedy Algorithm

Proposed by Newman, 2004.

1 Start with every node in its own module.
2 While there are at least two modules

1 Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.

2 Merge this pair of modules into one.

3 Return the clustering with the largest value of q.

Hierarchical clustering algorithm built directly around maximisation of
q.

Allows q to decrease to preserve the principle of hierarchical
clustering.

Why is the algorithm “greedy”?

Merging of two modules cannot be
undone.

T. M. Murali February 22, 27, and March 1, 2018 Modules



Presentations Hierarchical clustering MST Modularity

Greedy Algorithm

Proposed by Newman, 2004.

1 Start with every node in its own module.
2 While there are at least two modules

1 Compute the pair of modules whose merger will result in the largest
increase or smallest decrease in q.

2 Merge this pair of modules into one.

3 Return the clustering with the largest value of q.

Hierarchical clustering algorithm built directly around maximisation of
q.

Allows q to decrease to preserve the principle of hierarchical
clustering.

Why is the algorithm “greedy”? Merging of two modules cannot be
undone.

T. M. Murali February 22, 27, and March 1, 2018 Modules



Presentations Hierarchical clustering MST Modularity

Louvain Algorithm

Proposed by Blondel et al., 2008.

1 Start with every node in its own module.

2 For every node u ∈ V and every neighbour v of u, evaluate the
change in q when we remove u from its module and add it to v ’s
module.

3 Move u to that neighbour’s module for which increase in q is largest.

4 Repeat the previous two steps until q does not increase.

5 Construct a new graph where every module is a node and a weighted
edge represents (multiple) connections between two modules.

6 Repeat steps 2–5 until no further gains in q are possible.

Efficient calculation of change in q upon swapping makes this
algorithm very fast.
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algorithm very fast.
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Louvain Algorithm

Proposed by Blondel et al., 2008.

1 Start with every node in its own module.

2 For every node u ∈ V and every neighbour v of u, evaluate the
change in q when we remove u from its module and add it to v ’s
module.

3 Move u to that neighbour’s module for which increase in q is largest.

4 Repeat the previous two steps until q does not increase.

5 Construct a new graph where every module is a node and a weighted
edge represents (multiple) connections between two modules.

6 Repeat steps 2–5 until no further gains in q are possible.

Efficient calculation of change in q upon swapping makes this
algorithm very fast.
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Human resting-state fMRI networks, 1800 nodes, 4mm3 voxels, had three
hierarchical levels: eight modules at the highest level, each with > 10 nodes, 57

modules at the lowest level of the hierarchy.
Meunier et al., 2009
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Visualisation of modules. View of brain is from the left side with the
frontal cortex on the left and the occipital cortex on the right.

Meunier et al., 2009
T. M. Murali February 22, 27, and March 1, 2018 Modules
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Decomposition of the five largest modules (in the centre): medial occipital
module has no major sub-modules whereas the fronto-temporal modules

has many sub-modules.
Meunier et al., 2009
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Medial occipital module (primary visual): This module comprised medial
occipital cortex and occipital pole, including primary visual areas.

Meunier et al., 2009
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Fronto-temporal module (symbolic): less symmetrically organized than
most of the other high level modules and contained larger number of

sub-modules at lower levels.
Meunier et al., 2009
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Limitations of Modularity

Modularity generally increases as number of nodes and modules in a
graph increase.

Many very similar partitions have similar values of q.

Modularity has a resolution limit: small modules may be combined
simply to increase q. (Read Box 9.2 in the textbook.)

Random graph model is quite simple: assumes every node has an
equal probability of connecting to every other node.

Many alternatives proposed to address these limitations.

T. M. Murali February 22, 27, and March 1, 2018 Modules



Presentations Hierarchical clustering MST Modularity

Limitations of Modularity

Modularity generally increases as number of nodes and modules in a
graph increase.

Many very similar partitions have similar values of q.

Modularity has a resolution limit: small modules may be combined
simply to increase q. (Read Box 9.2 in the textbook.)

Random graph model is quite simple: assumes every node has an
equal probability of connecting to every other node.

Many alternatives proposed to address these limitations.

T. M. Murali February 22, 27, and March 1, 2018 Modules


	Presentations
	Hierarchical clustering
	MST
	Modularity

