CS 4984: Connectivity Matrices and Node Degrees

T. M. Murali

February 6, 2018
Definition of an Undirected Graph

- **Weighted, undirected graph** $G = (V, E, w)$:
 - set V of nodes.
 - set E of edges.
 - Each element of E is an unordered pair of nodes.
 - Exactly one edge between any pair of nodes (G is not a multigraph).
 - G contains no self loops, i.e., edges of the form (u, u).
 - Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - Weight of each edge is usually positive.
 - G is *unweighted* if all edges have weight 1.
Definition of an Undirected Graph

- **Weighted, undirected graph** $G = (V, E, w)$:
 - set V of nodes.
 - set E of edges.
 - Each element of E is an unordered pair of nodes.
 - Exactly one edge between any pair of nodes (G is not a multigraph).
 - G contains no self loops, i.e., edges of the form (u, u).
 - Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - Weight of each edge is usually positive.
 - G is **unweighted** if all edges have weight 1.
Definition of an Undirected Graph

Weighted, undirected graph $G = (V, E, w)$:

- set V of nodes.
- set E of edges.
 - Each element of E is an unordered pair of nodes.
 - Exactly one edge between any pair of nodes (G is not a multigraph).
 - G contains no self loops, i.e., edges of the form (u, u).
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - Weight of each edge is usually positive.
 - G is *unweighted* if all edges have weight 1.
Definition of an Undirected Graph

- **Weighted, undirected graph** $G = (V, E, w)$:
 - set V of nodes.
 - set E of edges.
 - Each element of E is an unordered pair of nodes.
 - Exactly one edge between any pair of nodes (G is not a multigraph).
 - G contains no self loops, i.e., edges of the form (u, u).
 - Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - Weight of each edge is usually positive.
 - G is *unweighted* if all edges have weight 1.
Definition of a Directed Graph

- **Weighted, directed graph** \(G = (V, E, w) \):
 - set \(V \) of nodes.
 - set \(E \) of edges.
 - Each element of \(E \) is an ordered pair of nodes.
 - \(e = (u, v) \): \(u \) is the *tail* of the edge \(e \), \(v \) is its *head*; \(e \) is *directed from \(u \) to \(v \).*
 - A pair of nodes \(\{u, v\} \) may be connected by at most two directed edges: \((u, v) \) and \((v, u) \).
 - \(G \) contains no self loops.
 - Each edge \((u, v) \) in \(E \) has a weight \(w(u, v) \in \mathbb{R} \)
 - Weight of each edge is usually positive.
 - \(G \) is *unweighted* if all edges have weight 1.
Definition of a Directed Graph

- **Weighted, directed graph** \(G = (V, E, w) \):
 - set \(V \) of nodes.
 - set \(E \) of edges.
 - Each element of \(E \) is an ordered pair of nodes.
 - \(e = (u, v) \): \(u \) is the *tail* of the edge \(e \), \(v \) is its *head*; \(e \) is *directed from \(u \) to \(v \).*
 - A pair of nodes \(\{u, v\} \) may be connected by at most two directed edges: \((u, v) \) and \((v, u) \).
 - \(G \) contains no self loops.
 - Each edge \((u, v) \) in \(E \) has a weight \(w(u, v) \in \mathbb{R} \)
 - Weight of each edge is usually positive.
 - \(G \) is *unweighted* if all edges have weight 1.
Definition of a Directed Graph

- **Weighted, directed graph** $G = (V, E, w)$:
 - set V of nodes.
 - set E of edges.
 - Each element of E is an ordered pair of nodes.
 - $e = (u, v)$: u is the *tail* of the edge e, v is its *head*; e is directed from u to v.
 - A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - G contains no self loops.
 - Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - Weight of each edge is usually positive.
 - G is *unweighted* if all edges have weight 1.
Definition of a Directed Graph

- **Weighted, directed graph** $G = (V, E, w)$:
 - set V of nodes.
 - set E of edges.
 - Each element of E is an ordered pair of nodes.
 - $e = (u, v)$: u is the *tail* of the edge e, v is its *head*; e is directed from u to v.
 - A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - G contains no self loops.
 - Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - Weight of each edge is usually positive.
 - G is *unweighted* if all edges have weight 1.
<table>
<thead>
<tr>
<th>Representation</th>
<th>Hierholzer’s Again</th>
<th>Visualisation</th>
<th>Degrees</th>
</tr>
</thead>
</table>

Types of Brain Graphs

<table>
<thead>
<tr>
<th>Scale</th>
<th>Structural connectivity</th>
<th>Functional connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Microscale**
 - **Structural connectivity**
 - SEM, Tracking neurons
 - Directed, weighted
 - **Functional connectivity**
 - SEM, Tracking neurons
 - Directed, weighted

- **Mesoscale**
 - **Structural connectivity**
 - Invasive tract tracing
 - Directed, weighted
 - **Functional connectivity**
 - Did not discuss
 - Directed, weighted

- ** Macroscale**
 - **Structural connectivity**
 - Diffusion MRI, tractography
 - Undirected, weighted
 - Weighted, can be negative
 - Directed, weighted
 - **Functional connectivity**
 - fMRI, correlations
 - Weighted, can be negative
 - Directed, weighted

February 6, 2018 CS 4984: Computing the Brain
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Representation</th>
<th>Hierholzer’s Again</th>
<th>Visualisation</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of Brain Graphs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural connectivity</td>
<td>Functional connectivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscale</td>
<td>SEM, Tracking neurons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoscale</td>
<td>Did not discuss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td>Diffusion MRI, tractography</td>
<td>fMRI, correlations</td>
<td></td>
</tr>
</tbody>
</table>

Microscale
- **SEM, Tracking neurons**

Mesoscale
- **Invasive tract tracing**

Macroscale
- **Diffusion MRI, tractography**
- **fMRI, correlations**

[Diagram of segmented neurons and layout graph showing connectivity graph with labels a, b, c, d.]

Soma:
- Neuron ID,
- three-dimensional coordinates, type

Axonal branch:
- Neuron ID,
- three-dimensional coordinates, diameter

Dendritic branch:
- Neuron ID,
- three-dimensional coordinates, diameter

Synaptic junction:
- Pre- and postneuron ID,
- three-dimensional coordinates,
- number of vesicles
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Representation</th>
<th>Structural connectivity</th>
<th>Functional connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale</td>
<td>SEM, Tracking neurons</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td></td>
</tr>
<tr>
<td>Mesoscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of brain graphs](image)
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Microscale</th>
<th>Structural connectivity</th>
<th>Functional connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SEM, Tracking neurons</td>
<td>Electrodes, correlations</td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td>Weighted, can be negative, can be directed</td>
</tr>
<tr>
<td>Mesoscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Segmented neurons

- **Soma:**
 - Neuron ID,
 - three-dimensional coordinates, type
- **Axonal branch:**
 - Neuron ID,
 - three-dimensional coordinates, diameter
- **Dendritic branch:**
 - Neuron ID,
 - three-dimensional coordinates, diameter
- **Synaptic junction:**
 - Pre- and postneuron ID,
 - three-dimensional coordinates, number of vesicles

Layout graph

Connectivity graph

T. M. Murali
February 6, 2018
CS 4984: Computing the Brain
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Representation</th>
<th>Hierholzer’s Again</th>
<th>Visualisation</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Types of Brain Graphs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural connectivity</td>
<td>Functional connectivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microscale</td>
<td>SEM, Tracking neurons</td>
<td>Electrodes, correlations</td>
<td>Directed, weighted</td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesoscale</td>
<td>Invasive tract tracing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Representation</th>
<th>Hierholzer’s Again</th>
<th>Visualisation</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types of Brain Graphs</td>
<td>Structural connectivity</td>
<td>Functional connectivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEM, Tracking neurons</td>
<td>Electrodes, correlations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td>Weighted, can be negative, can be directed</td>
<td></td>
</tr>
<tr>
<td>Mesoscale</td>
<td>Invasive tract tracing</td>
<td>Directed, weighted</td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of brain graphs](image-url)
Types of Brain Graphs

<table>
<thead>
<tr>
<th></th>
<th>Structural connectivity</th>
<th>Functional connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale</td>
<td>SEM, Tracking neurons</td>
<td>Electrodes, correlations</td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td>Weighted, can be negative, can be directed</td>
</tr>
<tr>
<td>Mesoscale</td>
<td>Invasive tract tracing</td>
<td>Did not discuss</td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Scale</th>
<th>Structural connectivity</th>
<th>Functional connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale</td>
<td>SEM, Tracking neurons</td>
<td>Electrodes, correlations</td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td>Weighted, can be negative, can be directed</td>
</tr>
<tr>
<td></td>
<td>Invasive tract tracing</td>
<td>Did not discuss</td>
</tr>
<tr>
<td>Mesoscale</td>
<td>Directed, weighted</td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td>Diffusion MRI, tractography</td>
<td></td>
</tr>
</tbody>
</table>
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Scale</th>
<th>Structural Connectivity</th>
<th>Functional Connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale</td>
<td>SEM, Tracking neurons, Directed, weighted</td>
<td>Electrodes, correlations, Weighted, can be negative, can be directed</td>
</tr>
<tr>
<td>Mesoscale</td>
<td>Invasive tract tracing, Directed, weighted</td>
<td>Did not discuss</td>
</tr>
<tr>
<td>** Macroscale**</td>
<td>Diffusion MRI, tractography, Undirected, weighted</td>
<td></td>
</tr>
</tbody>
</table>

![Brain Graph Image](image-url)
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Scale</th>
<th>Structural connectivity</th>
<th>Functional connectivity</th>
</tr>
</thead>
</table>
| **Microscale** | SEM, Tracking neurons
Directed, weighted | Electrodes, correlations
Weighted, can be negative, can be directed |
| **Mesoscale** | Invasive tract tracing
Directed, weighted | Did not discuss |
| **Macroscale** | Diffusion MRI, tractography
Undirected, weighted | fMRI, correlations |

- **SEM**: Scanning electron microscopy
- **fMRI**: Functional magnetic resonance imaging
- **corr**: Correlations
- **dir**: Directed
- **undir**: Undirected
- **wei**: Weighted
- **neg**: Negative
- **inv**: Invasive
Types of Brain Graphs

<table>
<thead>
<tr>
<th>Representation</th>
<th>Structural connectivity</th>
<th>Functional connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale</td>
<td>SEM, Tracking neurons</td>
<td>Electrodes, correlations</td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td>Weighted, can be negative, can be directed</td>
</tr>
<tr>
<td>Mesoscale</td>
<td>Invasive tract tracing</td>
<td>Did not discuss</td>
</tr>
<tr>
<td></td>
<td>Directed, weighted</td>
<td></td>
</tr>
<tr>
<td>Macroscale</td>
<td>Diffusion MRI, tractography</td>
<td>fMRI, correlations</td>
</tr>
<tr>
<td></td>
<td>Undirected, weighted</td>
<td>Weighted, can be negative, can be directed</td>
</tr>
</tbody>
</table>

![Brain Graph Diagram](d)
Thresholding and Binarisation

Human functional connectivity matrix from fMRI data.
Every element has a nonzero value.
Thresholding and Binarisation

Matrix after thresholding to retain only the 20% strongest weights.
Thresholding and Binarisation

Matrix after thresholding and binarisation.
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the size of G to be $m + n$.

We can modify these ideas for directed graphs.
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the size of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.

We can modify these ideas for directed graphs.
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the size of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in
Representing an Undirected Graph

- Graph \(G = (V, E) \) has two input parameters: \(|V| = n, |E| = m\).
 - We define the size of \(G \) to be \(m + n \).
- Assume \(V = \{1, 2, \ldots, n - 1, n\} \).
- **Adjacency matrix** representation: \(n \times n \) Boolean matrix, where the entry in row \(i \) and column \(j \) is 1 iff the graph contains the edge \((i, j)\).
 - Space used is \(O(n^2) \), which is optimal in the worst case.
 - Check if there is an edge between node \(i \) and node \(j \) in \(O(1) \) time.
 - Iterate over all the edges incident on node \(i \) in
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the size of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- *Adjacency matrix* representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.

We can modify these ideas for directed graphs.
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the size of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.
- **Adjacency list** representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in Adj[u] and Adj[v].
Representing an Undirected Graph

- Graph \(G = (V, E) \) has two input parameters: \(|V| = n, |E| = m \).
 - We define the size of \(G \) to be \(m + n \).
- Assume \(V = \{1, 2, \ldots, n - 1, n\} \).
- **Adjacency matrix** representation: \(n \times n \) Boolean matrix, where the entry in row \(i \) and column \(j \) is 1 iff the graph contains the edge \((i, j)\).
 - Space used is \(O(n^2) \), which is optimal in the worst case.
 - Check if there is an edge between node \(i \) and node \(j \) in \(O(1) \) time.
 - Iterate over all the edges incident on node \(i \) in \(O(n) \) time.
- **Adjacency list** representation: array \(\text{Adj} \), where \(\text{Adj}[v] \) stores the list of all nodes adjacent to \(v \).
 - An edge \(e = (u, v) \) appears twice: in \(\text{Adj}[u] \) and \(\text{Adj}[v] \).
 - \(d(v) = \) the number of neighbours of node \(v \).
 - Space used is
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n$, $|E| = m$.
 - We define the size of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.
- **Adjacency list** representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in Adj[u] and Adj[v].
 - $d(v) = \text{the number of neighbours of node } v$.
 - Space used is $O(n + \sum_{v \in G} d(v)) = \text{space used}$.
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the size of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- Adjacency matrix representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.
- Adjacency list representation: array Adj, where $\text{Adj}[v]$ stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
 - $d(v) =$ the number of neighbours of node v.
 - Space used is $O(n + \sum_{v \in G} d(v)) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the size of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.
- **Adjacency list** representation: array Adj, where $\text{Adj}[v]$ stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
 - $d(v) = \text{the number of neighbours of node } v$.
 - Space used is $O(n + \sum_{v \in G} d(v)) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in $O(d(u))$ time.
 - Iterate over all the edges incident on node u in
Representing an Undirected Graph

- **Graph** $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the *size* of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- **Adjacency matrix** representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.
- **Adjacency list** representation: array Adj, where $\text{Adj}[v]$ stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in $\text{Adj}[u]$ and $\text{Adj}[v]$.
 - $d(v) =$ the number of neighbours of node v.
 - Space used is $O(n + \sum_{v \in G} d(v)) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in $O(d(u))$ time.
 - Iterate over all the edges incident on node u in $O(d(u))$ time.
Representing an Undirected Graph

- Graph $G = (V, E)$ has two input parameters: $|V| = n, |E| = m$.
 - We define the *size* of G to be $m + n$.
- Assume $V = \{1, 2, \ldots, n - 1, n\}$.
- *Adjacency matrix* representation: $n \times n$ Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in $O(1)$ time.
 - Iterate over all the edges incident on node i in $O(n)$ time.
- *Adjacency list* representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge $e = (u, v)$ appears twice: in Adj[u] and Adj[v].
 - $d(v) = \text{the number of neighbours of node } v$.
 - Space used is $O(n + \sum_{v \in G} d(v)) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in $O(d(u))$ time.
 - Iterate over all the edges incident on node u in $O(d(u))$ time.

- We can modify these ideas for directed graphs.
Implementing Hierholzer’s Algorithm

\[u \leftarrow s \neq u \text{ is the current node.} \]

\[\textbf{while } d(u) > 0 \text{ do} \]

\[\text{Output } u. \]

\[\text{Let } v \text{ be a neighbour of } u. \]

\[\text{Delete the edge } (u, v) \text{ from } G. \]

\[u \leftarrow v \]

\[\textbf{end while} \]
Implementing Hierholzer’s Algorithm

\[u \leftarrow s \neq u \text{ is the current node.} \]

\[\textbf{while } d(u) > 0 \text{ do} \]
\[\quad \text{Output } u. \]
\[\quad \text{Let } v \text{ be a neighbour of } u. \]
\[\quad \text{Delete the edge } (u, v) \text{ from } G. \]
\[\quad u \leftarrow v \]
\[\textbf{end while} \]
Implementing Hierholzer’s Algorithm

\[u \leftarrow s \neq u \text{ is the current node.} \]

while \(d(u) > 0 \) **do**

Output \(u \).

Let \(v \) be a neighbour of \(u \).

Delete the edge \((u, v)\) from \(G \).

\[u \leftarrow v \]

end while

<table>
<thead>
<tr>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine (d(u))</td>
<td></td>
</tr>
<tr>
<td>Find a neighbour (v) of (u)</td>
<td></td>
</tr>
<tr>
<td>Delete edge ((u, v))</td>
<td></td>
</tr>
</tbody>
</table>
Implementing Hierholzer’s Algorithm

\[u \leftarrow s \neq u \] is the current node.

\begin{align*}
\textbf{while} & \quad d(u) > 0 \quad \textbf{do} \\
& \quad \text{Output } u. \\
& \quad \text{Let } v \text{ be a neighbour of } u. \\
& \quad \text{Delete the edge } (u, v) \text{ from } G. \\
& \quad u \leftarrow v \\
\textbf{end while}
\end{align*}

<table>
<thead>
<tr>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine (d(u))</td>
<td>Maintain array of node degrees. (O(1)) time</td>
</tr>
<tr>
<td>Find a neighbour (v) of (u)</td>
<td>Same idea</td>
</tr>
<tr>
<td>Delete edge ((u, v))</td>
<td></td>
</tr>
</tbody>
</table>
Implementing Hierholzer’s Algorithm

\[u \leftarrow s \ # u \text{ is the current node.} \]

\begin{algorithm*}
\textbf{while} \(d(u) > 0 \) \textbf{do}
\begin{align*}
&\text{Output } u. \\
&\text{Let } v \text{ be a neighbour of } u. \\
&\text{Delete the edge } (u, v) \text{ from } G. \\
&u \leftarrow v
\end{align*}
\textbf{end while}
\end{algorithm*}

<table>
<thead>
<tr>
<th></th>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine (d(u))</td>
<td>Maintain array of node degrees. (O(1) \text{ time})</td>
<td>Same idea</td>
</tr>
<tr>
<td>Find a neighbour (v) of (u)</td>
<td>Traverse row for (u). (O(n) \text{ time})</td>
<td>(v) is first node in (\text{Adj}[u]).</td>
</tr>
<tr>
<td>Delete edge ((u, v))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Implementing Hierholzer’s Algorithm

Let $u \leftarrow s \neq u$ be the current node.

\begin{align*}
\textbf{while } & d(u) > 0 \textbf{ do} \\
& \text{Output } u. \\
& \text{Let } v \text{ be a neighbour of } u. \\
& \text{Delete the edge } (u, v) \text{ from } G. \\
& u \leftarrow v \\
\end{align*}

Adjacency matrix

<table>
<thead>
<tr>
<th>Determine $d(u)$</th>
<th>Maintain array of node degrees. $O(1)$ time</th>
<th>Same idea</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Find a neighbour v of u</th>
<th>Traverse row for u. $O(n)$ time.</th>
<th>v is first node in $\text{Adj}[u]$.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Delete edge (u, v)</th>
<th>Set both entries to 0; Update $d(v)$. $O(1)$ time.</th>
<th>Delete first element of $\text{Adj}[u]$. Update $d(v)$. $O(1)$ time.</th>
</tr>
</thead>
</table>
Implementing Hierholzer’s Algorithm

\[u \leftarrow s \neq u \text{ is the current node.} \]

while \(d(u) > 0 \) **do**

- Output \(u \).
- Let \(v \) be a neighbour of \(u \).
- Delete the edge \((u, v)\) from \(G \).
- \(u \leftarrow v \)

end while

<table>
<thead>
<tr>
<th></th>
<th>Adjacency matrix</th>
<th>Adjacency list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine (d(u))</td>
<td>Maintain array of node degrees. (O(1)) time</td>
<td>Same idea</td>
</tr>
<tr>
<td>Find a neighbour (v) of (u)</td>
<td>Traverse row for (u). (O(n)) time.</td>
<td>(v) is first node in (\text{Adj}[u]).</td>
</tr>
<tr>
<td>Delete edge ((u, v))</td>
<td>Set both entries to 0; Update (d(v)). (O(1)) time.</td>
<td>Delete first element of (\text{Adj}[u]). Update (d(v)). (O(1)) time. How do we delete (u) from (\text{Adj}[v])?</td>
</tr>
</tbody>
</table>
Implementing Hierholzer’s Algorithm

\[u \leftarrow s \neq u \text{ is the current node.} \]

\[
\text{while } d(u) > 0 \text{ do}
\]
\[
\text{Output } u.
\]
\[
\text{Let } v \text{ be a neighbour of } u.
\]
\[
\text{Delete the edge } (u, v) \text{ from } G.
\]
\[
u \leftarrow v
\]
\[
\text{end while}
\]

<table>
<thead>
<tr>
<th>Adjacency matrix (O(n^2)) time.</th>
<th>Adjacency list (O(n)) time.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine (d(u))</td>
<td>Maintain array of node degrees. (O(1)) time</td>
</tr>
<tr>
<td>Find a neighbour (v) of (u)</td>
<td>Traverse row for (u). (O(n)) time.</td>
</tr>
<tr>
<td>Delete edge ((u, v))</td>
<td>Set both entries to 0; Update (d(v)). (O(1)) time.</td>
</tr>
</tbody>
</table>

T. M. Murali February 6, 2018 CS 4984: Computing the Brain
Visualising Matrices
Visualising Matrices
Visualising Matrices
Anatomical Projection
Circular Layout
Force-Directed Layout
Node Degree

- Undirected graph \(G = (V, E) \): degree \(d(v) \) of a node \(v \) is the number of edges in \(E \) that are incident on \(v \).

Textbook also defines strength of a node: total weight of edges incident on that node.
Node Degree

- Undirected graph $G = (V, E)$: degree $d(v)$ of a node v is the number of edges in E that are incident on v.
 \[d(v) = |\{u \text{ such that } (u, v) \in E\}| \]

- Directed graph $G = (V, E)$:

(a)
Node Degree

- Undirected graph $G = (V, E)$: degree $d(v)$ of a node v is the number of edges in E that are incident on v.

 \[d(v) = |\{u \text{ such that } (u, v) \in E\}| \]

- Directed graph $G = (V, E)$:
 - in-degree $d_{in}(v)$ of node v is the number of edges with v as the head.
 - out-degree $d_{out}(v)$ of node v is the number of edges with v as the tail.

 \[d_{in}(v) = |\{u \text{ such that } (u, v) \in E\}| \]
 \[d_{out}(v) = |\{u \text{ such that } (v, u) \in E\}| \]

- Textbook also defines strength of a node: total weight of edges incident on that node.
Node Degree

- Undirected graph $G = (V, E)$:
 degree $d(v)$ of a node v is the number of edges in E that are incident on v.
 \[d(v) = |\{u \text{ such that } (u, v) \in E\}| \]

- Directed graph $G = (V, E)$:
 - in-degree $d_{in}(v)$ of node v is the number of edges with v as the head.
 - out-degree $d_{out}(v)$ of node v is the number of edges with v as the tail.
 \[d_{in}(v) = |\{u \text{ such that } (u, v) \in E\}| \]
 \[d_{out}(v) = |\{u \text{ such that } (v, u) \in E\}| \]

- Textbook also defines strength of a node: total weight of edges incident on that node.
Degree Distribution

- A way to summarize information about a graph.
Degree Distribution

- A way to summarize information about a graph.
- *Degree distribution* of an undirected graph G: for every integer $k \geq 0$, the fraction $p(k)$ of nodes in G whose degree is k.

\[\sum_{k=0}^{\infty} kp(k) = 1 \]

\[\sum_{k=0}^{\infty} kn(k) = 2m \]

T. M. Murali February 6, 2018 CS 4984: Computing the Brain
Degree Distribution

- A way to summarize information about a graph.
- *Degree distribution* of an undirected graph G: for every integer $k \geq 0$, the fraction $p(k)$ of nodes in G whose degree is k.
- *Cumulative degree distribution* of G: for every integer $k \geq 0$, the fraction $P(k)$ of nodes in G whose degree is at most k.
Degree Distribution

- A way to summarize information about a graph.
- *Degree distribution* of an undirected graph G: for every integer $k \geq 0$, the fraction $p(k)$ of nodes in G whose degree is k.
- *Cumulative degree distribution* of G: for every integer $k \geq 0$, the fraction $P(k)$ of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.

What is the value of $\sum_{k \geq 0} k p(k)$?

Define

$$n(k) = np(k),$$

such that

$$\sum_{k \geq 0} k p(k) = \frac{1}{n} \sum_{k \geq 0} kn(k) = \frac{2}{n} \sum_{v \in V} d(v) = 2m.$$
Degree Distribution

- A way to summarize information about a graph.
- *Degree distribution* of an undirected graph G: for every integer $k \geq 0$, the fraction $p(k)$ of nodes in G whose degree is k.
- *Cumulative degree distribution* of G: for every integer $k \geq 0$, the fraction $P(k)$ of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?
Degree Distribution

- A way to summarize information about a graph.
- *Degree distribution* of an undirected graph G: for every integer $k \geq 0$, the fraction $p(k)$ of nodes in G whose degree is k.
- *Cumulative degree distribution* of G: for every integer $k \geq 0$, the fraction $P(k)$ of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k k p(k)$?
- Define $n(k) = np(k)$, the number of nodes with degree k.

$$\sum_{k\geq0} k p(k) = \frac{1}{n} \sum_{k\geq0} k n(k)$$
Degree Distribution

- A way to summarize information about a graph.
- **Degree distribution** of an undirected graph G: for every integer $k \geq 0$, the fraction $p(k)$ of nodes in G whose degree is k.
- **Cumulative degree distribution** of G: for every integer $k \geq 0$, the fraction $P(k)$ of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?
- Define $n(k) = np(k)$, the number of nodes with degree k.

$$\sum_{k \geq 0} kp(k) = \frac{1}{n} \sum_{k \geq 0} kn(k) = \frac{1}{n} \sum_{v \in V} d(v) = \frac{2m}{n}$$