CS 4984: Connectivity Matrices and Node Degrees

T. M. Murali

February 6, 2018

T. M. Murali

February 6, 2018

CS 4984: Computing the Brain

- Weighted, undirected graph G = (V, E, w):
 - set V of nodes.
 - set E of edges.
 - * Each element of E is an unordered pair of nodes.
 - ★ Exactly one edge between any pair of nodes (*G* is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
 - Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

- Weighted, undirected graph G = (V, E, w):
 - ▶ set *V* of nodes.
 - set E of edges.
 - * Each element of E is an unordered pair of nodes.
 - * Exactly one edge between any pair of nodes (*G* is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
 - ▶ Each edge (u, v) in *E* has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

T. M. Murali

- set V of nodes.
- set E of edges.
 - ***** Each element of E is an unordered pair of nodes.
 - ★ Exactly one edge between any pair of nodes (*G* is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

- set V of nodes.
- set E of edges.
 - * Each element of E is an unordered pair of nodes.
 - ★ Exactly one edge between any pair of nodes (*G* is not a multigraph).
 - * G contains no self loops, i.e., edges of the form (u, u).
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

- set V of nodes.
- set E of edges.
 - * Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its *head*; *e* is *directed* from *u* to *v*.
 - * A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

- set V of nodes.
- set E of edges.
 - * Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its *head*; *e* is *directed* from *u* to *v*.
 - * A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

- set V of nodes.
- set E of edges.
 - ***** Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its head; *e* is directed from *u* to *v*.
 - * A pair of nodes $\{u, v\}$ may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
- Each edge (u, v) in E has a weight $w(u, v) \in \mathbb{R}$
 - * Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

- set V of nodes.
- set E of edges.
 - * Each element of E is an ordered pair of nodes.
 - ★ e = (u, v): *u* is the *tail* of the edge *e*, *v* is its *head*; *e* is *directed* from *u* to *v*.
 - ★ A pair of nodes {u, v} may be connected by at most two directed edges: (u, v) and (v, u).
 - ★ G contains no self loops.
- Each edge (u, v) in *E* has a weight $w(u, v) \in \mathbb{R}$
 - ★ Weight of each edge is usually positive.
 - ★ G is *unweighted* if all edges have weight 1.

	Types of Brain Graphs		
	Structural connectivity	Functional connectivity	
Microscale			
Mesoscale			
Macroscale			

Degrees

Types of Brain Graphs				
	Structural connectivit	y	Functio	onal connectivity
Microscale	SEM, Tracking neurons			
Mesoscale				
Macroscale				
	Segmented neurons Layout graph	Soma: Neuron ID, three-dimensi Axonal brar Neuron ID, three-dimensi diameter Dendritic Dr Neuron ID, three-dimensi diameter Synaptic jur Synaptic jur Connectivity s	ional coordinates, type rch: ional coordinates, anch: ional coordinates, nction: neuron ID. ional coordinates, sicles graph	•

Types of Brain Graphs				
	Structural connectivit	y	Functio	onal connectivity
Microscale	SEM, Tracking neurons Directed, weighted			
Mesoscale				
Macroscale				
	Sogmented neurons Layout graph	Soma: Neuron ID, three-dimen Axonal bra Neuron ID, three-dimen diameter Dendritic b Neuron ID, three-dimen diameter Pre- and por three-dimen number of v	sional coordinates, type nch: sional coordinates, ranch: sional coordinates, nrction: sional coordinates, sional coordinates, seidea graph	• • •

	Types of Brain GraphsStructural connectivityFunctional connectivity			
N.A. 1	SEM, Tracking neurons		Electrodes, correlations	
Microscale	Directed, weighted		can be directed	
Mesoscale				
Macroscale				
	Segmented neurons Layout graph	Soma: Neuron ID, three-dimer	ensional coordinates, type	
	V. V.	Neuron ID, three-dimer diameter	sional coordinates,	
	XCVX	Neuron ID, three-dimer diameter Synaptic j Pre- and po three-dimer number of	uncion: streuron ID, streuron ID, storal coordinates, resicles	
		abc	g y graph	

Types of Brain Graphs		
	Structural connectivity	Functional connectivity
	SEM, Tracking neurons	Electrodes, correlations
Microscale	Directed, weighted	Weighted, can be negative,
		can be directed
Mesoscale	Invasive tract tracing	
Macroscale		

Types of Brain Graphs		
	Structural connectivity	Functional connectivity
	SEM, Tracking neurons	Electrodes, correlations
Microscale	Directed, weighted	Weighted, can be negative,
		can be directed
Mesoscale	Invasive tract tracing	
	Directed, weighted	
Macroscale		

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
Microscale	SEM, Tracking neurons	Electrodes, correlations	
WICIUSCAIE	Directed, weighted	can be directed	
Mesoscale	Invasive tract tracing Directed, weighted	Did not discuss	
Macroscale			

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mososcalo	Invasive tract tracing	Did not discuss	
wesuscale	Directed, weighted		
	Diffusion MRI, tractography		
Macroscale			

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mososcalo	Invasive tract tracing	Did not discuss	
wesuscale	Directed, weighted		
	Diffusion MRI, tractography		
Macroscale	Undirected, weighted		

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mesoscale	Invasive tract tracing	Did not discuss	
	Directed, weighted		
	Diffusion MRI, tractography	fMRI, correlations	
Macroscale	Undirected, weighted		

Types of Brain Graphs			
	Structural connectivity	Functional connectivity	
	SEM, Tracking neurons	Electrodes, correlations	
Microscale	Directed, weighted	Weighted, can be negative,	
		can be directed	
Mesoscale	Invasive tract tracing	Did not discuss	
wiesoscale	Directed, weighted		
	Diffusion MRI, tractography	fMRI, correlations	
Macroscale	Undirected, weighted	Weighted, can be negative	
		can be directed	

Thresholding and Binarisation

T. M. Murali

February 6, 2018

CS 4984: Computing the Brain

Thresholding and Binarisation

Matrix after thresholding to retain only the 20% strongest weights.

Thresholding and Binarisation

Matrix after thresholding and binarisation.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 ▶ We define the size of G to be m + n.
- Assume $V = \{1, 2, ..., n-1, n\}.$
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is $O(n + \sum_{v \in G} d(v)) =$

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - ► Space used is $O(n + \sum_{v \in G} d(v)) = O(n + m)$, which is optimal for every graph.
 - Check if there is an edge between node u and node v in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is O(n + ∑_{v∈G} d(v)) = O(n + m), which is optimal for every graph.
 - Check if there is an edge between node u and node v in O(d(u)) time.
 - Iterate over all the edges incident on node u in

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is O(n + ∑_{v∈G} d(v)) = O(n + m), which is optimal for every graph.
 - Check if there is an edge between node u and node v in O(d(u)) time.
 - Iterate over all the edges incident on node u in O(d(u)) time.

- Graph G = (V, E) has two input parameters: |V| = n, |E| = m.
 - We define the *size* of G to be m + n.
- Assume $V = \{1, 2, ..., n 1, n\}$.
- Adjacency matrix representation: n × n Boolean matrix, where the entry in row i and column j is 1 iff the graph contains the edge (i, j).
 - Space used is $O(n^2)$, which is optimal in the worst case.
 - Check if there is an edge between node i and node j in O(1) time.
 - Iterate over all the edges incident on node i in O(n) time.
- Adjacency list representation: array Adj, where Adj[v] stores the list of all nodes adjacent to v.
 - An edge e = (u, v) appears twice: in Adj[u] and Adj[v].
 - d(v) = the number of neighbours of node v.
 - Space used is O(n + ∑_{v∈G} d(v)) = O(n + m), which is optimal for every graph.
 - Check if there is an edge between node u and node v in O(d(u)) time.
 - Iterate over all the edges incident on node u in O(d(u)) time.
- We can modify these ideas for directed graphs.

 $u \leftarrow s \ \#u$ is the current node. while d(u) > 0 do Output u. Let v be a neighbour of u. Delete the edge (u, v) from G. $u \leftarrow v$ end while

 $u \leftarrow s \ \# u$ is the current node. while d(u) > 0 do Output u. Let v be a neighbour of u. Delete the edge (u, v) from G. $u \leftarrow v$ end while

0	a badbcd		
		$u \leftarrow s$ while Out Let Dele $u \leftarrow$ end w	#u is the current node. d(u) > 0 do uput u . v be a neighbour of u . ete the edge (u, v) from G . -v while
	Adjacency matrix		Adjacency list
Determine $d(u)$	Maintain array of node $O(1)$ time	degrees.	Same idea
Find a neighbour <i>v</i> of <i>u</i>	Traverse row for u . $O($	n) time.	v is first node in Adj[u].
Delete edge (u, v)			

\nearrow	04 badbcd		
5		$u \leftarrow s \ \#u$ is the current node. while $d(u) > 0$ do Output u . Let v be a neighbour of u . Delete the edge (u, v) from G . $u \leftarrow v$ end while	
	Adjacency matrix O(r	²) time.	Adjacency list $O(n)$ time.
Determine $d(u)$	Maintain array of node degrees. $O(1)$ time		Same idea
Find a neighbour v of u	Traverse row for u . $O(n)$ time.		v is first node in Adj[u].
Delete edge (u, v)	Set <i>both</i> entries to 0; Update $d(v)$. $O(1)$ time.		Delete first element of $\operatorname{Adj}[u]$. Update $d(v)$. $O(1)$ time. How do we delete u from $\operatorname{Adj}[v]$?

Visualising Matrices

Visualising Matrices

Visualising Matrices

Degrees

Anatomical Projection

Circular Layout

CS 4984: Computing the Brain

Force-Directed Layout

Spring-Embedded Layout

 Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

 Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

 $d(v) = |\{u \text{ such that } (u, v) \in E\}|$

• Directed graph G = (V, E):

Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

 $d(v) = |\{u \text{ such that } (u, v) \in E\}|$

- Directed graph G = (V, E):
 - ► in-degree d_{in}(v) of node v is the number of edges with v as the head.
 - out-degree d_{out}(v) of node v is the number of edges with v as the tail.

$$d_{in}(v) = |\{u ext{ such that } (u,v) \in E\}|$$

 $d_{out}(v) = |\{u \text{ such that } (v, u) \in E\}|$

• Textbook also defines *strength* of a node: total weight of edges incident on that node.

 Undirected graph G = (V, E): degree d(v) of a node v is the number of edges in E that are incident on v.

 $d(v) = |\{u \text{ such that } (u, v) \in E\}|$

- Directed graph G = (V, E):
 - ► in-degree d_{in}(v) of node v is the number of edges with v as the head.
 - out-degree d_{out}(v) of node v is the number of edges with v as the tail.

$$d_{in}(v) = |\{u ext{ such that } (u,v) \in E\}|$$

 $d_{out}(v) = |\{u \text{ such that } (v, u) \in E\}|$

• Textbook also defines *strength* of a node: total weight of edges incident on that node.

• A way to summarize information about a graph.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer $k \ge 0$, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?
- Define n(k) = np(k), the number of nodes with degree k.

$$\sum_{k\geq 0} kp(k) = \frac{1}{n} \sum_{k\geq 0} kn(k)$$

- A way to summarize information about a graph.
- Degree distribution of an undirected graph G: for every integer k ≥ 0, the fraction p(k) of nodes in G whose degree is k.
- Cumulative degree distribution of G: for every integer k ≥ 0, the fraction P(k) of nodes in G whose degree is at most k.
- Plotting the cumulative degree distribution can offer interesting insights into a graph.
- What is the value of $\sum_k kp(k)$?
- Define n(k) = np(k), the number of nodes with degree k.

$$\sum_{k \ge 0} kp(k) = \frac{1}{n} \sum_{k \ge 0} kn(k) = \frac{1}{n} \sum_{v \in V} d(v) = \frac{2m}{n}$$