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1 Second-layer gradients

In my slides, I skip a couple steps in the slide on the gradient of the log likelihood with respect to
the hidden layer weights. Let’s make these steps more explicit.

The slides have the equation

∇w11ll =

n∑
i=1

1

p(yi|xi)
×∇w11

p(yi|xi)

Plugging in the definition of p(yi|xi), we get

∇w11ll =

n∑
i=1

1

σ(yiw>
21hi)

×∇w11
σ(yiw

>
21hi)

(Here I’m writing hi to make it explicit that there is a different h vector for each example i, but I
didn’t do that on the slides out of laziness.)

We can do the same expansion we did on the previous analysis by using chain rule on the
expression ∇w11σ(yiw

>
21hi), giving us

∇w11ll =

n∑
i=1

σ(yiw
>
21hi)(1− σ(yiw

>
21hi))

σ(yiw>
21hi)

×∇w11
(yiw

>
21hi)

=

n∑
i=1

(1− σ(yiw
>
21hi))×∇w11(yiw

>
21hi)

=

n∑
i=1

(1− σ(yiw
>
21hi))yi ×∇w11(w>

21hi)

(1)

The case analysis from the previous slide (the gradient w.r.t. w21 tells us that

∇w11ll =

n∑
i=1

(1− σ(yiw
>
21hi))yi ×∇w11

(w>
21hi)

=

n∑
i=1

(I(yi = 1)− σ(w>
21hi))×∇w11

w>
21hi

(2)
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which gets us to the second line in the slide.
It’s useful to see what that expression on the left, (I(yi = 1)−σ(w>

21hi)), actually means. Recall
the original nested function form of this simple neural net,

σ(w>
21[σ(w>

11x), σ(w>
12x)]>).

Since we’re interested in the log-likelihood, we are actually differentiating the function

log σ(yiw
>
21[σ(w>

11x), σ(w>
12x)]>).

The expression (I(yi = 1) − σ(w>
21hi)) then turns out to be the derivative of this one-dimensional

function log σ(yiz), i.e.,
d log σ(yiz)

d z
.

In other words, it’s the derivative of the log-likelihood with respect to the input to the final logistic
squashing function.
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