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Definition of an Undirected Graph
Weighted, undirected graph G = (V ,E ,w):

I set V of nodes.
I set E of edges.

F Each element of E is an unordered pair of nodes.
F Exactly one edge between any pair of nodes (G is not a multigraph).
F G contains no self loops, i.e., edges of the form (u, u).

I Each edge (u, v) in E has a weight w(u, v) ∈ R
F Weight of each edge is usually positive.
F G is unweighted if all edges have weight 1.
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Definition of a Directed Graph

Weighted, directed graph G = (V ,E ,w):
I set V of nodes.
I set E of edges.

F Each element of E is an ordered pair of nodes.
F e = (u, v): u is the tail of the edge e, v is its head; e is directed from

u to v .
F A pair of nodes {u, v} may be connected by at most two directed

edges: (u, v) and (v , u).
F G contains no self loops.

I Each edge (u, v) in E has a weight w(u, v) ∈ R
F Weight of each edge is usually positive.
F G is unweighted if all edges have weight 1.
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Types of Brain Graphs
Structural connectivity Functional connectivity

Microscale

SEM, Tracking neurons Electrodes, correlations
Directed, weighted Weighted, can be negative,

can be directed

Mesoscale

Invasive tract tracing
Did not discuss

Directed, weighted

Macroscale

Diffusion MRI, tractography fMRI, correlations
Undirected, weighted Weighted, can be negative

can be directed
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Thresholding and Binarisation

Human functional connectivity matrix from fMRI data.
Every element has a nonzero value.
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Thresholding and Binarisation

Matrix after thresholding to retain only the 20% strongest weights.
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Thresholding and Binarisation

Matrix after thresholding and binarisation.
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Representing an Undirected Graph

Graph G = (V ,E ) has two input parameters: |V | = n, |E | = m.
I We define the size of G to be m + n.

Assume V = {1, 2, . . . , n − 1, n}.
Adjacency matrix representation: n × n Boolean matrix, where the
entry in row i and column j is 1 iff the graph contains the edge (i , j).

I Space used is O(n2), which is optimal in the worst case.
I Check if there is an edge between node i and node j in O(1) time.
I Iterate over all the edges incident on node i in O(n) time.

Adjacency list representation: array Adj, where Adj[v ] stores the list
of all nodes adjacent to v .

I An edge e = (u, v) appears twice: in Adj[u] and Adj[v ].
I d(v) = the number of neighbours of node v .
I Space used is O

(
n +

∑
v∈G d(v)

)
= O(n + m), which is optimal for

every graph.
I Check if there is an edge between node u and node v in O(d(u)) time.
I Iterate over all the edges incident on node u in O(d(u)) time.

We can modify these ideas for directed graphs.
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Implementing Hierholzer’s Algorithm
a

b

c

d

5

4

4

3

u ← s #u is the current node.
while d(u) > 0 do

Output u.
Let v be a neighbour of u.
Delete the edge (u, v) from G .
u ← v

end while

Adjacency matrix

O(n2) time.

Adjacency list

O(n) time.

Determine d(u)

Maintain array of node degrees.
O(1) time

Same idea

Find a neighbour
v of u

Traverse row for u. O(n) time. v is first node in Adj[u].

Delete edge
(u, v)

Set both entries to 0; Update
d(v). O(1) time.

Delete first element of Adj[u].
Update d(v). O(1) time.

How
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Anatomical Projection
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Circular Layout
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Force-Directed Layout
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Spring-Embedded Layout
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Node Degree

Undirected graph G = (V ,E ): degree
d(v) of a node v is the number of
edges in E that are incident on v .

d(v) = |{u such that (u, v) ∈ E}|

Directed graph G = (V ,E ):
I in-degree din(v) of node v is the

number of edges with v as the head.
I out-degree dout(v) of node v is the

number of edges with v as the tail.

din(v) = |{u such that (u, v) ∈ E}|

dout(v) = |{u such that (v , u) ∈ E}|

Textbook also defines strength of a
node: total weight of edges incident on
that node.
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Degree Distribution

A way to summarize information about a graph.

Degree distribution of an undirected graph G : for every integer k ≥ 0,
the fraction p(k) of nodes in G whose degree is k.

Cumulative degree distribution of G : for every integer k ≥ 0, the
fraction P(k) of nodes in G whose degree is at most k.

Plotting the cumulative degree distribution can offer interesting
insights into a graph.

What is the value of
∑

k kp(k)?

Define n(k) = np(k), the number of nodes with degree k.∑
k≥0

kp(k) =
1

n

∑
k≥0

kn(k) =
1

n

∑
v∈V

d(v) =
2m

n
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