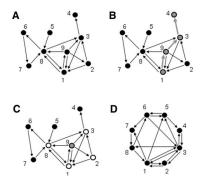
CS 6824: Small World of Brain Networks



T. M. Murali

February 13, 2018

February 13, 2018

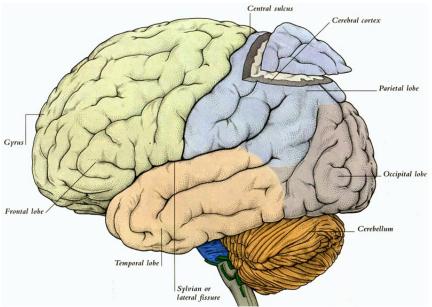
Motivation

- The Watts-Strogatz paper set off a storm of research.
- It has nearly 35,000 citations. Even in 2004, it had more than 2,100 citations.
- The *C. elegans* neuronal network is small-world.

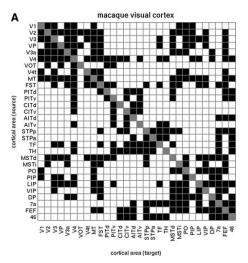
Do mammalian brain networks have the small world property?

Measures

Visual and Cerebral Cortices

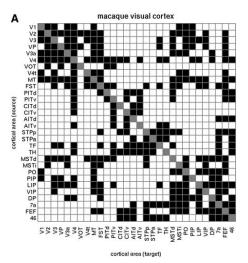


Visual and Cerebral Cortices

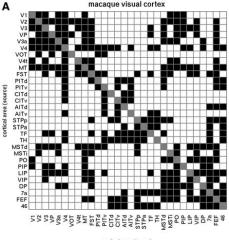


• Each row (*efferent*) and column (*afferent*)

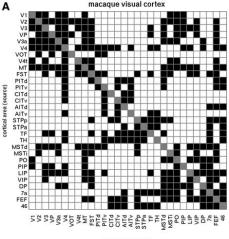
T. M. Murali



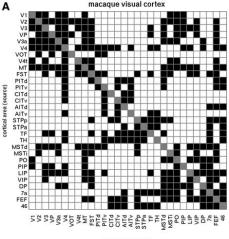
- Each row (*efferent*) and column (*afferent*) corresponds to a brain region.
- The value in a cell is



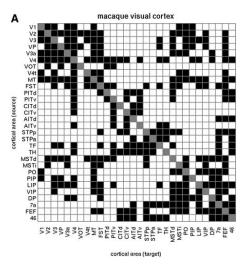
- Each row (*efferent*) and column (*afferent*) corresponds to a brain region.
- The value in a cell is c_{ij} = 1, if there is a published neural pathway from region *i* to region *j* and c_{ij} = 0 otherwise.



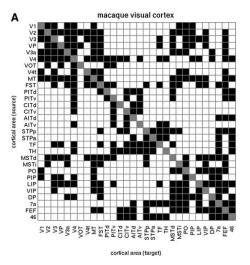
- Each row (*efferent*) and column (*afferent*) corresponds to a brain region.
- The value in a cell is c_{ij} = 1, if there is a published neural pathway from region *i* to region *j* and c_{ij} = 0 otherwise.
- Matrix is asymmetric. Corresponds to



- Each row (*efferent*) and column (*afferent*) corresponds to a brain region.
- The value in a cell is c_{ij} = 1, if there is a published neural pathway from region *i* to region *j* and c_{ij} = 0 otherwise.
- Matrix is asymmetric. Corresponds to an unweighted, directed graph.

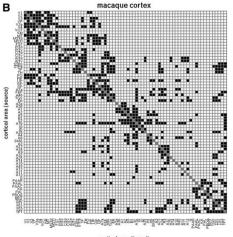


- Each row (*efferent*) and column (*afferent*) corresponds to a brain region.
- The value in a cell is c_{ij} = 1, if there is a published neural pathway from region *i* to region *j* and c_{ij} = 0 otherwise.
- Matrix is asymmetric. Corresponds to an unweighted, directed graph.
- n = , m = . (The authors use N for the number of nodes and K for the number of edges.)



- Each row (*efferent*) and column (*afferent*) corresponds to a brain region.
- The value in a cell is c_{ij} = 1, if there is a published neural pathway from region *i* to region *j* and c_{ij} = 0 otherwise.
- Matrix is asymmetric. Corresponds to an unweighted, directed graph.
- n = 30, m = 311. (The authors use N for the number of nodes and K for the number of edges.)

Datasets: Macaque Cerebral Cortex

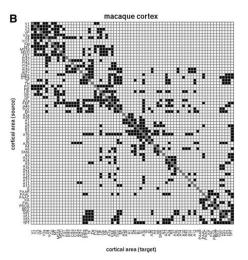


cortical area (target)

 \bullet n = , m =

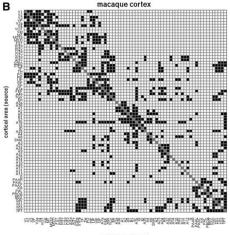
.

Datasets: Macaque Cerebral Cortex



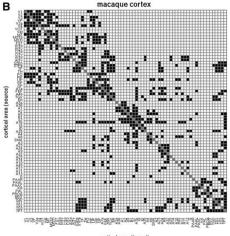
● *n* = 71, *m* = 746.

Datasets: Macaque Cerebral Cortex

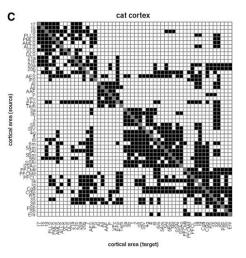


- *n* = 71, *m* = 746.
- What is the relation between this graph and the one for the macaque visual cortex?

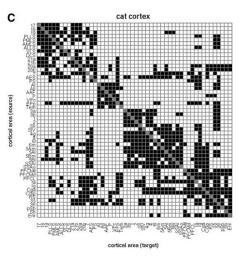
Datasets: Macaque Cerebral Cortex



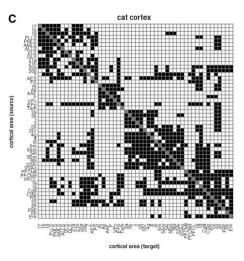
- *n* = 71, *m* = 746.
- What is the relation between this graph and the one for the macaque visual cortex? Most of the edges in the previous graph are in this one.



$$\circ$$
 $n = , m =$

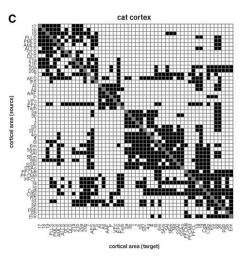


•
$$n = 52, m = 820.$$



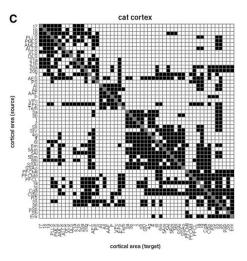
•
$$n = 52, m = 820.$$

• What approximation did the authors make?



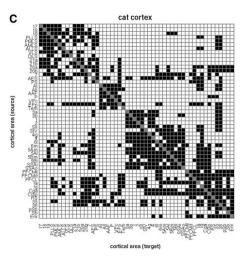
•
$$n = 52, m = 820.$$

• What approximation did the authors make? Discarded density information.



•
$$n = 52, m = 820.$$

- What approximation did the authors make? Discarded density information.
- We will ignore density-based connectivity data sets.



•
$$n = 52, m = 820.$$

- What approximation did the authors make? Discarded density information.
- We will ignore density-based connectivity data sets.
- Are these datasets "large-scale"?

Reference Cases

• "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 - n)$, while omitting self-connections."

Reference Cases

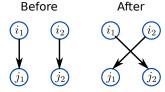
• "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 - n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 - n)$.

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of *m* connections is reached."

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." *Essentially the same as the W-S ring network with* k = m/n.

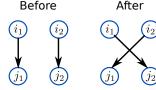
- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." *Essentially the same as the W-S ring network with* k = m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..."

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." *Essentially the same as the W-S ring network with* k = m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..." Does this method preserve in- and out-degrees? How many edge flips should we perform?



Reference Cases

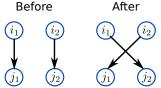
- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." *Essentially the same as the W-S ring network with* k = m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..." Does this method preserve in- and out-degrees? How many edge flips should we perform? Before After



• Degree-preserving lattice matrix:

Reference Cases

- "Random connection matrices are generated by assigning connections with uniform probability $m/(n^2 n)$, while omitting self-connections." Analogous to the E-R model with $p = m/(n^2 n)$.
- "Lattice matrices are generated by filling all entries of the connection matrices directly adjacent to the main diagonal until the limit of m connections is reached." *Essentially the same as the W-S ring network with* k = m/n.
- Degree-preserving random matrix: "A pair of vertices ... is selected ..." Does this method preserve in- and out-degrees? How many edge flips should we perform?



• Degree-preserving lattice matrix: Very poorly specified. Will need to read the code to understand.

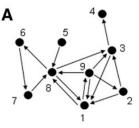
• What are the measures used?

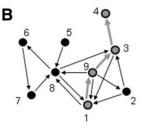
- What are the measures used?
 - The average shortest path length I(G), called γ in this paper.
 - ► They introduce a new term, \(\gamma\)(\(\nu\)), which is the average distance between \(\nu\) and every other node in \(G.\)

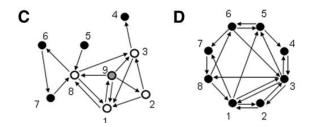
- What are the measures used?
 - The average shortest path length I(G), called γ in this paper.
 - They introduce a new term, γ(v), which is the average distance between v and every other node in G. Ambiguous: do they mean distances to v or distances from v?

- What are the measures used?
 - The average shortest path length I(G), called γ in this paper.
 - They introduce a new term, γ(v), which is the average distance between v and every other node in G. Ambiguous: do they mean distances to v or distances from v?
 - Clustering coefficient, c(v), called "cluster index" and $\lambda(v)$ in this paper.

Computing I(G) and c(G) for Directed Graphs







• Appropriately generalise definitions for undirected graphs.

Scaling I(G) and c(G)

- Random networks and ring lattices lie at opposite ends of a spectrum.
- Authors sought to measure to which extreme connectomes were closer.

Scaling I(G) and c(G)

- Random networks and ring lattices lie at opposite ends of a spectrum.
- Authors sought to measure to which extreme connectomes were closer.

$$l_{\rm scl}(G) = \frac{l(G) - l_{\rm random}}{l_{\rm lattice} - l_{\rm random}}$$
$$c_{\rm scl}(G) = \frac{c(G) - c_{\rm random}}{c_{\rm lattice} - c_{\rm random}}$$

• How do we interpret these quantities?

Scaling I(G) and c(G)

- Random networks and ring lattices lie at opposite ends of a spectrum.
- Authors sought to measure to which extreme connectomes were closer.

$$l_{scl}(G) = \frac{l(G) - l_{random}}{l_{lattice} - l_{random}}$$
$$c_{scl}(G) = \frac{c(G) - c_{random}}{c_{lattice} - c_{random}}$$

 How do we interpret these quantities? A small world network will have small l_{scl}(G) and large c_{scl}(G).

Table 1. Path Length (λ , λ_{scl}) and Cluster Index (γ , γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30.311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71.746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
СС	1.8114	0.5514	0.2498	0.6292
R _{52.820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *		
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Statistical Significance

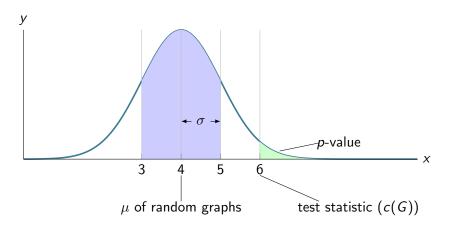


Table 1. Path Length (λ , λ_{scl}) and Cluster Index (γ , γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71,746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52.820}	2.1418 (0.0024)*	0.6933 (0.0000) *		
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Table 1. Path Length (λ , λ_{scl}) and Cluster Index (γ , γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71.746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52.820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5	
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Table 1. Path Length (λ , λ_{scl}) and Cluster Index (γ , γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71,746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5	
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Table 1. Path Length (λ , λ_{scl}) and Cluster Index (γ , γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
MC	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71.746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5	> 0.5
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

Table 1. Path Length (λ , λ_{scl}) and Cluster Index (γ , γ_{scl}) for Large-Scale Connection Matrices of Cortico-Cortical Pathways

Topology	λ	γ	λ_{scl}	γ_{scl}
MVC	1.7256	0.5313	0.2188	0.5645
R _{30,311}	1.6680 (0.0038)*	0.3616 (0.0048) *		
L _{30,311}	1.9313 (0.0018)*	0.6622 (0.0000) *		
Rio _{30,311}	1.6880 (0.0033)*	0.4305 (0.0059) *		
Lio _{30,311}	1.8190 (0.0391)	0.6214 (0.0243)		
МС	2.3769	0.4614	0.1927	0.6117
R _{71,746}	2.0310 (0.0051)*	0.1497 (0.0030) *		
L _{71,746}	3.8262 (0.0099)*	0.6593 (0.0002) *		
Rio _{71,746}	2.1159 (0.0133)*	0.2409 (0.0047) *		
Lio _{71,746}	2.8901 (0.1173)*	0.8992 (0.0211) *		
CC	1.8114	0.5514	0.2498	0.6292
R _{52,820}	1.7014 (0.0013)*	0.3103 (0.0026) *		
L _{52,820}	2.1418 (0.0024)*	0.6933 (0.0000) *	< 0.5	> 0.5
Rio _{52,820}	1.7217 (0.0037)*	0.4023 (0.0030) *		
Lio _{52,820}	1.8570 (0.0283)	0.5893 (0.0172)		

- Values of *I*(*G*) and *c*(*G*) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.

- Values of I(G) and c(G) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.
- Values of *I*(*G*) for connectomes are closer to random networks than to ring networks.
- Values of c(G) for connectomes are closer to ring networks than to random networks.

- Values of I(G) and c(G) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.
- Values of *I*(*G*) for connectomes are closer to random networks than to ring networks.
- Values of c(G) for connectomes are closer to ring networks than to random networks.
- These differences are not due to the degree distributions but due to some other intrinsic properties of the connectomes.

- Values of *l*(*G*) and *c*(*G*) for connectomes are higher than for random networks with the same number of nodes and edges; difference is statistically significant.
- Conversely, these values for connectomes are lower than for ring networks with the same number of nodes and edges; difference is statistically significant.
- Values of *I*(*G*) for connectomes are closer to random networks than to ring networks.
- Values of c(G) for connectomes are closer to ring networks than to random networks.
- These differences are not due to the degree distributions but due to some other intrinsic properties of the connectomes.
- Caveats:
 - *p*-values are likely to be underestimated. They should be estimated from empirical distributions built from many more random samples.
 - ► No indication of correction for testing multiple hypotheses.
 - ▶ No *p*-value associated with the scaled values of I(G) and c(G).

• Desire a single, scalar quantity that captures to what degree a network has the small world property.

• Desire a single, scalar quantity that captures to what degree a network has the small world property.

$$\sigma(G) = \frac{c(G)/c_{random}}{I(G)/I_{random}}$$

• Desire a single, scalar quantity that captures to what degree a network has the small world property.

$$\sigma(G) = \frac{c(G)/c_{\rm random}}{I(G)/I_{\rm random}}$$

• What should $\sigma(G)$ be for a network with the small world property?

• Desire a single, scalar quantity that captures to what degree a network has the small world property.

$$\sigma(G) = \frac{c(G)/c_{\rm random}}{I(G)/I_{\rm random}}$$

- What should $\sigma(G)$ be for a network with the small world property? $c(G) > c_{random}$ and l(G) is close to l_{random} , so $\sigma(G) > 1$.
- Alternative measure argues that lattices and E-R networks are at opposite ends of the spectrum.
 - c(G) is best normalized to maximally clustered networks (i.e., lattice).
 - I(G) is best normalized to networks with small path lengths (i.e., E-R networks).

• Desire a single, scalar quantity that captures to what degree a network has the small world property.

$$\sigma(G) = \frac{c(G)/c_{\rm random}}{I(G)/I_{\rm random}}$$

- What should $\sigma(G)$ be for a network with the small world property? $c(G) > c_{random}$ and l(G) is close to l_{random} , so $\sigma(G) > 1$.
- Alternative measure argues that lattices and E-R networks are at opposite ends of the spectrum.
 - ▶ *c*(*G*) is best normalized to maximally clustered networks (i.e., lattice).
 - I(G) is best normalized to networks with small path lengths (i.e., E-R networks).

$$\omega(G) = \frac{I(G)}{I_{\text{random}}} - \frac{c(G)}{C_{\text{lattice}}}$$

• What should $\omega(G)$ be for a network with the small world property?

• Desire a single, scalar quantity that captures to what degree a network has the small world property.

$$\sigma(G) = \frac{c(G)/c_{\rm random}}{I(G)/I_{\rm random}}$$

- What should $\sigma(G)$ be for a network with the small world property? $c(G) > c_{random}$ and l(G) is close to l_{random} , so $\sigma(G) > 1$.
- Alternative measure argues that lattices and E-R networks are at opposite ends of the spectrum.
 - ▶ *c*(*G*) is best normalized to maximally clustered networks (i.e., lattice).
 - I(G) is best normalized to networks with small path lengths (i.e., E-R networks).

$$\omega(G) = rac{I_{
m random}}{I(G)} - rac{c(G)}{c_{
m lattice}}$$

• What should $\omega(G)$ be for a network with the small world property?

• Desire a single, scalar quantity that captures to what degree a network has the small world property.

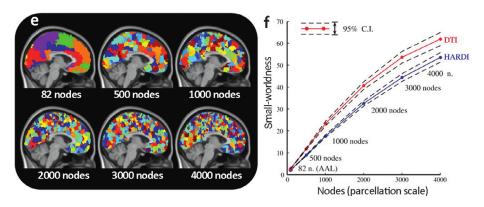
$$\sigma(G) = \frac{c(G)/c_{random}}{I(G)/I_{random}}$$

- What should $\sigma(G)$ be for a network with the small world property? $c(G) > c_{random}$ and l(G) is close to l_{random} , so $\sigma(G) > 1$.
- Alternative measure argues that lattices and E-R networks are at opposite ends of the spectrum.
 - ▶ *c*(*G*) is best normalized to maximally clustered networks (i.e., lattice).
 - I(G) is best normalized to networks with small path lengths (i.e., E-R networks).

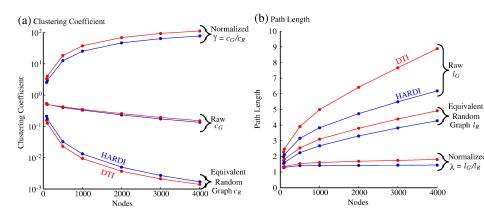
$$\omega(G) = rac{I_{
m random}}{I(G)} - rac{c(G)}{c_{
m lattice}}$$

What should ω(G) be for a network with the small world property?
 Close to 0.

Parcellation Affects $\sigma(G)$



Parcellation Affects $\sigma(G)$



Usefulness of Small-Worldness of Brain Networks

- It is not universally accepted that brain networks are small world.
- Parcellation can dramatically change the value of $\sigma(G)$.

Usefulness of Small-Worldness of Brain Networks

- It is not universally accepted that brain networks are small world.
- Parcellation can dramatically change the value of $\sigma(G)$.
- New tract-tracing techniques have yielded networks with a density of 0.66, with no small world features (Markov *et al.* 2013).
- These global measures obscure more meaningful variations occurring at the level of nodes or subgraphs.