Hierholzer's Again Visualisation

CS 4984: Connectivity Matrices and Node Degrees

T. M. Murali

February 6, 2018

T. M. Murali February 6, 2018

Definition of an Undirected Graph
e Weighted, undirected graph G = (V, E, w):

> set V of nodes.

> set E of edges.
* Each element of E is an unordered pair of nodes.
* Exactly one edge between any pair of nodes (G is not a multigraph).
* G contains no self loops, i.e., edges of the form (u, u).

» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

Definition of an Undirected Graph
e Weighted, undirected graph G = (V, E, w):

» set V of nodes.

> set E of edges.
* Each element of E is an unordered pair of nodes.
* Exactly one edge between any pair of nodes (G is not a multigraph).
* G contains no self loops, i.e., edges of the form (u, u).

» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

Definition of an Undirected Graph
e Weighted, undirected graph G = (V, E, w):

> set V of nodes.

» set E of edges.
* Each element of E is an unordered pair of nodes.
* Exactly one edge between any pair of nodes (G is not a multigraph).
* G contains no self loops, i.e., edges of the form (u, u).

» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

Definition of an Undirected Graph
e Weighted, undirected graph G = (V, E, w):

> set V of nodes.

> set E of edges.
* Each element of E is an unordered pair of nodes.
* Exactly one edge between any pair of nodes (G is not a multigraph).
* G contains no self loops, i.e., edges of the form (u, u).

» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

Definition of a Directed Graph

o Weighted, directed graph G = (V, E, w):
> set V of nodes.
> set E of edges.

* Each element of E is an ordered pair of nodes.
* e = (u,v): uis the tail of the edge e, v is its head, e is directed from

u tov.
* A pair of nodes {u, v} may be connected by at most two directed

edges: (u,v) and (v, u).
* G contains no self loops.
» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

Definition of a Directed Graph

o Weighted, directed graph G = (V, E, w):
» set V of nodes.
> set E of edges.

* Each element of E is an ordered pair of nodes.
* e = (u,v): uis the tail of the edge e, v is its head, e is directed from

u tov.
* A pair of nodes {u, v} may be connected by at most two directed

edges: (u,v) and (v, u).
* G contains no self loops.
» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

Definition of a Directed Graph

o Weighted, directed graph G = (V, E, w):
> set V of nodes.
> set E of edges.

* Each element of E is an ordered pair of nodes.
* e = (u,v): uis the tail of the edge e, v is its head; e is directed from

u tov.
* A pair of nodes {u, v} may be connected by at most two directed

edges: (u,v) and (v, u).
* G contains no self loops.
» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

Definition of a Directed Graph

o Weighted, directed graph G = (V, E, w):
> set V of nodes.
> set E of edges.

* Each element of E is an ordered pair of nodes.
* e = (u,v): uis the tail of the edge e, v is its head, e is directed from

u tov.
* A pair of nodes {u, v} may be connected by at most two directed

edges: (u,v) and (v, u).
* G contains no self loops.
» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity Functional connectivity

Microscale

Mesoscale

Macroscale

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity

Functional connectivity

Microscale

SEM, Tracking neurons

Mesoscale

Macroscale

Soma:

Segmented neurons

Layout graph
Neura
diameter

Neuror

Neuron ID,
three-dimensional coordinates, type
Axonal branch:)

on ID,
three-dimensional coordinates,
ter
Dendritic branch: ®
niD,
three-dimensional coordinates,
diameter
Synaptic junction: .
Pre- and postneuron ID,

three-dimensional coordinates,
number of vesicles

&

Connectivity graph

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity

Functional connectivity

Microscale

SEM, Tracking neurons
Directed, weighted

Mesoscale

Macroscale

Soma:

Segmented neurons

Layout graph
Neura
diameter

Neuror

Neuron ID,
three-dimensional coordinates, type
Axonal branch:)

on ID,
three-dimensional coordinates,
ter
Dendritic branch: ®
niD,
three-dimensional coordinates,
diameter
Synaptic junction: .
Pre- and postneuron ID,

three-dimensional coordinates,
number of vesicles

&

Connectivity graph

T. M. Murali February 6, 2018

Types of Brai

Structural connectivity

n Graphs

Functional connectivity

SEM, Tracking neurons

Electrodes, correlations

Microscale | Directed, weighted Weighted, can be negative,
can be directed

Mesoscale

Macroscale

Segmented neurons

Layout graph

G)

Soma: []
Neuron ID,

three-dimensional coordinates, type
Axonal branch:)

Neuron
three-dimensional coordinates,
diameter
Dendritic branch: ®
Neuron ID,
;hree dimensional coordinates,

iar
Synapﬂc junction: .
Pre- and postneuron ID,
three-dimensional coordinates,

number of vesicles

&

Connectivity graph

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity

Functional connectivity

SEM, Tracking neurons

Electrodes, correlations

Microscale | Directed, weighted Weighted, can be negative,
can be directed
Invasive tract tracin
Mesoscale &
Macroscale
T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity

Functional connectivity

SEM, Tracking neurons
Microscale | Directed, weighted

Electrodes, correlations
Weighted, can be negative,
can be directed

Invasive tract tracing

M | . .
esoscale | p; rected, weighted

Macroscale

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity

Functional connectivity

SEM, Tracking neurons
Microscale | Directed, weighted

Electrodes, correlations
Weighted, can be negative,
can be directed

Invasive tract tracing

M | . .
esoscale | p; rected, weighted

Did not discuss

Macroscale

T. M. Murali February 6, 2018

Hierholzer's Again

Degrees

Visualisation

Types of Brain Graphs

Structural connectivity

Functional connectivity

SEM, Tracking neurons

Electrodes, correlations

Microscale | Directed, weighted Weighted, can be negative,
can be directed
Mesoscale Inyaswe tracF tracing Did not discuss
Directed, weighted
Diffusion MRI, tractography
Macroscale

T. M. Murali February 6, 2018

Hierholzer's Again

Degrees

Visualisation

Types of Brain Graphs

Structural connectivity

Functional connectivity

SEM, Tracking neurons

Electrodes, correlations

Microscale | Directed, weighted Weighted, can be negative,
can be directed
Mesoscale Inyaswe tracF tracing Did not discuss
Directed, weighted
Diffusion MRI, tractography
Macroscale | Undirected, weighted

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity

Functional connectivity

SEM, Tracking neurons

Electrodes, correlations

Microscale | Directed, weighted Weighted, can be negative,
can be directed
Mesoscale Inyaswe tracF tracing Did not discuss
Directed, weighted
Diffusion MRI, tractography | fMRI, correlations
Macroscale | Undirected, weighted

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Types of Brain Graphs

Structural connectivity Functional connectivity
SEM, Tracking neurons Electrodes, correlations
Microscale | Directed, weighted Weighted, can be negative,

can be directed

Invasive tract tracing
Directed, weighted
Diffusion MRI, tractography | fMRI, correlations
Macroscale | Undirected, weighted Weighted, can be negative
can be directed

Mesoscale Did not discuss

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation Degrees

Thresholding and Binarisation

1
i

i
i
i i H " 0.8
H HH H
: HH Al ;
Sazzees: T : 10.6
i 10.4
= T
H .-
R H H| 402
HH =
S R s e L i : .
(a) EEEE o : HEEPPRCTRT R

Human functional connectivity matrix from fMRI data.

Every element has a nonzero value.
T. M. Murali February 6, 2018

Hierholzer's Again Visualisation Degrees

Thresholding and Binarisation

0.9

0.8

0.7

10.6

10.5

10.4

0.3

0.2

0.1

0

(b)

Matrix after thresholding to retain only the 20% strongest weights.

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation Degrees

Thresholding and Binarisation

T
T
T

(c) : 0

Matrix after thresholding and binarisation.

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Representing an Undirected Graph

e Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
» We define the size of G to be m+ n.

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Representing an Undirected Graph

e Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
> We define the size of G to be m+ n.
@ Assume V ={1,2,...,n— 1 n}.
@ Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Representing an Undirected Graph

e Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
» We define the size of G to be m+ n.
@ Assume V ={1,2,...,n— 1 n}.
@ Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is O(n?), which is optimal in the worst case.
> Check if there is an edge between node i/ and node j in

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Representing an Undirected Graph

e Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
» We define the size of G to be m+ n.
@ Assume V ={1,2,...,n— 1 n}.
@ Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is O(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in

T. M. Murali February 6, 2018

LR iesholzenis gt S Viselisstion S Degress L
Representing an Undirected Graph

e Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
» We define the size of G to be m+ n.
@ Assume V ={1,2,...,n— 1 n}.
@ Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is O(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in O(n) time.

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation

Representing an Undirected Graph

Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.
» We define the size of G to be m+ n.
Assume V ={1,2,...,n— 1 n}.
Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is O(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in O(n) time.
Adjacency list representation: array Adj, where Adj[v] stores the list
of all nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation

Representing an Undirected Graph

Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.

» We define the size of G to be m+ n.
Assume V ={1,2,...,n— 1 n}.
Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).

» Space used is O(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.

> lterate over all the edges incident on node i in O(n) time.
Adjacency list representation: array Adj, where Adj[v] stores the list
of all nodes adjacent to v.

» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

» d(v) = the number of neighbours of node v.

» Space used is

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation

Representing an Undirected Graph

Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.

» We define the size of G to be m+ n.
Assume V ={1,2,...,n— 1 n}.
Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).

» Space used is O(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.

> lterate over all the edges incident on node i in O(n) time.
Adjacency list representation: array Adj, where Adj[v] stores the list
of all nodes adjacent to v.

» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

» d(v) = the number of neighbours of node v.

» Space used is O(n+ Y, ccd(v)) =

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation

Representing an Undirected Graph

Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.

» We define the size of G to be m+ n.
Assume V ={1,2,...,n— 1 n}.
Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).

» Space used is O(n?), which is optimal in the worst case.

» Check if there is an edge between node i and node j in O(1) time.

> lterate over all the edges incident on node i in O(n) time.
Adjacency list representation: array Adj, where Adj[v] stores the list
of all nodes adjacent to v.

» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

» d(v) = the number of neighbours of node v.

» Space used is O(n+ Y . d(v)) = O(n+ m), which is optimal for

every graph.
» Check if there is an edge between node v and node v in

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation

Representing an Undirected Graph

Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.
» We define the size of G to be m+ n.
Assume V ={1,2,...,n— 1 n}.
Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is O(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in O(n) time.
Adjacency list representation: array Adj, where Adj[v] stores the list
of all nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
» d(v) = the number of neighbours of node v.
» Space used is O(n+ Y . d(v)) = O(n+ m), which is optimal for
every graph.
» Check if there is an edge between node u and node v in O(d(u)) time.
> lIterate over all the edges incident on node u in

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation

Representing an Undirected Graph

Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.
» We define the size of G to be m+ n.
Assume V ={1,2,...,n— 1 n}.
Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is O(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in O(n) time.
Adjacency list representation: array Adj, where Adj[v] stores the list
of all nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
» d(v) = the number of neighbours of node v.
» Space used is O(n+ Y . d(v)) = O(n+ m), which is optimal for
every graph.
» Check if there is an edge between node u and node v in O(d(u)) time.
> lterate over all the edges incident on node v in O(d(u)) time.

T. M. Murali February 6, 2018

Hierholzer's Again Visualisation Degrees

Representing an Undirected Graph

Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.
» We define the size of G to be m+ n.
Assume V ={1,2,...,n— 1 n}.
Adjacency matrix representation: n x n Boolean matrix, where the
entry in row / and column j is 1 iff the graph contains the edge (i,}).
» Space used is O(n?), which is optimal in the worst case.
» Check if there is an edge between node i and node j in O(1) time.
> lterate over all the edges incident on node i in O(n) time.
Adjacency list representation: array Adj, where Adj[v] stores the list
of all nodes adjacent to v.
» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
» d(v) = the number of neighbours of node v.
» Space used is O(n+ Y . d(v)) = O(n+ m), which is optimal for
every graph.
» Check if there is an edge between node u and node v in O(d(u)) time.
> lterate over all the edges incident on node v in O(d(u)) time.
@ We can modify these ideas for directed graphs.

T. M. Murali February 6, 2018

e e 1 N
Implementing Hierholzer’s Algorithm

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of u.
Delete the edge (u,v) from G.
u<—v
end while

T. M. Murali February 6, 2018

e e 1 N
Implementing Hierholzer’s Algorithm

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of w.
Delete the edge (u,v) from G.
u<—v
end while

T. M. Murali February 6, 2018

Representation Visualisation

Implementing Hierholzer’s Algorithm
4

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of u.
Delete the edge (u,v) from G.
u<+v
end while
f)
Adjacency matrix Adjacency list

Determine d(u)

Find a neighbour
v of u
Delete edge

(u;v)

T. M. Murali February 6, 2018

Implementing Hierholzer’s Algorithm

4 badbcd

(i
Adjacency matrix

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of u.
Delete the edge (u,v) from G.
u<—v
end while

Adjacency list

Determine d(u)

Maintain array of node degrees. | Same idea

O(1) time

Find a neighbour
v of u

Delete edge

(u;v)

T. M. Murali February 6, 2018

Representation

Visualisation

Implementing Hierholzer’s Algorithm

4 badbcd

(i
Adjacency matrix

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of u.
Delete the edge (u,v) from G.
u<—v
end while

Adjacency list

Determine d(u)

Maintain array of node degrees. | Same idea

O(1) time

Find a neighbour
v of u

Traverse row for u. O(n) time. | v is first node in Adj[u].

Delete edge

(u;v)

T. M. Murali February 6, 2018

Representation

Visualisation

Implementing Hierholzer’s Algorithm

4 badbcd

(i
Adjacency matrix

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of u.
Delete the edge (u,v) from G.
u<—v
end while

Adjacency list

Determine d(u)

Maintain array of node degrees. | Same idea

O(1) time

Find a neighbour
v of u

Traverse row for u. O(n) time. | v is first node in Adj[u].

Delete edge

(u;v)

Set both entries to 0; Update | Delete first element of Adj[u].

d(v). O(1) time.

Update d(v). O(1) time.

T. M. Murali February 6, 2018

Representation

Visualisation

Implementing Hierholzer’s Algorithm

4 badbcd

(i
Adjacency matrix

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of u.
Delete the edge (u,v) from G.
u<—v
end while

Adjacency list

Determine d(u)

Maintain array of node degrees. | Same idea

O(1) time

Find a neighbour
v of u

Traverse row for u. O(n) time. | v is first node in Adj[u].

Delete edge

(u;v)

Set both entries to 0; Update | Delete first element of Adj[u].

d(v). O(1) time.

Update d(v). O(1) time. How
do we delete u from Adj[v]?

T. M. Murali February 6, 2018

Representation

Visualisation

Implementing Hierholzer’s Algorithm

4 badbcd

u < s #u is the current node.
while d(u) > 0 do
Output wv.
Let v be a neighbour of u.
Delete the edge (u,v) from G.
u<—v
end while

A
Adjacency matrix O(n?) time.

Adjacency list O(n) time.

Determine d(u)

Maintain array of node degrees.
O(1) time

Same idea

Find a neighbour
v of u

Traverse row for u. O(n) time.

v is first node in Adj[u].

Delete edge

(u;v)

Set both entries to 0; Update
d(v). O(1) time.

Delete first element of Adj[u].
Update d(v). O(1) time. How
do we delete u from Adj[v]?

T. M. Murali February 6, 2018

Representation

T. M. Murali

Hierholzer's Again

Visualising Matrices

February 6, 2018

Degrees

Representation Hierholzer's Again Degrees

Visualising Matrices

T. M. Murali February 6, 2018

Representation Hierholzer's Again Degrees

Visualising Matrices

T. M. Murali February 6, 2018

Anatomical Projection

Circular Layout

RIITIIN

Al

N 2
S,
e, I) |n_:
) e

T. M. Murali February 6, 2018

Force-Directed Layout

T. M. Murali February 6, 2018

_ Representation L HisholzersAgein L b Degress
Spring-Embedded Layout

I0GR
PCLR PCLL 10G.L~—{MOG.R}
HES.R CUNR RECL ‘ORBsuprmed L

ROLL RECR
—sFGmedL
HES.L: ORBsupmedR
[ANG.R
TPOmid SFGmedR
\. \ ORBridL
TPOsURR | Goperc.L i ORBInfR \ AR
\) \
TPOsUpL \ ANG.L
HPL HGR ™ IFGopercR HIPR onsrﬂ CAUR™ ORBmidR CALE

February 6, 2018

e Undirected graph G = (V, E): degree
d(v) of a node v is the number of
edges in E that are incident on v.

T. M. Murali February 6, 2018

Representation Hierholzer's Again Visualisation

Node Degree

e Undirected graph G = (V, E): degree
d(v) of a node v is the number of
edges in E that are incident on v.

d(v) = |{u such that (u,v) € E}|

@ Directed graph G = (V,E):

T. M. Murali February 6, 2018

Representation Hierholzer's Again Visualisation

Node Degree

o e Undirected graph G = (V, E): degree
° o d(v) of a node v is the number of
l edges in E that are incident on v.

d(v) = |{u such that (u,v) € E}|

\o @ Directed graph G = (V,E):
» in-degree d;,(v) of node v is the
number of edges with v as the head.
» out-degree dy,:(v) of node v is the
k. =2 number of edges with v as the tail.

din(v) = |[{u such that (u,v) € E}|
dout(v) = |{u such that (v, u) € E}|

@ Textbook also defines strength of a
node: total weight of edges incident on
(b) that node.

T. M. Murali February 6, 2018

Representation Hierholzer's Again Visualisation

Node Degree

0—0

k,

=2

out ~

A B C D E F

(c)

e Undirected graph G = (V, E): degree
d(v) of a node v is the number of
edges in E that are incident on v.

d(v) = |{u such that (u,v) € E}|

@ Directed graph G = (V,E):
» in-degree d;,(v) of node v is the
number of edges with v as the head.
» out-degree dy,:(v) of node v is the
number of edges with v as the tail.

din(v) = |[{u such that (u,v) € E}|
dout(v) = |{u such that (v, u) € E}|
@ Textbook also defines strength of a

node: total weight of edges incident on
that node.

T. M. Murali February 6, 2018

L Representetion L Hiesholzens Agein L Wisuelisstion
Degree Distribution

@ A way to summarize information about a graph.

T. M. Murali February 6, 2018

L Representetion L Hiesholzens Agein L Wisuelisstion
Degree Distribution

@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer k > 0,
the fraction p(k) of nodes in G whose degree is k.

T. M. Murali February 6, 2018

Degree Distribution

@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer k > 0,
the fraction p(k) of nodes in G whose degree is k.

o Cumulative degree distribution of G: for every integer k > 0, the
fraction P(k) of nodes in G whose degree is at most k.

T. M. Murali February 6, 2018

L Representetion L Hiesholzens Agein L Wisuelisstion
Degree Distribution

@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer k > 0,
the fraction p(k) of nodes in G whose degree is k.

o Cumulative degree distribution of G: for every integer k > 0, the
fraction P(k) of nodes in G whose degree is at most k.

@ Plotting the cumulative degree distribution can offer interesting
insights into a graph.

T. M. Murali February 6, 2018

L Representetion L Hiesholzens Agein L Wisuelisstion
Degree Distribution

@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer kK > 0,
the fraction p(k) of nodes in G whose degree is k.

o Cumulative degree distribution of G: for every integer k > 0, the
fraction P(k) of nodes in G whose degree is at most k.

@ Plotting the cumulative degree distribution can offer interesting
insights into a graph.

e What is the value of }, kp(k)?

T. M. Murali February 6, 2018

Hierhol

Degree Distribution

@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer kK > 0,
the fraction p(k) of nodes in G whose degree is k.

o Cumulative degree distribution of G: for every integer k > 0, the
fraction P(k) of nodes in G whose degree is at most k.

@ Plotting the cumulative degree distribution can offer interesting
insights into a graph.

e What is the value of }, kp(k)?
o Define n(k) = np(k), the number of nodes with degree k.

S kp(k) = =3 kn(k)

k>0 k>0

T. M. Murali February 6, 2018

ntation Hierho

Degree Distribution

@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer kK > 0,
the fraction p(k) of nodes in G whose degree is k.

o Cumulative degree distribution of G: for every integer k > 0, the
fraction P(k) of nodes in G whose degree is at most k.

@ Plotting the cumulative degree distribution can offer interesting
insights into a graph.

e What is the value of }, kp(k)?
o Define n(k) = np(k), the number of nodes with degree k.

S kp(k) = =S kn(k) = 3" d(v) = 27

k>0 k>0 vev

T. M. Murali February 6, 2018

	Representation
	Hierholzer's Again
	Visualisation
	Degrees

