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Summary of Course Thus Far

History of neuroscience

Graphs (Definitions, basic concepts, Euler tours)

Brain graphs (types of nodes and edges, experimental methods,
Chapter 2)

Brain connectivity matrices and node degrees (Chapters 3 and 4)

Shortest paths (Chapter 7.1 and 7.2)

Clustering coefficient and small world networks (Chapter 8.1 and 8.2)
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Plan till Spring Break

Clustering coefficient is a local measure of graph density.

Small world property captures global features of graph density.

Are there intermediate notions of graph density?

Subgraphs that represent backbones of network topology
(components, shortest paths, spanning trees, cores, Chapter 6.1, 6.2,
7.1, February 15 and 20)

Modularity (Chapter 9, February 22, 27, March 1)
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Student Presentations

I have provided a list of topics (roughly corresponding to textbook
sections) for student presentations on the course website.

Each group should give me its top three choices by 5pm on Tuesday,
February 20.

I will assign one topic to each group by February 22.

I will also add the topics to the course schedule.

Each group meets me for 60–90 minutes about two weeks before
practice presentation.

I I will announce office hours and a schedule for these meetings.
I Goal is to discuss details of presentation.
I Come prepared: read your section, find relevant papers, have a talk

outline, ask me quesitons.

Each group meets me for 60–90 minutes about two weeks before
actual presentation.

Projects to be announced before spring break.
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Plan after Spring Break

Two invited presentations by Heidi Theussen from Smith Career
Center (March 15 and 17)

Practice presentations (March 20 to April 5, with one practice
presentation held outside class hours)

Presentations (April 10 to May 1)
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Paths and Connectivity
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A v1-vk path in an undirected graph G = (V ,E ) is a sequence P of
nodes v1, v2, . . . , vk−1, vk ∈ V such that every consecutive pair of
nodes vi , vi+1, 1 ≤ i < k is connected by an edge in E .
Distance d(u, v) between two nodes u and v is the minimum number
of edges in any u-v path. Abuse of notation: d for both degree and
distance.
A connected component of G is a subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-v path in H, i.e., that
uses only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V − V ′, there is no path in G
between x and any node in V ′.
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Breadth-First Search (BFS)
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Use BFS to compute connected component containing a node s.

Idea: explore G starting at s and going “outward” in all directions,
adding nodes one layer at a time.

Layer L0 contains only s.

Layer L1 contains all neighbours of s.
Given layers L0, L1, . . . , Lj , layer Lj+1 contains all nodes that

1 do not belong to an earlier layer and
2 are connected by an edge to a node in layer Lj .
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Properties of BFS
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For each j ≥ 1, layer Lj consists of all nodes

exactly at distance j
from S .

There is a path from s to t if and only if t is a member of some layer.
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Implementing BFS

Maintain an array Discovered and set
Discovered[v ] = true as soon as the algorithm sees v .
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Using a Queue in BFS

Instead of storing each layer in a different list, maintain all the layers
in a single queue L.

We can guarantee that all nodes in layer i will be put in the queue
after every node in layer i − 1 and before every node in layer i + 1.

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile
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Analysis of BFS Implementation

BFS(s):
Set Discovered[s] = true

Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty

Pop the node u at the head of L
Consider each edge (u, v) incident on u
If Discovered[v] = false then

Set Discovered[v] = true

Add edge (u, v) to the tree T
Push v to the back of L

Endif

Endwhile

How many times is each node popped from L?

Exactly once.
Time used by for loop for a node u: O(d(u)) time.
Total time for all for loops:

∑
u∈G O(d(u)) = O(m) time.

Total time is O(n + m).
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Connected Components in Directed Graphs

In directed graphs, connectivity is not symmetric.

A strongly connected component of a directed graph G = (V ,E ) is a
subgraph H = (V ′,E ′) of G such

I for every pair of nodes u, v in V ′ there is a u-to-v path and a v -to-u
path in H, i.e., that use only the edges in E ′ and

I H is maximal, i.e., for every node x ∈ V −V ′, there is at least one node
y ∈ V ′ such that there is no path in G from x to y or from y to x .

We can compute all strongly connected components in linear time using
DFS with some tricks.
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Largest Component in Brain Graphs

Phase transition for appearance of large component in E-R graphs.

Add edges in decreasing order of weight.
Plot the size of the largest weakly connected component.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Largest Component in Brain Graphs

Add edges in decreasing order of weight.
Plot the size of the largest weakly connected component.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Shortest Paths Problem

G (V ,E ) is a directed graph. Each edge e has a length l(e) ≥ 0.

V has n nodes and E has m edges.

Length of a path P is the sum of the lengths of the edges in P.

Goal is to determine the shortest path from a specified start node s to
each node in V .

Aside: If G is undirected, convert to a directed graph by replacing
each edge in G by two directed edges.

Shortest Paths

Given a directed graph G (V ,E ), a function l : E → R+, and a
node s ∈ V ,

compute a set {P(u), u ∈ V }, where P(u) is the shortest path in
G from s to u.
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Idea Underlying Dijkstra’s Algorithm
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min distance d
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[1]
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[ ]

Candidates

[4]

[2]

[5]

Maintain a set S of explored nodes.
I For each node u ∈ S , compute a value d(u), which (we will prove) is

the length of the shortest path from s to u.
I For each node x 6∈ S , maintain a value d ′(x), which is the length of the

shortest path from s to x using only the nodes in S (and x , of course).
d ′(x) is an upper bound on the d(x)

“Greedily” add a node v to S that has the smallest value of d ′(v) (is
closest to s using only nodes in S).
Prove that at the moment we add v to S , d(v) = d ′(v).
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Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

?

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths:

when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

?

[5]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?

I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).
I For each edge (u, v), we compute the length of the shortest path from

s to x via u, which is d(u) + l(u, x).
I We store the smallest of these values in d ′(x).

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

?

[5]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .

I Argument of min runs over all edges of the type (u, x), where u is in S
(i.e., u is explored).

I For each edge (u, v), we compute the length of the shortest path from
s to x via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b 

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

[2]

[5]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).

I For each edge (u, v), we compute the length of the shortest path from
s to x via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

[2]
[4]
[4]

[5]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).
I For each edge (u, v), we compute the length of the shortest path from

s to x via u, which is d(u) + l(u, x).

I We store the smallest of these values in d ′(x).
How do we parse v = arg min x∈V−Sd

′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

[2]

[5]

How do we parse d ′(x) = min (u,x):u∈S(d(u) + l(u, x))?
I The algorithm is examining a particular (unexplored) node x in V − S .
I Argument of min runs over all edges of the type (u, x), where u is in S

(i.e., u is explored).
I For each edge (u, v), we compute the length of the shortest path from

s to x via u, which is d(u) + l(u, x).
I We store the smallest of these values in d ′(x).

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

s e

f

b

c

a
1

2

3

2

1

3

1

2

4

unexplored

explored

min distance d

[0]

[1]

[2]

[ ]

Candidates

[4]

[2]

[5]

How do we parse v = arg min x∈V−Sd
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I Run over all (unexplored) nodes x in V − S .
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How do we parse v = arg min x∈V−Sd
′(x)?

I Run over all (unexplored) nodes x in V − S .
I Examine the d ′ values for these nodes.
I Return the argument (i.e., the node) that has the smallest value of

d ′(x).

To compute the shortest paths: when adding a node v to S , store the
predecessor u that minimises d ′(v).
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Proof of Correctness

Let P(u) be the path computed by the algorithm for a node u.
Claim: P(u) is the shortest path from s to u.
Prove by induction on the size of S , i.e., follow the algorithm.

I Base case: |S | = 1. The only node in S is s.
I Inductive hypothesis: The algorithm has correctly computed P(t) for

all nodes t ∈ S .
I Inductive step: we add the node v to S . Let u be the v ’s predecessor

on the path P(v). Could there be a shorter path R from s to v? We
must prove this cannot be the case.
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A Faster implementation of Dijkstra’s Algorithm

Dijkstra’s Algorithm(G , l , s)

1: S = {s} and d(s) = 0
2: while S 6= V do
3: for every node x ∈ V − S do
4: Set d ′(x) = min(u,x):u∈S(d(u) + l(u, x))
5: Set v = arg minx∈V−S d

′(x)
6: Add v to S and set d(v) = d ′(v)

Observation: If we add v to S , d ′(x) changes only if (v , x) is an edge
in G .

Idea: For each node x ∈ V − S , store the current value of d ′(x).
Upon adding a node v to S , update d ′() only for neighbours of v .

How do we efficiently compute v = arg minx∈V−S d
′(x)?

Use a priority queue!
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Idea: For each node x ∈ V − S , store the current value of d ′(x).
Upon adding a node v to S , update d ′() only for neighbours of v .

How do we efficiently compute v = arg minx∈V−S d
′(x)?
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Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)

1: Insert(Q, s, 0).
2: while S 6= V do
3: (v , d ′(v)) = ExtractMin(Q)
4: Add v to S and set d(v) = d ′(v)
5: for every node x ∈ V − S such that (v , x) is an edge in G do

6: if d(v) + l(v , x) < d ′(x) then
7: d ′(x) = d(v) + l(v , x)
8: ChangeKey(Q, x , d ′(x))

For each node x ∈ V − S , store the pair (x , d ′(x)) in a priority queue
Q with d ′(x) as the key.
Determine the next node v to add to S using ExtractMin (line 3).
After adding v to S , for each node x ∈ V − S such that there is an
edge from v to x , check if d ′(x) should be updated, i.e., if there is a
shortest path from s to x via v (lines 5–8).
In line 8, if x is not in Q, simply insert it.
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Running Time of Faster Dijkstra’s Algorithm
Dijkstra’s Algorithm(G , l , s)
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7: d ′(x) = d(v) + l(v ,x)
8: ChangeKey(Q, x , d ′(x))

How many invocations of ExtractMin?

n − 1.

For every node v , what is the running time of step 5? O(dout(v)), the
number of outgoing neighbours of v .

What is the total running time of step 5?
∑

v∈V O(dout(v)) = O(m).

How many times does the algorithm invoke ChangeKey? ≤ m.

What is total running time of the algorithm? O(m log n).
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Graph Measures Based on Shortest Paths

Characteristic path length l(G ) is the average shortest path length
between all pairs of nodes in G . δ(u, v) = shortest path length from
u to v .

l(G ) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

δ(u, v)

Global efficiency eglob(G ) is the average of the reciprocal of the
shortest path length between all pairs of nodes in G .

eglob(G ) =
1

n(n − 1)

∑
u,v∈V ,u 6=v

1

δ(u, v)

Local efficiency eloc(v) of a node v is the average of the reciprocal of
the shortest path length between all pairs of neighbours of v in G .

eloc(v) =
1

d(v)(d(v)− 1)

∑
u,v∈N(v)

u 6=v

1

δ(u, v)
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Efficiency in Brain Networks

Functional connectivity networks from fMRI data in young (black) and old
(orange) human volunteers.
x-axis is fraction of possible edges as threshold on edge weight varies.
y -axis is global (left) and local (right) efficiency.
Small world networks are both locally and globally efficient.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Defining Modules
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How do we define a module in an undirected graph?
In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
clique or complete subgraph if for every pair of nodes u, v ∈ C , (u, v)
is an edge in E .

I A clique C is maximal if no node outside C can be added to it, i.e., for
every node x ∈ V − C , x is not connected to at least one node in C .

I A clique C is maximum if there is no clique C ′ in G with more nodes
than C .
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Computing a Maximum Clique
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Maximum Clique
Given an undirected, unweighted graph G (V ,E ),
compute the largest clique in G .

Computing a maximum clique is NP-hard.
Any algorithm that can provably compute the maximum clique is
likely to have a running time that is exponential in the size of the
graph.
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Maximum Clique
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Computing a Maximal Clique
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Maximal Clique
Given an undirected, unweighted graph G (V ,E ),
compute a maximal clique in G .

1 Select an arbitrary node v and add it to S (the clique we will output).
2 If there is a node u in V − S that is connected to every node in S ,

add u to S .
3 Repeat the previous step until no such node u is found.
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Running Time to Compute a Maximal Clique
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1 Select an arbitrary node v and add it to S (the clique we will output).

2 If there is a node u in V − S that is connected to every node in S ,
add u to S .

O(n|S |) checks for edge existence.

3 Repeat the previous step until no such node u is found.

O(n|S |2)
checks for edge existence.
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2 If there is a node u in V − S that is connected to every node in S ,
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Clique Decomposition
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What do we do after computing a maximal clique?

Delete nodes in that clique from the graph and repeat.
The resulting set of cliques forms a clique decomposition of G .
Sequence of cliques found depends on order of processing nodes.
There is no notion of correctness here since we defined what we compute
(the clique decomposition) based on an algorithm we specified.
Will every edge in G be in some clique in the decomposition? Can a node be
in multiple cliques?

No, to both questions.
Modification: After finding a clique, delete only the edges in it.
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No, to both questions.
Modification: After finding a clique, delete only the edges in it.
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What do we do after computing a maximal clique?
Delete nodes in that clique from the graph and repeat.
The resulting set of cliques forms a clique decomposition of G .
Sequence of cliques found depends on order of processing nodes.
There is no notion of correctness here since we defined what we compute
(the clique decomposition) based on an algorithm we specified.
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What do we do after computing a maximal clique?
Delete nodes in that clique from the graph and repeat.
The resulting set of cliques forms a clique decomposition of G .
Sequence of cliques found depends on order of processing nodes.
There is no notion of correctness here since we defined what we compute
(the clique decomposition) based on an algorithm we specified.
Will every edge in G be in some clique in the decomposition? Can a node be
in multiple cliques? No, to both questions.
Modification: After finding a clique, delete only the edges in it.
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Structural Connectivity at the Mesoscale

Parcellate the macaque cortex into 91 areas, defined according to
cytoarchitecture and sulco-gyral landmarks.
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Structural Connectivity at the Mesoscale

Use retrograde tract tracing. Determine edges coming into node representing area
of injection from “labelled” nodes representing neurons that the tracer reaches.
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Structural Connectivity at the Mesoscale

Injection is at X : w(Y ,X ) = number of neurons labelled inY
total number of labelled neurons
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Structural Connectivity at the Mesoscale

Example of connectivity matrix.
Edge weights range over six orders of magnitude.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Cliques in Macaque Cerebral Cortex Connectome

29-node directed graph representing connectome of the cerebral cortex
of the macaque; only considering nodes with tracer injection points.
Computed all 13 maximum cliques, each of which had 10 nodes.

Union of cliques formed a dense subgraph among 17 nodes.
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In an undirected graph G = (V ,E ), a subset of nodes C ⊆ V is a
k-core if every node u ∈ C is connected in G to at least k nodes in C .

What is largest the 1-core of G?

G itself (without any nodes of
degree zero).

Does this graph have a 4-core?
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Problems related to k-cores
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k-core Existence

Given an undirected, unweighted graph G (V ,E ) and an integer k ,

compute the k-core with the largest number of nodes in G .

Largest k-core

Given an undirected, unweighted graph G (V ,E ),

compute the largest value of k for which G contains a k-core.
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Algorithm for k-Core Existence
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Repeatedly delete all nodes of degree < k until

every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Algorithm for k-Core Existence

1

2 3

4 5 6

7

8

9

10

11

12

13

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Algorithm for k-Core Existence

1

2 3

4 5 6

7

8

9

10

11

12

13

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Algorithm for k-Core Existence

1

2 3

4 5 6

7

8

9

10

11

12

13

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Algorithm for k-Core Existence

1

2 3

4 5 6

7

8

9

10

11

12

13

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.

T. M. Murali February 15 and 20, 2018 Components and Cores



Components Shortest Paths Cliques Cores

Algorithm for k-Core Existence

1

2 3

4 5 6

7

8

9

10

11

12

13

8

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k .
Resulting graph is the largest k-core.
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Correctness of k-Core Existence Algorithm

Repeatedly delete all nodes of degree < k until every remaining node
has degree ≥ k.

Why should the resulting graph H be a k-core?

Why should the resulting graph H be the k-core with the largest
number of nodes?

Proof by contradiction.
I Suppose there is a k-core H ′ with more nodes than H.
I Then H ∪ H ′ is also a k-core.
I Moreover, no node in H ′ will be deleted by the algorithm.

How do we implement k-core algorithm efficiently?
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Cores vs. Cliques
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A clique with k nodes is a (k − 1)-core.
Can we use the k-core algorithm to find maximum cliques?

Idea: Compute the largest value of k for which a k-core H exists. If H is a
clique, it must be the largest clique (of size k + 1) in the graph.
Flaw is that H may not be a clique, in general. The largest clique may be
disjoint from H or be a subgraph of H.
Moreover, the maximum clique may have l nodes while there may be a
k-core where k > l − 1, e.g., k = 3 and l = 3. Create such an example.
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A clique with k nodes is a (k − 1)-core.
Can we use the k-core algorithm to find maximum cliques?
Idea: Compute the largest value of k for which a k-core H exists. If H is a
clique, it must be the largest clique (of size k + 1) in the graph.
Flaw is that H may not be a clique, in general. The largest clique may be
disjoint from H or be a subgraph of H.
Moreover, the maximum clique may have l nodes while there may be a
k-core where k > l − 1, e.g., k = 3 and l = 3. Create such an example.
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k-Core Decomposition

Label each node by the k-core to which it belongs.
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k-Core Decomposition of Macaque Cortex

242-region macaque cortical connectome containing a 16-core.
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k-Core Decomposition of C. Elegans Connectome

Sensory neurons comprise the innermost cores based on out-degree.

Motor neurons comprise the inner-most cores based on in-degree.
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s-Core Decomposition of Human Connectome

Structural connectivity from diffusion tensor imaging.
Connectome is the average of 21 individuals.
Extend k-core algorithm to weighted networks.
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