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Definition of an Undirected Graph
e Weighted, undirected graph G = (V, E, w):

> set V of nodes.

> set E of edges.
* Each element of E is an unordered pair of nodes.
* Exactly one edge between any pair of nodes (G is not a multigraph).
* G contains no self loops, i.e., edges of the form (u, u).

» Each edge (u,v) in E has a weight w(u,v) € R
* Weight of each edge is usually positive.
* G is unweighted if all edges have weight 1.
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o Weighted, directed graph G = (V, E, w):
> set V of nodes.
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* Each element of E is an ordered pair of nodes.
* e = (u,v): uis the tail of the edge e, v is its head, e is directed from
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Graph G = (V/, E) has two input parameters: |V| = n,|E| = m.
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» An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
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e Undirected graph G = (V, E): degree
d(v) of a node v is the number of
edges in E that are incident on v.
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o e Undirected graph G = (V, E): degree
° o d(v) of a node v is the number of
l edges in E that are incident on v.

d(v) = |{u such that (u,v) € E}|

\o @ Directed graph G = (V,E):
» in-degree d;,(v) of node v is the
number of edges with v as the head.
» out-degree dy,:(v) of node v is the
k. =2 number of edges with v as the tail.

din(v) = |[{u such that (u,v) € E}|
dout(v) = |{u such that (v, u) € E}|

@ Textbook also defines strength of a
node: total weight of edges incident on
(b) that node.

T. M. Murali February 6, 2018




Representation Hierholzer's Again Visualisation

Node Degree

0—0

k,

=2

out ~

A B C D E F

(c)

e Undirected graph G = (V, E): degree
d(v) of a node v is the number of
edges in E that are incident on v.

d(v) = |{u such that (u,v) € E}|

@ Directed graph G = (V,E):
» in-degree d;,(v) of node v is the
number of edges with v as the head.
» out-degree dy,:(v) of node v is the
number of edges with v as the tail.

din(v) = |[{u such that (u,v) € E}|
dout(v) = |{u such that (v, u) € E}|
@ Textbook also defines strength of a

node: total weight of edges incident on
that node.

T. M. Murali February 6, 2018
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@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer kK > 0,
the fraction p(k) of nodes in G whose degree is k.

o Cumulative degree distribution of G: for every integer k > 0, the
fraction P(k) of nodes in G whose degree is at most k.

@ Plotting the cumulative degree distribution can offer interesting
insights into a graph.

e What is the value of }, kp(k)?
o Define n(k) = np(k), the number of nodes with degree k.
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Degree Distribution

@ A way to summarize information about a graph.

@ Degree distribution of an undirected graph G: for every integer kK > 0,
the fraction p(k) of nodes in G whose degree is k.

o Cumulative degree distribution of G: for every integer k > 0, the
fraction P(k) of nodes in G whose degree is at most k.

@ Plotting the cumulative degree distribution can offer interesting
insights into a graph.

e What is the value of }, kp(k)?
o Define n(k) = np(k), the number of nodes with degree k.

S kp(k) = =S kn(k) = 3" d(v) = 27

k>0 k>0 vev
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