Types of Machine Learning
and
Model Selection

Machine Learning
CS4824/ECE4424

Bert Huang
Virginia Tech



1st Learning Setting

* Draw data set D = {(x1, y1), (X2, ¥2), ..., (Xn, ¥n)} from distribution D

e Algorithm A learns hypothesis h € H from set H of possible
hypotheses A(D) = h

» \We measure the quality of h as the expected loss: . 5@» [4(y, h(x))]

* [his quantity is known as the risk

0 ifa=>b

 E£.9., loss could be the Hamming 10SS  /Hamming(a, b) = .
1 otherwise



Example: Digit Classification
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—xample: Airline Price Prediction
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—xample: Airline Price Prediction
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Batch Supervised Learning

* Draw data set D = {(x1, y1), (X2, ¥2), ..., (Xn, ¥n)} from distribution D

e Algorithm A learns hypothesis h € H from set H of possible
hypotheses A(D) = h

» \We measure the quality of h as the expected loss: . 5@» [4(y, h(x))]

* [his quantity is known as the risk

0 ifa=>b

 E£.9., loss could be the Hamming 10SS  /Hamming(a, b) = .
1 otherwise

classification



Online Supervised Learning

In step t, draw data point x from distribution )

Current hypothesis h guesses the label of x

Get true label from oracle O

Pay penalty it A(x) is wrong (or earn reward if correct)

Learning algorithm updates to new hypothesis based on this experience

 Does not store history



-xample: Recommendation
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|_earning Settings

Supervised or unsupervised (or semi-supervised, weakly
supervised, transductive...)

Online or batch (or reinforcement...)
Classification, regression
e (or structured output, clustering, dimensionality reduction...)

Parametric or non-parameteric



Functional Perspective

Input Learning Setting

Batch of Data Points with Labels Batch Supervised Learning

Batch of Data Points Batch Unsupervised Learning

Data Point(s) and Previous Model Online Supervised Learning



Concepts

Supervised and unsupervised learning
Online and batch learning
Discriminative and generative

Output of models: classification and regression



Model Selection



Outline

o Qverfitting and underfitting
e Blas and variance

e \alidation for model selection



Outline

» Overfitting and underfitting
e Blas and variance

e \alidation for model selection



Training Data ML Algorithm 1 Predictor 1

\

0.24 accuracy Real World Data

0.25 accuracy

Training Data ML Algorithm 2 Predictor 2
0.95 accuracy! Real World Data

0.27 accuracy
huge generalization error!



Underfitting Overfitting

ML Algorithm 1
ML Algorithm 2

e | ow dimensional * High dimensional or non-parametric

* Weakly regularized

* Heavily regularized
* Not enough modeling assumptions

 Bad modeling assumptions » Not enough data



data




X data

shape-preserving
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| X data _—

shape-preserving

linear

quadratic




Overfitting and Underfitting

e [raining models too complex can cause overfitting

e Training models too simple (or wrong) can cause underfitting



Outline

o Qverfitting and underfitting

e \alidation for model selection




Blas and Variance

e Both contribute to error
e Bias: error from incorrect modeling assumptions

e Variance: error from random noise

http://scott.fortmann-roe.com/docs/BiasVariance.html



http://scott.fortmann-roe.com/docs/BiasVariance.html

Low Bias

High Bias

Low Variance High Variance

(O)c

Fig. 1 Graphical illustration of bias and variance.




Mathematical Definition
after Hastie, et al. 2009 !

If we denote the variable we are trying to predict as ¥ and our covariates as X, we may assume that
there is a relationship relating one to the other such as Y = f(X) + € where the error term € is
normally distributed with a mean of zero like so € ~ N'(0, o,).

We may estimate a model f (X) of f(X) using linear regressions or another modeling technique. In this
case, the expected squared prediction error at a point x is:

Err(x) = E [(Y ~ f()’|
This error may then be decomposed into bias and variance components:
Err() = (BIF 001 ) +E [(£C0 - EIF(01) | + 02

Err(x) = Bias® + Variance + Irreducible Error

That third term, irreducible error, is the noise term in the true relationship that cannot fundamentally
be reduced by any model. Given the true model and infinite data to calibrate it, we should be able to
reduce both the bias and variance terms to 0. However, in a world with imperfect models and finite
data, there is a tradeoff between minimizing the bias and minimizing the variance.



Err(x) = E |(Y — f()?]

be decomposed into bias and variance components:

Err) = (B0l — /@) +E [(£C0 - EIf(o1) | + 7

expected true function learned expected

learned function function learned function
Err(x) = Bias? + Variance + Irreducible Error

ducible error, is the noise term in the true relationship that c:
nodel. Given the true model and infinite data to calibrate it, v



Outline

o Qverfitting and underfitting

e Blas and variance




Nearest-Neighbor Classitiers
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Hela-out Valigation
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Hela-out Valigation
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Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation
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Cross Validation
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| eave-one-out Cross Validation
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| eave-one-out Cross Validation
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| eave-one-out Cross Validation
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| eave-one-out Cross Validation
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| eave-one-out Cross Validation
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| eave-one-out Cross Validation

S=/dm T\ NP
O/~ OV o 3100 NS <
0 — <l S v/l
O~/ \1S b0 o~
ON WIS N

validation data

training data



How Many Folds”

e \What are the pros and cons of leave-one-out cross-validation?

 We usually train on N-1 folds and test on 1 fold. What are pros and
cons of doing the inverse: train on 1 fold and test on N-1 folds”
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lesting versus Validation

e Best practice for experiments:
 Hold out test set completely hidden from training
o Use validation on training data for model (or parameter) selection

e Evaluate on held-out test data



Model Selection via Validation

Measure performance on held-out training data

e Simulate testing environment

Rotate folds of held-out subsets

Can even hold out one at a time: leave-one-out validation

Use (cross) validation performance to tune extra parameters



summary

e [ypes of machine learning
o Complexity, overfitting, bias

e \aligation, cross-validation



