## CS 6824: Components, Cliques, and Cores

T. M. Murali

February 15 and 20, 2018


## Summary of Course Thus Far

- History of neuroscience
- Graphs (Definitions, basic concepts, Euler tours)
- Brain graphs (types of nodes and edges, experimental methods, Chapter 2)
- Brain connectivity matrices and node degrees (Chapters 3 and 4)
- Shortest paths (Chapter 7.1 and 7.2)
- Clustering coefficient and small world networks (Chapter 8.1 and 8.2)


## Plan till Spring Break

- Clustering coefficient is a local measure of graph density.
- Small world property captures global features of graph density.


## Plan till Spring Break

- Clustering coefficient is a local measure of graph density.
- Small world property captures global features of graph density.

Are there intermediate notions of graph density?

- Subgraphs that represent backbones of network topology (components, shortest paths, spanning trees, cores, Chapter 6.1, 6.2, 7.1, February 15 and 20)
- Modularity (Chapter 9, February 22, 27, March 1)


## Student Presentations

- I have provided a list of topics (roughly corresponding to textbook sections) for student presentations on the course website.
- Each group should give me its top three choices by 5 pm on Tuesday, February 20.
- I will assign one topic to each group by February 22.
- I will also add the topics to the course schedule.


## Student Presentations

- I have provided a list of topics (roughly corresponding to textbook sections) for student presentations on the course website.
- Each group should give me its top three choices by 5 pm on Tuesday, February 20.
- I will assign one topic to each group by February 22.
- I will also add the topics to the course schedule.
- Each group meets me for 60-90 minutes about two weeks before practice presentation.
- I will announce office hours and a schedule for these meetings.
- Goal is to discuss details of presentation.
- Come prepared: read your section, find relevant papers, have a talk outline, ask me quesitons.
- Each group meets me for 60-90 minutes about two weeks before actual presentation.


## Student Presentations

- I have provided a list of topics (roughly corresponding to textbook sections) for student presentations on the course website.
- Each group should give me its top three choices by 5 pm on Tuesday, February 20.
- I will assign one topic to each group by February 22.
- I will also add the topics to the course schedule.
- Each group meets me for 60-90 minutes about two weeks before practice presentation.
- I will announce office hours and a schedule for these meetings.
- Goal is to discuss details of presentation.
- Come prepared: read your section, find relevant papers, have a talk outline, ask me quesitons.
- Each group meets me for 60-90 minutes about two weeks before actual presentation.
- Projects to be announced before spring break.


## Plan after Spring Break

- Two invited presentations by Heidi Theussen from Smith Career Center (March 15 and 17)
- Practice presentations (March 20 to April 5, with one practice presentation held outside class hours)
- Presentations (April 10 to May 1)


## Paths and Connectivity



## Paths and Connectivity



- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence $P$ of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in $E$.


## Paths and Connectivity



- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence $P$ of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in $E$.
- Distance $d(u, v)$ between two nodes $u$ and $v$ is the minimum number of edges in any $u-v$ path. Abuse of notation: $d$ for both degree and distance.


## Paths and Connectivity



- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence $P$ of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in $E$.
- Distance $d(u, v)$ between two nodes $u$ and $v$ is the minimum number of edges in any $u-v$ path. Abuse of notation: $d$ for both degree and distance.
- A connected component of $G$ is a subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ of $G$ such
- for every pair of nodes $u, v$ in $V^{\prime}$ there is a $u-v$ path in $H$, i.e., that uses only the edges in $E^{\prime}$ and


## Paths and Connectivity



- A $v_{1}-v_{k}$ path in an undirected graph $G=(V, E)$ is a sequence $P$ of nodes $v_{1}, v_{2}, \ldots, v_{k-1}, v_{k} \in V$ such that every consecutive pair of nodes $v_{i}, v_{i+1}, 1 \leq i<k$ is connected by an edge in $E$.
- Distance $d(u, v)$ between two nodes $u$ and $v$ is the minimum number of edges in any $u-v$ path. Abuse of notation: $d$ for both degree and distance.
- A connected component of $G$ is a subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ of $G$ such
- for every pair of nodes $u, v$ in $V^{\prime}$ there is a $u-v$ path in $H$, i.e., that uses only the edges in $E^{\prime}$ and
- H is maximal, i.e., for every node $x \in V-V^{\prime}$, there is no path in $G$ between $x$ and any node in $V^{\prime}$.


## Breadth-First Search (BFS)



- Use BFS to compute connected component containing a node $s$.
- Idea: explore $G$ starting at $s$ and going "outward" in all directions, adding nodes one layer at a time.


## Breadth-First Search (BFS)



- Use BFS to compute connected component containing a node $s$.
- Idea: explore $G$ starting at $s$ and going "outward" in all directions, adding nodes one layer at a time.
- Layer $L_{0}$ contains only s.


## Breadth-First Search (BFS)



- Use BFS to compute connected component containing a node $s$.
- Idea: explore $G$ starting at $s$ and going "outward" in all directions, adding nodes one layer at a time.
- Layer $L_{0}$ contains only s.
- Layer $L_{1}$ contains all neighbours of $s$.


## Breadth-First Search (BFS)



- Use BFS to compute connected component containing a node $s$.
- Idea: explore $G$ starting at $s$ and going "outward" in all directions, adding nodes one layer at a time.
- Layer $L_{0}$ contains only s.
- Layer $L_{1}$ contains all neighbours of $s$.
- Given layers $L_{0}, L_{1}, \ldots, L_{j}$, layer $L_{j+1}$ contains all nodes that
(1) do not belong to an earlier layer and
(2) are connected by an edge to a node in layer $L_{j}$.


## Breadth-First Search (BFS)



- Use BFS to compute connected component containing a node $s$.
- Idea: explore $G$ starting at $s$ and going "outward" in all directions, adding nodes one layer at a time.
- Layer $L_{0}$ contains only s.
- Layer $L_{1}$ contains all neighbours of $s$.
- Given layers $L_{0}, L_{1}, \ldots, L_{j}$, layer $L_{j+1}$ contains all nodes that
(1) do not belong to an earlier layer and
(2) are connected by an edge to a node in layer $L_{j}$.


## Properties of BFS



- For each $j \geq 1$, layer $L_{j}$ consists of all nodes


## Properties of BFS



- For each $j \geq 1$, layer $L_{j}$ consists of all nodes exactly at distance $j$ from $S$.
- There is a path from $s$ to $t$ if and only if $t$ is a member of some layer.


## Implementing BFS

- Maintain an array Discovered and set Discovered $[v]=$ true as soon as the algorithm sees $v$.



## BFS (s) :

Set Discovered $[s]=$ true and Discovered $[v]=$ false for all other $v$ Initialize $L[0]$ to consist of the single element $s$
Set the layer counter $i=0$
Set the current BFS tree $T=\emptyset$
While $L[i]$ is not empty
Initialize an empty list $L[i+1]$
For each node $u \in L[i]$
Consider each edge ( $u, v$ ) incident to $u$
If Discovered $[v]=$ false then
Set Discovered $[v]=$ true
Add edge $(u, v)$ to the tree $T$


Add $v$ to the list $L[i+1]$
Endif
Endfor
Increment the layer counter $i$ by one
Endwhile


## Using a Queue in BFS

- Instead of storing each layer in a different list, maintain all the layers in a single queue $L$.
- We can guarantee that all nodes in layer $i$ will be put in the queue after every node in layer $i-1$ and before every node in layer $i+1$.

```
BFS(s):
    Set Discovered[s] = true
    Set Discovered[v] = false, for all other nodes v
    Initialize L to consist of the single element s
    While L is not empty
    Pop the node }u\mathrm{ at the head of }
    Consider each edge ( }u,v\mathrm{ ) incident on }
    If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u,v) to the tree T
        Push v to the back of L
    Endif
Endwhile
```


## Analysis of BFS Implementation

```
BFS(s):
    Set Discovered[s] = true
    Set Discovered[v] = false, for all other nodes v
    Initialize L to consist of the single element s
    While L is not empty
    Pop the node }u\mathrm{ at the head of L
    Consider each edge ( }u,v\mathrm{ ) incident on }
    If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u,v) to the tree T
        Push v to the back of L
    Endif
    Endwhile
```

- How many times is each node popped from $L$ ?


## Analysis of BFS Implementation

```
BFS(s):
    Set Discovered[s] = true
    Set Discovered[v] = false, for all other nodes v
    Initialize L to consist of the single element s
    While L is not empty
    Pop the node }u\mathrm{ at the head of L
    Consider each edge (u,v) incident on }
    If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u,v) to the tree T
        Push v to the back of L
    Endif
```

    Endwhile
    - How many times is each node popped from L? Exactly once.


## Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[ $v$ ] = false, for all other nodes $v$ Initialize $L$ to consist of the single element $s$
While $L$ is not empty
Pop the node $u$ at the head of $L$
Consider each edge ( $u, v$ ) incident on $u$
If Discovered[v] = false then
Set Discovered[v] = true Add edge $(u, v)$ to the tree $T$ Push $v$ to the back of $L$
Endif
Endwhile

- How many times is each node popped from L? Exactly once.
- Time used by for loop for a node $u$ :


## Analysis of BFS Implementation

BFS (s) :
Set Discovered[s] = true
Set Discovered[ $v$ ] = false, for all other nodes $v$ Initialize $L$ to consist of the single element $s$
While $L$ is not empty
Pop the node $u$ at the head of $L$
Consider each edge ( $u, v$ ) incident on $u$
If Discovered[v] = false then
Set Discovered[v] = true Add edge $(u, v)$ to the tree $T$ Push $v$ to the back of $L$
Endif
Endwhile

- How many times is each node popped from L? Exactly once.
- Time used by for loop for a node $u$ : $O(d(u))$ time.


## Analysis of BFS Implementation

BFS (s) :

```
Set Discovered[s] = true
Set Discovered[v] = false, for all other nodes v
Initialize L to consist of the single element s
While L is not empty
    Pop the node }u\mathrm{ at the head of L
    Consider each edge (u,v) incident on }
    If Discovered[v] = false then
        Set Discovered[v] = true
        Add edge (u,v) to the tree T
        Push v to the back of L
    Endif
```

Endwhile

- How many times is each node popped from L? Exactly once.
- Time used by for loop for a node $u$ : $O(d(u))$ time.
- Total time for all for loops: $\sum_{u \in G} O(d(u))=O(m)$ time.
- Total time is $O(n+m)$.


## Connected Components in Directed Graphs



- In directed graphs, connectivity is not symmetric.


## Connected Components in Directed Graphs



- In directed graphs, connectivity is not symmetric.
- A weakly connected component of a directed graph $G$ is a connected component of the undirected graph $G^{\prime}$ obtained by replacing every edge in $G$ by an undirected edge.


## Connected Components in Directed Graphs



- In directed graphs, connectivity is not symmetric.
- A weakly connected component of a directed graph $G$ is a connected component of the undirected graph $G^{\prime}$ obtained by replacing every edge in $G$ by an undirected edge.
- We can compute all weakly connected components in linear time.


## Connected Components in Directed Graphs



- In directed graphs, connectivity is not symmetric.
- A strongly connected component of a directed graph $G=(V, E)$ is a subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ of $G$ such


## Connected Components in Directed Graphs



- In directed graphs, connectivity is not symmetric.
- A strongly connected component of a directed graph $G=(V, E)$ is a subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ of $G$ such
- for every pair of nodes $u, v$ in $V^{\prime}$ there is a $u$-to- $v$ path and a $v$-to- $u$ path in $H$, i.e., that use only the edges in $E^{\prime}$ and


## Connected Components in Directed Graphs



- In directed graphs, connectivity is not symmetric.
- A strongly connected component of a directed graph $G=(V, E)$ is a subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ of $G$ such
- for every pair of nodes $u, v$ in $V^{\prime}$ there is a $u$-to- $v$ path and a $v$-to- $u$ path in $H$, i.e., that use only the edges in $E^{\prime}$ and
- H is maximal, i.e., for every node $x \in V-V^{\prime}$, there is at least one node $y \in V^{\prime}$ such that there is no path in $G$ from $x$ to $y$ or from $y$ to $x$.


## Connected Components in Directed Graphs



- In directed graphs, connectivity is not symmetric.
- A strongly connected component of a directed graph $G=(V, E)$ is a subgraph $H=\left(V^{\prime}, E^{\prime}\right)$ of $G$ such
- for every pair of nodes $u, v$ in $V^{\prime}$ there is a $u$-to- $v$ path and a $v$-to- $u$ path in $H$, i.e., that use only the edges in $E^{\prime}$ and
- H is maximal, i.e., for every node $x \in V-V^{\prime}$, there is at least one node $y \in V^{\prime}$ such that there is no path in $G$ from $x$ to $y$ or from $y$ to $x$.
- We can compute all strongly connected components in linear time using DFS with some tricks.


## Largest Component in Brain Graphs



- Phase transition for appearance of large component in E-R graphs.


## Largest Component in Brain Graphs



- Add edges in decreasing order of weight.
- Plot the size of the largest weakly connected component.


## Shortest Paths Problem

- $G(V, E)$ is a directed graph. Each edge $e$ has a length $I(e) \geq 0$.
- $V$ has $n$ nodes and $E$ has $m$ edges.
- Length of a path $P$ is the sum of the lengths of the edges in $P$.
- Goal is to determine the shortest path from a specified start node $s$ to each node in $V$.
- Aside: If $G$ is undirected, convert to a directed graph by replacing each edge in $G$ by two directed edges.


## Shortest Paths Problem

- $G(V, E)$ is a directed graph. Each edge $e$ has a length $I(e) \geq 0$.
- $V$ has $n$ nodes and $E$ has $m$ edges.
- Length of a path $P$ is the sum of the lengths of the edges in $P$.
- Goal is to determine the shortest path from a specified start node $s$ to each node in $V$.
- Aside: If $G$ is undirected, convert to a directed graph by replacing each edge in $G$ by two directed edges.


## Shortest Paths

Given a directed graph $G(V, E)$, a function $I: E \rightarrow \mathbb{R}^{+}$, and a node $s \in V$,
compute a set $\{P(u), u \in V\}$, where $P(u)$ is the shortest path in
$G$ from $s$ to $u$.

## Idea Underlying Dijkstra's Algorithm



- Maintain a set $S$ of explored nodes.
- For each node $u \in S$, compute a value $d(u)$, which (we will prove) is the length of the shortest path from $s$ to $u$.
- For each node $x \notin S$, maintain a value $d^{\prime}(x)$, which is the length of the shortest path from $s$ to $x$ using only the nodes in $S$ (and $x$, of course). $d^{\prime}(x)$ is an upper bound on the $d(x)$


## Idea Underlying Dijkstra's Algorithm



- Maintain a set $S$ of explored nodes.
- "Greedily" add a node $v$ to $S$ that has the smallest value of $d^{\prime}(v)$ (is closest to $s$ using only nodes in $S$ ).
- Prove that at the moment we add $v$ to $S, d(v)=d^{\prime}(v)$.


## Example of Dijkstra's Algorithm



## Dijkstra's Algorithm

| DiJkStra's AlGORITHM $(G, I, s)$ |
| :--- |
| 1: $S=\{s\}$ and $d(s)=0$ |
| 2: while $S \neq V$ do |
| 3: $\quad$ for every node $x \in V-S$ do |
| 4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ |
| 5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$ |
| 6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$ |



## Dijkstra's Algorithm

| DiJKStrA's Algorithm $(G, I, s)$ |
| :--- |
| 1: $S=\{s\}$ and $d(s)=0$ |
| 2: while $S \neq V$ do |
| 3: for every node $x \in V-S$ do |
| 4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ |
| 5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$ |
| 6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$ |



- How do we parse $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ ?


## Dijkstra's Algorithm

```
Dijkstra's Algorithm ( \(G, l, s\) )
    1: \(S=\{s\}\) and \(d(s)=0\)
    2: while \(S \neq V\) do
    3: \(\quad\) for every node \(x \in V-S\) do
        Set \(d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))\)
        Set \(v=\arg \min _{x \in V-s} d^{\prime}(x)\)
        Add \(v\) to \(S\) and set \(d(v)=d^{\prime}(v)\)
```



- How do we parse $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ ?
- The algorithm is examining a particular (unexplored) node $x$ in $V-S$.


## Dijkstra's Algorithm

| DiJkstra's Algorithm $(G, I, s)$ |
| :--- |
| 1: $S=\{s\}$ and $d(s)=0$ |
| 2: while $S \neq V$ do |
| 3: for every node $x \in V-S$ do |
| 4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ |
| 5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$ |
| 6: Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$ |



- How do we parse $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ ?
- The algorithm is examining a particular (unexplored) node $x$ in $V-S$.
- Argument of min runs over all edges of the type $(u, x)$, where $u$ is in $S$ (i.e., $u$ is explored).


## Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

1: $S=\{s\}$ and $d(s)=0$
2: while $S \neq V$ do
3: $\quad$ for every node $x \in V-S$ do Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$
Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$


- How do we parse $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ ?
- The algorithm is examining a particular (unexplored) node $x$ in $V-S$.
- Argument of min runs over all edges of the type $(u, x)$, where $u$ is in $S$ (i.e., $u$ is explored).
- For each edge $(u, v)$, we compute the length of the shortest path from $s$ to $x$ via $u$, which is $d(u)+I(u, x)$.


## Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

1: $S=\{s\}$ and $d(s)=0$
2: while $S \neq V$ do
3: $\quad$ for every node $x \in V-S$ do
4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$
5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$
6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$


- How do we parse $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ ?
- The algorithm is examining a particular (unexplored) node $x$ in $V-S$.
- Argument of min runs over all edges of the type $(u, x)$, where $u$ is in $S$ (i.e., $u$ is explored).
- For each edge $(u, v)$, we compute the length of the shortest path from $s$ to $x$ via $u$, which is $d(u)+I(u, x)$.
- We store the smallest of these values in $d^{\prime}(x)$.


## Dijkstra's Algorithm

| DiJKStrA's Algorithm $(G, I, s)$ |
| :--- |
| 1: $S=\{s\}$ and $d(s)=0$ |
| 2: while $S \neq V$ do |
| 3: for every node $x \in V-S$ do |
| 4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ |
| 5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$ |
| 6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$ |



- How do we parse $v=\arg \min _{x \in V-S} d^{\prime}(x)$ ?


## Dijkstra's Algorithm

```
Dijkstra's Algorithm ( \(G, l, s\) )
    1: \(S=\{s\}\) and \(d(s)=0\)
    2: while \(S \neq V\) do
    3: \(\quad\) for every node \(x \in V-S\) do
        Set \(d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))\)
        Set \(v=\arg \min _{x \in V-S} d^{\prime}(x)\)
        Add \(v\) to \(S\) and set \(d(v)=d^{\prime}(v)\)
```



- How do we parse $v=\arg \min _{x \in V-S} d^{\prime}(x)$ ?
- Run over all (unexplored) nodes $x$ in $V-S$.


## Dijkstra's Algorithm

```
Dijkstra's Algorithm ( \(G, l, s\) )
    1: \(S=\{s\}\) and \(d(s)=0\)
    2: while \(S \neq V\) do
    3: \(\quad\) for every node \(x \in V-S\) do
        Set \(d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))\)
        Set \(v=\arg \min _{x \in V-S} d^{\prime}(x)\)
        Add \(v\) to \(S\) and set \(d(v)=d^{\prime}(v)\)
```



- How do we parse $v=\arg \min _{x \in V-S} d^{\prime}(x)$ ?
- Run over all (unexplored) nodes $x$ in $V-S$.
- Examine the $d^{\prime}$ values for these nodes.


## Dijkstra's Algorithm

```
Dijkstra's Algorithm ( \(G, l, s\) )
    1: \(S=\{s\}\) and \(d(s)=0\)
    2: while \(S \neq V\) do
    3: \(\quad\) for every node \(x \in V-S\) do
    4: \(\quad\) Set \(d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))\)
    5: \(\quad\) Set \(v=\arg \min _{x \in V-S} d^{\prime}(x)\)
    6: \(\quad\) Add \(v\) to \(S\) and set \(d(v)=d^{\prime}(v)\)
```



- How do we parse $v=\arg \min _{x \in V-S} d^{\prime}(x)$ ?
- Run over all (unexplored) nodes $x$ in $V-S$.
- Examine the $d^{\prime}$ values for these nodes.
- Return the argument (i.e., the node) that has the smallest value of $d^{\prime}(x)$.


## Dijkstra's Algorithm

Dijkstra's Algorithm ( $G, l, s$ )
1: $S=\{s\}$ and $d(s)=0$
2: while $S \neq V$ do
3: $\quad$ for every node $x \in V-S$ do
4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$
5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$
6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$


- How do we parse $v=\arg \min _{x \in V-S} d^{\prime}(x)$ ?
- Run over all (unexplored) nodes $x$ in $V-S$.
- Examine the $d^{\prime}$ values for these nodes.
- Return the argument (i.e., the node) that has the smallest value of $d^{\prime}(x)$.
- To compute the shortest paths: when adding a node $v$ to $S$, store the predecessor $u$ that minimises $d^{\prime}(v)$.


## Proof of Correctness

- Let $P(u)$ be the path computed by the algorithm for a node $u$.
- Claim: $P(u)$ is the shortest path from $s$ to $u$.
- Prove by induction on the size of $S$, i.e., follow the algorithm.


## Proof of Correctness

- Let $P(u)$ be the path computed by the algorithm for a node $u$.
- Claim: $P(u)$ is the shortest path from $s$ to $u$.
- Prove by induction on the size of $S$, i.e., follow the algorithm.
- Base case: $|S|=1$. The only node in $S$ is $s$.
- Inductive hypothesis:


## Proof of Correctness

- Let $P(u)$ be the path computed by the algorithm for a node $u$.
- Claim: $P(u)$ is the shortest path from $s$ to $u$.
- Prove by induction on the size of $S$, i.e., follow the algorithm.
- Base case: $|S|=1$. The only node in $S$ is $s$.
- Inductive hypothesis: The algorithm has correctly computed $P(t)$ for all nodes $t \in S$.


## Proof of Correctness

- Let $P(u)$ be the path computed by the algorithm for a node $u$.
- Claim: $P(u)$ is the shortest path from $s$ to $u$.
- Prove by induction on the size of $S$, i.e., follow the algorithm.
- Base case: $|S|=1$. The only node in $S$ is $s$.
- Inductive hypothesis: The algorithm has correctly computed $P(t)$ for all nodes $t \in S$.
- Inductive step: we add the node $v$ to $S$. Let $u$ be the $v$ 's predecessor on the path $P(v)$. Could there be a shorter path $R$ from $s$ to $v$ ? We must prove this cannot be the case.


## Proof of Correctness

- Let $P(u)$ be the path computed by the algorithm for a node $u$.
- Claim: $P(u)$ is the shortest path from $s$ to $u$.
- Prove by induction on the size of $S$, i.e., follow the algorithm.
- Base case: $|S|=1$. The only node in $S$ is $s$.
- Inductive hypothesis: The algorithm has correctly computed $P(t)$ for all nodes $t \in S$.
- Inductive step: we add the node $v$ to $S$. Let $u$ be the $v$ 's predecessor on the path $P(v)$. Could there be a shorter path $R$ from $s$ to $v$ ? We must prove this cannot be the case.


The alternate $s-v$ path $P$ through $x$ and $y$ is already too long by the time it has left the set $S$.

## A Faster implementation of Dijkstra's Algorithm

| DiJkstra's Algorithm $(G, I, s)$ |
| :--- |
| 1: $S=\{s\}$ and $d(s)=0$ |
| 2: while $S \neq V$ do |
| 3: for every node $x \in V-S$ do |
| 4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ |
| 5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$ |
| 6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$ |



## A Faster implementation of Dijkstra's Algorithm



- Observation: If we add $v$ to $S, d^{\prime}(x)$ changes only if $(v, x)$ is an edge in $G$.


## A Faster implementation of Dijkstra's Algorithm



- Observation: If we add $v$ to $S, d^{\prime}(x)$ changes only if $(v, x)$ is an edge in $G$.
- Idea: For each node $x \in V-S$, store the current value of $d^{\prime}(x)$. Upon adding a node $v$ to $S$, update $d^{\prime}()$ only for neighbours of $v$.


## A Faster implementation of Dijkstra's Algorithm

| DiJkstra's Algorithm $(G, I, s)$ |
| :--- |
| 1: $S=\{s\}$ and $d(s)=0$ |
| 2: while $S \neq V$ do |
| 3: for every node $x \in V-S$ do |
| 4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ |
| 5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$ |
| 6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$ |



- Observation: If we add $v$ to $S, d^{\prime}(x)$ changes only if $(v, x)$ is an edge in $G$.
- Idea: For each node $x \in V-S$, store the current value of $d^{\prime}(x)$. Upon adding a node $v$ to $S$, update $d^{\prime}()$ only for neighbours of $v$.
- How do we efficiently compute $v=\arg \min _{x \in V-S} d^{\prime}(x)$ ?


## A Faster implementation of Dijkstra's Algorithm

| DiJkstra's Algorithm $(G, I, s)$ |
| :--- |
| 1: $S=\{s\}$ and $d(s)=0$ |
| 2: while $S \neq V$ do |
| 3: for every node $x \in V-S$ do |
| 4: $\quad$ Set $d^{\prime}(x)=\min _{(u, x): u \in S}(d(u)+I(u, x))$ |
| 5: $\quad$ Set $v=\arg \min _{x \in V-S} d^{\prime}(x)$ |
| 6: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$ |



- Observation: If we add $v$ to $S, d^{\prime}(x)$ changes only if $(v, x)$ is an edge in $G$.
- Idea: For each node $x \in V-S$, store the current value of $d^{\prime}(x)$. Upon adding a node $v$ to $S$, update $d^{\prime}()$ only for neighbours of $v$.
- How do we efficiently compute $v=\arg \min _{x \in V-S} d^{\prime}(x)$ ?
- Use a priority queue!


## Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

1: $\operatorname{Insert}(Q, s, 0)$.
2: while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: if $d(v)+I(v, x)<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I(v, x)$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- For each node $x \in V-S$, store the pair $\left(x, d^{\prime}(x)\right)$ in a priority queue $Q$ with $d^{\prime}(x)$ as the key.
- Determine the next node $v$ to add to $S$ using ExtractMin (line 3).
- After adding $v$ to $S$, for each node $x \in V-S$ such that there is an edge from $v$ to $x$, check if $d^{\prime}(x)$ should be updated, i.e., if there is a shortest path from $s$ to $x$ via $v$ (lines 5-8).
- In line 8 , if $x$ is not in $Q$, simply insert it.


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

1: $\operatorname{Insert}(Q, s, 0)$.
2: while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad$ ChangeKey $\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin?


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

1: $\operatorname{Insert}(Q, s, 0)$.
2: while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad$ ChangeKey $\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

: Insert $(Q, s, 0)$.
2: while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad$ ChangeKey $\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ?


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

$\operatorname{Insert}(Q, s, 0)$.
while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: $\quad$ if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ? $O\left(d_{\text {out }}(v)\right)$, the number of outgoing neighbours of $v$.


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

$\operatorname{Insert}(Q, s, 0)$.
while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: $\quad$ if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then $d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ? $O\left(d_{\text {out }}(v)\right)$, the number of outgoing neighbours of $v$.
- What is the total running time of step 5 ?


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, I, s$ )

## $\operatorname{Insert}(Q, s, 0)$.

while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: $\quad$ if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ? $O\left(d_{\text {out }}(v)\right)$, the number of outgoing neighbours of $v$.
- What is the total running time of step 5 ? $\sum_{v \in V} O\left(d_{\text {out }}(v)\right)=O(m)$.


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

Insert $(Q, s, 0)$.
while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: $\quad$ if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ? $O\left(d_{\text {out }}(v)\right)$, the number of outgoing neighbours of $v$.
- What is the total running time of step 5 ? $\sum_{v \in V} O\left(d_{\text {out }}(v)\right)=O(m)$.
- How many times does the algorithm invoke ChangeKey?


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

Insert $(Q, s, 0)$.
while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: $\quad$ if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ? $O\left(d_{\text {out }}(v)\right)$, the number of outgoing neighbours of $v$.
- What is the total running time of step 5 ? $\sum_{v \in V} O\left(d_{\text {out }}(v)\right)=O(m)$.
- How many times does the algorithm invoke ChangeKey? $\leq m$.


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

Insert $(Q, s, 0)$.
while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: $\quad$ if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ? $O\left(d_{\text {out }}(v)\right)$, the number of outgoing neighbours of $v$.
- What is the total running time of step 5 ? $\sum_{v \in V} O\left(d_{\text {out }}(v)\right)=O(m)$.
- How many times does the algorithm invoke ChangeKey? $\leq m$.
- What is total running time of the algorithm?


## Running Time of Faster Dijkstra's Algorithm

## Dijkstra's Algorithm ( $G, l, s$ )

Insert $(Q, s, 0)$.
while $S \neq V$ do
3: $\quad\left(v, d^{\prime}(v)\right)=$ Extract $\operatorname{Min}(Q)$
4: $\quad$ Add $v$ to $S$ and set $d(v)=d^{\prime}(v)$
5: for every node $x \in V-S$ such that $(v, x)$ is an edge in $G$ do
6: $\quad$ if $d(v)+l_{(v, x)}<d^{\prime}(x)$ then
7: $\quad d^{\prime}(x)=d(v)+I_{(v, x)}$
8: $\quad \operatorname{ChangeKey}\left(Q, x, d^{\prime}(x)\right)$

- How many invocations of ExtractMin? $n-1$.
- For every node $v$, what is the running time of step 5 ? $O\left(d_{\text {out }}(v)\right)$, the number of outgoing neighbours of $v$.
- What is the total running time of step 5 ? $\sum_{v \in V} O\left(d_{\text {out }}(v)\right)=O(m)$.
- How many times does the algorithm invoke ChangeKey? $\leq m$.
- What is total running time of the algorithm? $O(m \log n)$.


## Graph Measures Based on Shortest Paths

- Characteristic path length $I(G)$ is the average shortest path length between all pairs of nodes in $G . \delta(u, v)=$ shortest path length from $u$ to $v$.

$$
I(G)=\frac{1}{n(n-1)} \sum_{u, v \in V, u \neq v} \delta(u, v)
$$

## Graph Measures Based on Shortest Paths

- Characteristic path length $I(G)$ is the average shortest path length between all pairs of nodes in $G . \delta(u, v)=$ shortest path length from $u$ to $v$.

$$
I(G)=\frac{1}{n(n-1)} \sum_{u, v \in V, u \neq v} \delta(u, v)
$$

- Global efficiency $e_{g l o b}(G)$ is the average of the reciprocal of the shortest path length between all pairs of nodes in $G$.

$$
e_{\mathrm{glob}}(G)=\frac{1}{n(n-1)} \sum_{u, v \in V, u \neq v} \frac{1}{\delta(u, v)}
$$

- Local efficiency $e_{\text {loc }}(v)$ of a node $v$ is the average of the reciprocal of the shortest path length between all pairs of neighbours of $v$ in $G$.

$$
e_{\mathrm{loc}}(v)=\frac{1}{d(v)(d(v)-1)} \sum_{\substack{u, v \in N(v) \\ u \neq v}} \frac{1}{\delta(u, v)}
$$

## Efficiency in Brain Networks




- Functional connectivity networks from fMRI data in young (black) and old (orange) human volunteers.
- $x$-axis is fraction of possible edges as threshold on edge weight varies.
- $y$-axis is global (left) and local (right) efficiency.
- Small world networks are both locally and globally efficient.


## Defining Modules



- How do we define a module in an undirected graph?
- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a clique or complete subgraph if for every pair of nodes $u, v \in C,(u, v)$ is an edge in $E$.


## Defining Modules



- How do we define a module in an undirected graph?
- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a clique or complete subgraph if for every pair of nodes $u, v \in C,(u, v)$ is an edge in $E$.


## Defining Modules



- How do we define a module in an undirected graph?
- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a clique or complete subgraph if for every pair of nodes $u, v \in C,(u, v)$ is an edge in $E$.
- A clique $C$ is maximal if no node outside $C$ can be added to it, i.e., for every node $x \in V-C, x$ is not connected to at least one node in $C$.


## Defining Modules



- How do we define a module in an undirected graph?
- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a clique or complete subgraph if for every pair of nodes $u, v \in C,(u, v)$ is an edge in $E$.
- A clique $C$ is maximal if no node outside $C$ can be added to it, i.e., for every node $x \in V-C, x$ is not connected to at least one node in $C$.
- A clique $C$ is maximum if there is no clique $C^{\prime}$ in $G$ with more nodes than $C$.


## Computing a Maximum Clique



Maximum Clique
Given an undirected, unweighted graph $G(V, E)$, compute the largest clique in $G$.

## Computing a Maximum Clique



Maximum Clique
Given an undirected, unweighted graph $G(V, E)$, compute the largest clique in $G$.

- Computing a maximum clique is NP-hard.
- Any algorithm that can provably compute the maximum clique is likely to have a running time that is exponential in the size of the graph.


## Computing a Maximal Clique



Maximal Clique
Given an undirected, unweighted graph $G(V, E)$, compute a maximal clique in $G$.

## Computing a Maximal Clique



Maximal Clique
Given an undirected, unweighted graph $G(V, E)$, compute a maximal clique in $G$.
(1) Select an arbitrary node $v$ and add it to $S$ (the clique we will output).
(2) If there is a node $u$ in $V-S$ that is connected to every node in $S$, add $u$ to $S$.
(3) Repeat the previous step until no such node $u$ is found.

## Running Time to Compute a Maximal Clique


(1) Select an arbitrary node $v$ and add it to $S$ (the clique we will output).
(2) If there is a node $u$ in $V-S$ that is connected to every node in $S$, add $u$ to $S$.
(3) Repeat the previous step until no such node $u$ is found.

## Running Time to Compute a Maximal Clique


(1) Select an arbitrary node $v$ and add it to $S$ (the clique we will output).
(2) If there is a node $u$ in $V-S$ that is connected to every node in $S$, add $u$ to $S . O(n|S|)$ checks for edge existence.
(3) Repeat the previous step until no such node $u$ is found.

## Running Time to Compute a Maximal Clique


(1) Select an arbitrary node $v$ and add it to $S$ (the clique we will output).
(2) If there is a node $u$ in $V-S$ that is connected to every node in $S$, add $u$ to $S . O(n|S|)$ checks for edge existence.
(3) Repeat the previous step until no such node $u$ is found. $O\left(n|S|^{2}\right)$ checks for edge existence.

## Clique Decomposition



- What do we do after computing a maximal clique?


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.
- Sequence of cliques found depends on order of processing nodes.


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.
- Sequence of cliques found depends on order of processing nodes.


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.
- Sequence of cliques found depends on order of processing nodes.


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.
- Sequence of cliques found depends on order of processing nodes.
- There is no notion of correctness here since we defined what we compute (the clique decomposition) based on an algorithm we specified.


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.
- Sequence of cliques found depends on order of processing nodes.
- There is no notion of correctness here since we defined what we compute (the clique decomposition) based on an algorithm we specified.
- Will every edge in $G$ be in some clique in the decomposition? Can a node be in multiple cliques?


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.
- Sequence of cliques found depends on order of processing nodes.
- There is no notion of correctness here since we defined what we compute (the clique decomposition) based on an algorithm we specified.
- Will every edge in $G$ be in some clique in the decomposition? Can a node be in multiple cliques? No, to both questions.


## Clique Decomposition



- What do we do after computing a maximal clique?
- Delete nodes in that clique from the graph and repeat.
- The resulting set of cliques forms a clique decomposition of $G$.
- Sequence of cliques found depends on order of processing nodes.
- There is no notion of correctness here since we defined what we compute (the clique decomposition) based on an algorithm we specified.
- Will every edge in $G$ be in some clique in the decomposition? Can a node be in multiple cliques? No, to both questions.
- Modification: After finding a clique, delete only the edges in it.


## Structural Connectivity at the Mesoscale



Parcellate the macaque cortex into 91 areas, defined according to cytoarchitecture and sulco-gyral landmarks.

## Structural Connectivity at the Mesoscale



Use retrograde tract tracing. Determine edges coming into node representing area of injection from "labelled" nodes representing neurons that the tracer reaches.

## Structural Connectivity at the Mesoscale



Injection is at $X: w(Y, X)=\frac{\text { number of neurons labelled in } Y}{\text { total number of labelled neurons }}$

## Structural Connectivity at the Mesoscale



Example of connectivity matrix.
Edge weights range over six orders of magnitude.

## Cliques in Macaque Cerebral Cortex Connectome


(a) Prefrontal Prontal Parietal Temporal

- 29-node directed graph representing connectome of the cerebral cortex of the macaque; only considering nodes with tracer injection points.
- Computed all 13 maximum cliques, each of which had 10 nodes.


## Cliques in Macaque Cerebral Cortex Connectome


(b)

- 29-node directed graph representing connectome of the cerebral cortex of the macaque; only considering nodes with tracer injection points.
- Computed all 13 maximum cliques, each of which had 10 nodes.
- Union of cliques formed a dense subgraph among 17 nodes.


## $k$-Cores



- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a $k$-core if every node $u \in C$ is connected in $G$ to at least $k$ nodes in $C$.


## $k$-Cores



- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a $k$-core if every node $u \in C$ is connected in $G$ to at least $k$ nodes in $C$.
- What is largest the 1 -core of $G$ ?


## $k$-Cores



- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a $k$-core if every node $u \in C$ is connected in $G$ to at least $k$ nodes in $C$.
- What is largest the 1 -core of $G$ ? $G$ itself (without any nodes of degree zero).


## $k$-Cores



- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a $k$-core if every node $u \in C$ is connected in $G$ to at least $k$ nodes in $C$.
- What is largest the 1 -core of $G$ ? $G$ itself (without any nodes of degree zero).


## $k$-Cores



- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a $k$-core if every node $u \in C$ is connected in $G$ to at least $k$ nodes in $C$.
- What is largest the 1 -core of $G$ ? $G$ itself (without any nodes of degree zero).


## $k$-Cores



- In an undirected graph $G=(V, E)$, a subset of nodes $C \subseteq V$ is a $k$-core if every node $u \in C$ is connected in $G$ to at least $k$ nodes in $C$.
- What is largest the 1 -core of $G$ ? $G$ itself (without any nodes of degree zero).
- Does this graph have a 4-core?


## Problems related to $k$-cores


k-Core Existence
Given an undirected, unweighted graph $G(V, E)$ and an integer $k$, compute the $k$-core with the largest number of nodes in $G$.

## Problems related to $k$-cores


k-Core Existence
Given an undirected, unweighted graph $G(V, E)$ and an integer $k$, compute the $k$-core with the largest number of nodes in $G$.

## Problems related to $k$-cores


k-CORE Existence
Given an undirected, unweighted graph $G(V, E)$ and an integer $k$, compute the $k$-core with the largest number of nodes in $G$.

LARGEST $k$-CORE
Given an undirected, unweighted graph $G(V, E)$, compute the largest value of $k$ for which $G$ contains a $k$-core.

## Algorithm for $k$-Core Existence



- Repeatedly delete all nodes of degree $<k$ until


## Algorithm for $k$-Core Existence



- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Resulting graph is the largest $k$-core.


## Algorithm for $k$-Core Existence



- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Resulting graph is the largest $k$-core.


## Algorithm for $k$-Core Existence



- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Resulting graph is the largest $k$-core.


## Algorithm for $k$-Core Existence



- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Resulting graph is the largest $k$-core.


## Algorithm for k-Core Existence



- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Resulting graph is the largest $k$-core.


## Algorithm for k-Core Existence



- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Resulting graph is the largest $k$-core.


## Algorithm for k-Core Existence



- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Resulting graph is the largest $k$-core.


## Correctness of $k$-Core Existence Algorithm

- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Why should the resulting graph $H$ be a $k$-core?
- Why should the resulting graph $H$ be the $k$-core with the largest number of nodes?


## Correctness of k-Core Existence Algorithm

- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Why should the resulting graph $H$ be a $k$-core?
- Why should the resulting graph $H$ be the $k$-core with the largest number of nodes?
- Proof by contradiction.
- Suppose there is a $k$-core $H^{\prime}$ with more nodes than $H$.
- Then $H \cup H^{\prime}$ is also a $k$-core.
- Moreover, no node in $H^{\prime}$ will be deleted by the algorithm.


## Correctness of k-Core Existence Algorithm

- Repeatedly delete all nodes of degree $<k$ until every remaining node has degree $\geq k$.
- Why should the resulting graph $H$ be a $k$-core?
- Why should the resulting graph $H$ be the $k$-core with the largest number of nodes?
- Proof by contradiction.
- Suppose there is a $k$-core $H^{\prime}$ with more nodes than $H$.
- Then $H \cup H^{\prime}$ is also a $k$-core.
- Moreover, no node in $H^{\prime}$ will be deleted by the algorithm.
- How do we implement $k$-core algorithm efficiently?


## Cores vs. Cliques



- A clique with $k$ nodes is a $(k-1)$-core.
- Can we use the $k$-core algorithm to find maximum cliques?


## Cores vs. Cliques



- A clique with $k$ nodes is a $(k-1)$-core.
- Can we use the $k$-core algorithm to find maximum cliques?
- Idea: Compute the largest value of $k$ for which a $k$-core $H$ exists. If $H$ is a clique, it must be the largest clique (of size $k+1$ ) in the graph.


## Cores vs. Cliques



- A clique with $k$ nodes is a $(k-1)$-core.
- Can we use the $k$-core algorithm to find maximum cliques?
- Idea: Compute the largest value of $k$ for which a $k$-core $H$ exists. If $H$ is a clique, it must be the largest clique (of size $k+1$ ) in the graph.
- Flaw is that $H$ may not be a clique, in general. The largest clique may be disjoint from $H$ or be a subgraph of $H$.
- Moreover, the maximum clique may have / nodes while there may be a $k$-core where $k>I-1$, e.g., $k=3$ and $I=3$. Create such an example.


## k-Core Decomposition



- Label each node by the $k$-core to which it belongs.


## $k$-Core Decomposition of Macaque Cortex

Core subshell level


- 242-region macaque cortical connectome containing a 16 -core.


## k-Core Decomposition of C. Elegans Connectome




- Sensory neurons comprise the innermost cores based on out-degree.
- Motor neurons comprise the inner-most cores based on in-degree.


## $s$-Core Decomposition of Human Connectome



- Structural connectivity from diffusion tensor imaging.
- Connectome is the average of 21 individuals.
- Extend k-core algorithm to weighted networks.

