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1 Second-layer gradients

In my slides, I skip a couple steps in the slide on the gradient of the log likelihood with respect to
the hidden layer weights. Let’s make these steps more explicit.
The slides have the equation
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Plugging in the definition of p(y;|x;), we get

Vg = ; m X Vi, 0(yiwg hy)

(Here I'm writing h; to make it explicit that there is a different h vector for each example i, but I
didn’t do that on the slides out of laziness.)

We can do the same expansion we did on the previous analysis by using chain rule on the
expression V., o (y;wq, h;), giving us
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The case analysis from the previous slide (the gradient w.r.t. wy1 tells us that
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which gets us to the second line in the slide.
It’s useful to see what that expression on the left, (I(y; = 1) —o(wq;h;)), actually means. Recall
the original nested function form of this simple neural net,

o(wy o (wiy2), o(wiya)] 7).

Since we’re interested in the log-likelihood, we are actually differentiating the function

log o (yiwg, [o(wyy ), o (wlha)] ).

The expression (I(y; = 1) — o(wg,h;)) then turns out to be the derivative of this one-dimensional
function log o (y;2), i.e.,
d logo(yiz)
dz '
In other words, it’s the derivative of the log-likelihood with respect to the input to the final logistic
squashing function.



