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Abstract

We propose a criterion for discrimination against a specified sensitive attribute in su-
pervised learning, where the goal is to predict some target based on available features.
Assuming data about the predictor, target, and membership in the protected group are avail-
able, we show how to optimally adjust any learned predictor so as to remove discrimination
according to our definition. Our framework also improves incentives by shifting the cost of
poor classification from disadvantaged groups to the decision maker, who can respond by
improving the classification accuracy.

In line with other studies, our notion is oblivious: it depends only on the joint statistics of
the predictor, the target and the protected attribute, but not on interpretation of individual
features. We study the inherent limits of defining and identifying biases based on such
oblivious measures, outlining what can and cannot be inferred from di↵erent oblivious tests.

We illustrate our notion using a case study of FICO credit scores.

1 Introduction

As machine learning increasingly a↵ects decisions in domains protected by anti-discrimination
law, there is much interest in algorithmically measuring and ensuring fairness in machine
learning. In domains such as advertising, credit, employment, education, and criminal justice,
machine learning could help obtain more accurate predictions, but its e↵ect on existing biases
is not well understood. Although reliance on data and quantitative measures can help quantify
and eliminate existing biases, some scholars caution that algorithms can also introduce new
biases or perpetuate existing ones [BS16]. In May 2014, the Obama Administration’s Big Data
Working Group released a report [PPM+14] arguing that discrimination can sometimes “be the
inadvertent outcome of the way big data technologies are structured and used” and pointed
toward “the potential of encoding discrimination in automated decisions”. A subsequent White
House report [Whi16] calls for “equal opportunity by design” as a guiding principle in domains
such as credit scoring.

Despite the demand, a vetted methodology for avoiding discrimination against protected
attributes in machine learning is lacking. A naïve approach might require that the algorithm
should ignore all protected attributes such as race, color, religion, gender, disability, or family
status. However, this idea of “fairness through unawareness” is ine↵ective due to the existence
of redundant encodings, ways of predicting protected attributes from other features [PRT08].

Another common conception of non-discrimination is demographic parity. Demographic
parity requires that a decision—such as accepting or denying a loan application—be independent
of the protected attribute. In the case of a binary decision bY 2 {0,1} and a binary protected
attribute A 2 {0,1}, this constraint can be formalized by asking that Pr{bY = 1 | A = 0} = Pr{bY =
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Abstract

We propose a learning algorithm for fair clas-
sification that achieves both group fairness
(the proportion of members in a protected
group receiving positive classification is iden-
tical to the proportion in the population as
a whole), and individual fairness (similar in-
dividuals should be treated similarly). We
formulate fairness as an optimization prob-
lem of finding a good representation of the
data with two competing goals: to encode the
data as well as possible, while simultaneously
obfuscating any information about member-
ship in the protected group. We show posi-
tive results of our algorithm relative to other
known techniques, on three datasets. More-
over, we demonstrate several advantages to
our approach. First, our intermediate rep-
resentation can be used for other classifica-
tion tasks (i.e., transfer learning is possible);
secondly, we take a step toward learning a
distance metric which can find important di-
mensions of the data for classification.

1. Introduction

Information systems are becoming increasingly reliant
on statistical inference and learning to render all sorts
of decisions, including the setting of insurance rates,
the allocation of police, the targeting of advertising,
the issuing of bank loans, the provision of health care,
and the admission of students. This growing use of
automated decision-making has sparked heated debate
among philosophers, policy-makers, and lawyers. Crit-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:

W&CP volume 28. Copyright 2013 by the author(s).

ics have voiced concerns with bias and discrimination
in decision systems that rely on statistical inference
and learning.

Systems trained to make decisions based on historical
data will naturally inherit the past biases. These may
be ameliorated by attempting to make the automated
decision-maker blind to some attributes. This how-
ever, is di�cult, as many attributes may be correlated
with the protected one. The basic aim then is to make
fair decisions, i.e., ones that are not unduly biased for
or against protected subgroups in the population.

Two important goals of fair classification that have
been articulated are: group fairness, and individual
fairness. Group fairness, also known as statistical par-
ity, ensures that the overall proportion of members in a
protected group receiving positive (negative) classifica-
tion are identical to the proportion of the population as
a whole. While statistical parity is an important prop-
erty, it may still lead to undesirable outcomes that are
blatantly unfair to individuals, such as discriminat-
ing in employment while maintaining statistical parity
among candidates interviewed by deliberately choos-
ing unqualified members of the protected group to be
interviewed in the expectation that they will fail. Indi-
vidual fairness addresses this by ensuring that any two
individuals who are similar with respect to a particular
task should be classified similarly.

Only recently have machine learning researchers con-
sidered this issue. Several papers, e.g., (Luong et al.,
2011; Kamishima et al., 2011), aim to achieve the first
goal, group fairness, by adapting standard learning ap-
proaches in novel ways, primarily through a form of
fairness regularizer, or by re-labeling the training data
to achieve statistical parity. In a di↵erent line of work,
(Dwork et al., 2011) develop an ambitious framework
which attempts to achieve both group and individ-
ual fairness. In their setup, the goal is to define a
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http://proceedings.mlr.press/v28/zemel13.pdf


Learning Fair Representations

probabilistic mapping from individuals to an interme-
diate representation such that the mapping achieves
both. This construction allows the initial mapping,
perhaps supervised by an impartial party or regulator
concerned with fairness, to produce representations of
individuals that can then be used in the second step by
multiple vendors to craft classifiers to maximize their
own objectives, while maintaining fairness. However,
there are several obstacles in their approach. First,
a distance metric that defines the similarity between
the individuals is assumed to be given. This may be
unrealistic in certain settings, and to some extent the
problem of establishing fairness in classification (more
specifically simultaneously achieving the twin goals)
is reduced to the problem of establishing a fair dis-
tance function. This was the most challenging aspect
of their framework, as was acknowledged in their pa-
per. Secondly, their framework is not formulated as a
learning problem, as it forms a mapping for a given set
of individuals without any procedure for generalizing
to novel unseen data.

Our work builds on this earlier framework in that
we try to achieve both group and individual fairness.
However, we extend their approach in several impor-
tant ways. First, we develop a learning approach to
solving the fairness problem. Secondly we learn a re-
stricted form of a distance function as well as the in-
termediate representation, thus making a step toward
eliminating the assumption that the distance function
is given apriori. Thirdly, we explicitly formulate the
problem in a novel way that we feel deserves further
study. Namely, we formulate fairness as an optimiza-
tion problem of finding an intermediate representation
of the data that best encodes the data (i.e., preserving
as much information about the individual’s attributes
as possible), while simultaneously obfuscates aspects of
it, removing any information about membership with
respect to the protected subgroup. That is, we at-
tempt to learn a set of intermediate representations to
satisfy two competing goals: (i) the intermediate rep-
resentation should encode the data as well as possible;
and (ii) the the encoded representation is sanitized in
the sense that it should be blind to whether or not
the individual is from the protected group. We fur-
ther posit that such an intermediate representation is
fundamental to progress in fairness in classification,
since it is composable and not ad hoc; once such a
representation is established, it can be used in a black-

box fashion to turn any classification algorithm into a
fair classifier, by simply applying the classifer to the
sanitized representation of the data.

The remainder of the paper is organized as follows.
First we introduce our model formulation, and de-

scribe how we use it to learn fair representations. Sec-
tion 3 reviews relevant work, and Section 4 presents
experimental results on some standard datasets, com-
paring our model to some earlier ones with respect to
the fairness and accuracy of the classifications.

2. Our Model

2.1. Overview and notation

The main idea in our model is to map each individual,
represented as a data point in a given input space, to a
probability distribution in a new representation space.
The aim of this new representation is to lose any infor-

mation that can identify whether the person belongs to

the protected subgroup, while retaining as much other

information as possible. Here we formulate this new
representation in terms of a probabilistic mapping to a
set of prototypes; note, however, that this is only one
of many possible forms of intermediate representation.
Finally, we also optimize these representations so that
any classification tasks using them are maximally ac-
curate.

To formalize the approach we first introduce some no-
tation and assumptions:

• X denotes the entire data set of individuals. Each
x 2 X is a vector of length D where each compo-
nent of the vector describes some attribute of the
person.

• S is a binary random variable representing
whether or not a given individual is a member
of the protected set; we assume the system has
access to this attribute.

• X0 denotes the training set of individuals.

• X+ ⇢ X, X+
0 ⇢ X0 denotes the subset of indi-

viduals (from the whole set and the training set
respectively) that are members of the protected
set (i.e., S = 1), and X� and X�

0 denotes the
subsets that are not members of the protected set,
i.e., S = 0.

• Z is a multinomial random variable, where each
of the K values represents one of the intermediate
set of ”prototypes”. Associated with each proto-
type is a vector vk in the same space as the indi-
viduals x.

• Y is the binary random variable representing the
classification decision for an individual, and f :
X ! Y is the desired classification function.

• d is a distance measure on X, e.g., simple Eu-
clidean distance: d(xn,vk) = ||xn � vk||2.

Learning Fair Representations

A key property that the learned mapping attempts to
ensure is that membership in the protected group is
lost. We formulate this using the notion of statistical
parity, which requires that the probability that a ran-
dom element from X+ maps to a particular prototype
is equal to the probability that a random element from
X� maps to the same prototype:

P (Z = k|x+ 2 X+) = P (Z = k|x� 2 X�), 8k (1)

Given the definitions of the prototypes as points in
the input space, a set of prototypes induces a natural
probabilistic mapping from X to Z via the softmax:

P (Z = k|x) = exp(�d(x,vk))/
KX

j=1

exp(�d(x,vj)) (2)

The model is thus defined as a discriminative clus-
tering model, where the prototypes act as the clusters.
Each input example is stochastically assigned to a pro-
totype, which are in turn used to predict the class for
that example. Statistical parity induces an interesting
constraint on the prototype assignments, forcing the
associated probabilities to be the same in expectation
for the protected and unprotected groups.

2.2. Learning fair representations

The goal in our model, which we denote LFR (Learned
Fair Representations), is to learn a good prototype set
Z such that:

1. the mapping from X0 to Z satisfies statistical par-
ity;

2. the mapping to Z-space retains information in X
(except for membership in the protected set); and

3. the induced mapping from X to Y (by first map-
ping each x probabilistically to Z-space, and then
mapping Z to Y ) is close to f .

Each of these aims corresponds to a term in the objec-
tive function we use to learn the representations. In
this learning system, there are only two sets of param-
eters to be learned: the prototype locations {vk} and
the parameters {wk} that govern the mapping from
the prototypes to classification decisions y.

For convenience, we use x1, ..,xN to denote N samples
of the training set. We also use corresponding indica-
tor variables s1, ..., sN , to denote whether xn 2 X+

0 ,
8n 2 N . We use y1, .., yN as the outcome for x1, ...,xN

in the training set. We define Mn,k as the probability
that xn maps to vk, via Eqn. 2:

Mn,k = P (Z = k|xn) 8n, k (3)

Given this setup, the learning system minimizes the
following objective:

L = Az · Lz + Ax · Lx + Ay · Ly (4)

where Ax, Ay, Az are hyper-parameters governing the
trade-o↵ between the system desiderata.

In order to achieve statistical parity, we want to ensure
Eqn. 1, which can be estimated using the training data
as:

M+
k = M�

k , 8k (5)

M+
k = Ex2X+P (Z = k|x) =

1

|X+
0 |

X

n2X+
0

Mn,k (6)

and M�
k is defined similarly.

Hence the first term in the objective is:

Lz =
KX

k=1

��M+
k � M�

k

�� (7)

The second term constrains the mapping to Z to be
a good description of X. We quantify the amount
of information lost in the new representation using a
simple squared-error measure:

Lx =
NX

n=1

(xn � x̂n)2 (8)

where x̂n are the reconstructions of xn from Z:

x̂n =
KX

k=1

Mn,kvk (9)

These first two terms encourage the system to encode
all information in the input attributes except for those
that can lead to biased decisions.

The final term requires that the prediction of y is as
accurate as possible:

Ly =
NX

n=1

�yn log ŷn � (1 � yn) log(1 � ŷn) (10)

Here ŷn is the prediction for yn, based on marginalizing
over each prototype’s prediction for Y , weighted by
their respective probabilities P (Z = k|xn):

ŷn =
KX

k=1

Mn,kwk (11)

We constrain the wk values to be between 0 and 1.
Hence the prototype classification predictions them-
selves can be viewed as probabilities.
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�yn log ŷn � (1 � yn) log(1 � ŷn) (10)
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Objective function: 

Minimize 

Learning Fair Representations

In order to allow di↵erent input features to have dif-
ferent levels of impact, we introduce individual weight
parameters for each feature dimension, ↵i, which act
as inverse precision values in the distance function:

d(xn,vk, ↵) =
DX

i=1

↵i(xni � vki)
2 (12)

Finally, we extend the model by using di↵erent param-
eter vectors ↵+ and ↵� for the protected and unpro-
tected groups respectively. We optimize these param-
eters jointly with {vk}Kk=1,w, to minimize the objec-
tive; details on the optimization can be found below.

2.3. Explaining the model design choices

The first term in the objective enforces group fair-
ness, as defined by statistical parity. We note how-
ever that Lz is not a direct encoding of the aim that
the classification decisions are fair. The motivation
for this indirect approach derives from our philosophy
of a two-step system construction by two parties: an
impartial party attempting to enforce fairness, and a
vendor attempting to classify individuals. The impar-
tial party builds mapping from individuals to new rep-
resentations of individuals satisfying statistical parity,
and then the vendor will be restricted to mapping the
representations to outcomes. These two mappings are
composed in order to obtain a fair classification of the
individuals.Our learning algorithm attempts to drive
Lz to zero. If Lz at test time is small, then

P
k |P (Z =

k|S = 1)�P (Z = k|S = 0)|, and it is not hard to show
that this implies that |P (S = 1|Z = k) � P (S = 1)|,
and |P (S = 0|Z = k)�P (S = 0)| are small. Hence the
mutual information between Z and S is small, and we
have accomplished the goal of obsfucating information
about the protected group.

Furthermore we can show that even though the parity
constraint does not directly address classification, un-
der the current model formulation the two are closely
linked. The key property is that if the parity con-
straint is met, then the two groups are treated fairly
with respect to the classification decisions:
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This property follows from the linear classification
approach.

Another key property of the model is the fact that the
mapping to Z is defined for any individual x 2 X.

This permits generalization to new examples distinct
from those in the training set.

Allowing the model to adapt the weights on the in-
put dimensions takes a step towards learning a good
distance metric. The use of the same mapping func-
tion for all individuals in the group encourages indi-
vidual fairness, as nearby inputs are mapped to similar
representations. Adapting the weights per group al-
lows the model some flexibility in encoding similarities
between individuals within a group. The model can
thus address the ”inversion” problem (Dwork et al.,
2011), where di↵erent qualities may be deemed impor-
tant with respect to classification decisions for the two
groups. For example, in one community high grades
in economics may be a good predictor of success in
university (and therefore correlated with admittance),
whereas in another community excellence in sports
may be a better predictor of success in university. The
distance metric can then weight sports and economics
grades appropriately for the two sets.

3. Related Work

Previous machine learning research into fair classifica-
tion can be divided into two general strategies. One
involves modifying the labels of the examples, i.e., the
f(X0) values, so that the proportion of positive labels
are equal in the protected and unprotected groups.
A classifier is then trained with these new labels, as-
suming that equal-opportunity of positive labeling will
generalize to the test set (Pedreschi et al., 2008; Kami-
ran & Calders, 2009; Luong et al., 2011). We term
this a data-massaging strategy. The second type of
approach, a regularization strategy, adds a regularizer
to the classification training objective that quantifies
the degree of bias or discrimination (Calders & Ver-
wer, 2010; Kamishima et al., 2011). The system is
then trained to maximize accuracy while minimizing
discrimination.

A good example from the first class is that of (Kamiran
& Calders, 2009), where they ”massage” the training
data labels to remove the discrimination with the least
possible changes. The initial step involves ranking the
training examples based on the posterior probabilities
of positive labels obtained from a Naive-Bayes classi-
fier trained on the original dataset. They then select
the set of highest-ranked negatively-labeled items from
the protected set and change their labels. The size of
this set is chosen to make the proportion of positive
labels equal in the two groups; the ranking approach is
used to minimize the impact on the system’s accuracy
in predicting the classification labels. The modified
data is then used for learning a classifier for future de-
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A key property that the learned mapping attempts to
ensure is that membership in the protected group is
lost. We formulate this using the notion of statistical
parity, which requires that the probability that a ran-
dom element from X+ maps to a particular prototype
is equal to the probability that a random element from
X� maps to the same prototype:

P (Z = k|x+ 2 X+) = P (Z = k|x� 2 X�), 8k (1)

Given the definitions of the prototypes as points in
the input space, a set of prototypes induces a natural
probabilistic mapping from X to Z via the softmax:

P (Z = k|x) = exp(�d(x,vk))/
KX

j=1

exp(�d(x,vj)) (2)

The model is thus defined as a discriminative clus-
tering model, where the prototypes act as the clusters.
Each input example is stochastically assigned to a pro-
totype, which are in turn used to predict the class for
that example. Statistical parity induces an interesting
constraint on the prototype assignments, forcing the
associated probabilities to be the same in expectation
for the protected and unprotected groups.

2.2. Learning fair representations

The goal in our model, which we denote LFR (Learned
Fair Representations), is to learn a good prototype set
Z such that:

1. the mapping from X0 to Z satisfies statistical par-
ity;

2. the mapping to Z-space retains information in X
(except for membership in the protected set); and

3. the induced mapping from X to Y (by first map-
ping each x probabilistically to Z-space, and then
mapping Z to Y ) is close to f .

Each of these aims corresponds to a term in the objec-
tive function we use to learn the representations. In
this learning system, there are only two sets of param-
eters to be learned: the prototype locations {vk} and
the parameters {wk} that govern the mapping from
the prototypes to classification decisions y.

For convenience, we use x1, ..,xN to denote N samples
of the training set. We also use corresponding indica-
tor variables s1, ..., sN , to denote whether xn 2 X+

0 ,
8n 2 N . We use y1, .., yN as the outcome for x1, ...,xN

in the training set. We define Mn,k as the probability
that xn maps to vk, via Eqn. 2:

Mn,k = P (Z = k|xn) 8n, k (3)

Given this setup, the learning system minimizes the
following objective:

L = Az · Lz + Ax · Lx + Ay · Ly (4)

where Ax, Ay, Az are hyper-parameters governing the
trade-o↵ between the system desiderata.

In order to achieve statistical parity, we want to ensure
Eqn. 1, which can be estimated using the training data
as:

M+
k = M�

k , 8k (5)

M+
k = Ex2X+P (Z = k|x) =

1

|X+
0 |

X

n2X+
0

Mn,k (6)

and M�
k is defined similarly.

Hence the first term in the objective is:

Lz =
KX

k=1

��M+
k � M�

k

�� (7)

The second term constrains the mapping to Z to be
a good description of X. We quantify the amount
of information lost in the new representation using a
simple squared-error measure:

Lx =
NX

n=1

(xn � x̂n)2 (8)

where x̂n are the reconstructions of xn from Z:

x̂n =
KX

k=1

Mn,kvk (9)

These first two terms encourage the system to encode
all information in the input attributes except for those
that can lead to biased decisions.

The final term requires that the prediction of y is as
accurate as possible:

Ly =
NX

n=1

�yn log ŷn � (1 � yn) log(1 � ŷn) (10)

Here ŷn is the prediction for yn, based on marginalizing
over each prototype’s prediction for Y , weighted by
their respective probabilities P (Z = k|xn):

ŷn =
KX

k=1

Mn,kwk (11)

We constrain the wk values to be between 0 and 1.
Hence the prototype classification predictions them-
selves can be viewed as probabilities.

*they also modify the distance function (12)
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Figure 1. Results on test sets for the three datasets (Ger-

man, Adult, and Health), for two di↵erent model selec-

tion criteria: minimizing discrimination and maximizing

the di↵erence between accuracy and discrimination.

For the remainder of this section, we focus on the
model that maximizes the di↵erence between accuracy
and discrimination. We can gain some insight into our
method by analyzing various aspects of the learned
representations. First we note that a stated aim of
our learning method is to encode as much information
as possible about each individual while removing in-
formation about membership in the protected set. We
can evaluate the degree to which the system succeeded
in accomplishing this at test time, in several ways.

First we can measure how much information about S
is contained in the latent representation by building a
predictor that learns to predict S from Z:

ŝn =

KX

k=1

Mn,kuk (16)

We optimize this predictor to minimize its di↵erence
with the actual sn, and then evaluate test predictions
for S using an sAcc score analogous to yAcc:

sAcc = 1� 1

N

NX

n=1

|sn � ŝn| (17)

Note that even though we optimize the predictor in
e↵ect to maximize sAcc, in contrast to yAcc which we

Figure 2. Individual fairness: The plot shows the consis-

tency of each model’s classification decisions, based on the

yNN measure. Legend as in Figure 1.

Figure 3. The plot shows the accuracy of predicting the

sensitive variable (sAcc) for the di↵erent datasets. Raw in-

volves predictions directly from all input dimensions except

for S, while Proto involves predictions from the learned fair

representations.

want to be as close to 1 as possible, we want sAcc to
be low. We can evaluate how much information about
S is removed by the mapping to Z by comparing sAcc
to its upper and lower bound. A simple upper bound
(based on a linear predictor) predicts ŝ from the rest of
the input vector X except for S; a lower bound is 0.5,
which corresponds to random guessing. Results for
the three datasets of predicting S from the raw data
(our simple upper bound) versus from the prototype
representations in the trained models (as in Eqn. 16)
are shown in Figure 3. In all cases the accuracy
has moved significantly towards the lower bound of
0.5, showing that the information regarding learned
representations has been significantly obfuscated.

This demonstrates that the sensitive information has
been obfuscated, but is specific to the method of pre-
dicting S. Another evaluation involves looking directly
at statistical parity in the representations at test time.
An upper bound on how much information about S is
contained in the new representations can be gained
by finding the maximum amount of bias across the
prototypes; in the Adult dataset for example, this is:
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want to be as close to 1 as possible, we want sAcc to
be low. We can evaluate how much information about
S is removed by the mapping to Z by comparing sAcc
to its upper and lower bound. A simple upper bound
(based on a linear predictor) predicts ŝ from the rest of
the input vector X except for S; a lower bound is 0.5,
which corresponds to random guessing. Results for
the three datasets of predicting S from the raw data
(our simple upper bound) versus from the prototype
representations in the trained models (as in Eqn. 16)
are shown in Figure 3. In all cases the accuracy
has moved significantly towards the lower bound of
0.5, showing that the information regarding learned
representations has been significantly obfuscated.

This demonstrates that the sensitive information has
been obfuscated, but is specific to the method of pre-
dicting S. Another evaluation involves looking directly
at statistical parity in the representations at test time.
An upper bound on how much information about S is
contained in the new representations can be gained
by finding the maximum amount of bias across the
prototypes; in the Adult dataset for example, this is:
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First we can measure how much information about S
is contained in the latent representation by building a
predictor that learns to predict S from Z:
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want to be as close to 1 as possible, we want sAcc to
be low. We can evaluate how much information about
S is removed by the mapping to Z by comparing sAcc
to its upper and lower bound. A simple upper bound
(based on a linear predictor) predicts ŝ from the rest of
the input vector X except for S; a lower bound is 0.5,
which corresponds to random guessing. Results for
the three datasets of predicting S from the raw data
(our simple upper bound) versus from the prototype
representations in the trained models (as in Eqn. 16)
are shown in Figure 3. In all cases the accuracy
has moved significantly towards the lower bound of
0.5, showing that the information regarding learned
representations has been significantly obfuscated.

This demonstrates that the sensitive information has
been obfuscated, but is specific to the method of pre-
dicting S. Another evaluation involves looking directly
at statistical parity in the representations at test time.
An upper bound on how much information about S is
contained in the new representations can be gained
by finding the maximum amount of bias across the
prototypes; in the Adult dataset for example, this is:
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• Accuracy: measures the accuracy of the model
classification prediction:

yAcc = 1 � 1

N

NX

n=1

|yn � ŷn| (13)

• Discrimination: measures the bias with respect
to the sensitive feature S in the classification:

yDiscrim = |
P

n:sn=1 ŷnP
n:sn=1 1

�
P

n:sn=0 ŷnP
n:sn=0 1

| (14)

This is a form of statistical parity, applied to the
classification decisions, measuring the di↵erence
in the proportion of positive classifications of indi-
viduals in the protected and unprotected groups.

• Consistency: compares a model’s classification
prediction of a given data item x to its k-nearest
neighbors, kNN(x):

yNN = 1 � 1

Nk

X

n

|ŷn �
X

j2kNN(xn)

ŷj | (15)

We applied the kNN function to the full set of
examples to obtain the most accurate estimate of
each point’s nearest neighbors.

Here we present results of the methods on two datasets
which are available from the UCI ML-repository
(Frank & Asuncion, 2010). The German credit dataset
has 1000 instances which classify bank account holders
into credit class Good or Bad. Each person is described
by 20 attributes. In our experiments we consider
Age as the sensitive attribute, following (Kamiran &
Calders, 2009). The Adult income dataset has 45,222
instances. The target variable indicates whether or not
income is larger than 50K dollars, and the sensitive fea-
ture is Gender, as in (Kohavi, 1996; Kamishima et al.,
2011)). Each datum is described by 14 attributes.

The final, considerably larger dataset we experimented
with is derived from the Heritage Health Prize mile-
stone 1 challenge (www.heritagehealthprize.com). It
contained 147,473 patients, described using the same
139 features as the winning team, Market Makers. The
goal is to predict the number of days a person will
spend in the hospital in a given year. To convert
this into a binary classification task, we simply pre-
dict whether they will spend any days in the hospital
that year. We split the patients into two groups based
on Age (> 65). For details on the datasets see the
Supplementary Material.

All methods were trained in the same way for all
datasets. For each variant of FNB, and each setting
of the hyper-parameters in the other two methods, we
evaluated the performance metrics on the validation

set. For our method, LFR, we applied L-BFGS to min-
imize Eqn. 4. We performed a simple grid search to
find a good set of hyper-parameters in Eqn. 4: Ax was
0.01, and we chose Ay, Az to be the values from the
set S = {0.1, 0.5, 1, 5, 10}. We also included Az = 0.
For RLR, we optimized the regularization parameter
⌘ 2 {0, 0.5, 1.0, 1.5, 3.0}.

4.2. Results and analysis

A key issue is what measure should be used for model
selection; that is, which criteria will be used to evalu-
ate a model’s performance on the validation set with
a particular setting of hyper-parameters. Here we
focus on two measures. In the first the selection
was based on minimizing the discrimination criteria
yDisc, reflecting the primary aim of ensuring fair-
ness. The second selection was based on maximizing
the di↵erence between accuracy and discrimination:
Delta = yAcc � yDisc. In each case we compare the
performance of the respective models on a test dataset,
examining both the accuracy and discrimination in Y .
The results are summarized in Figure 1; LR = Logis-
tic Regression (a baseline method); FNB = Fair Naive
Bayes; RLR = Regularized Logistic Regression; and
LFR = Learned Fair Representations, our new model.

In these results it is clear that our model is capable of
pushing the discrimination to very low values, while
maintaining fairly high accuracy. The results are con-
sistent in all three datasets, and across the validation
criteria.

In particular, the Fair Naive Bayes method has dif-
ficulty in maintaining low values of discrimination at
test time. It performs quite well on the Adult dataset,
but its performance su↵ers considerably when the size
of the problem increases, as in the Health dataset. The
Regularized Logistic Regression has more consistent
success in limiting discrimination while preserving ac-
curacy, but still does not match our method’s perfor-
mance overall. This is quite surprising, since our LFR
model is not directly minimizing discrimination but
instead optimizing a proxy evaluated on the interme-
diate representations. In addition our model is also
trying to preserve information about the data.

We can also compare the models with respect to indi-
vidual fairness. We use the yNN measure (Eqn. 15) to
evaluate the consistency of each model’s classification
decisions. The results for the models that were se-
lected based on discrimination are shown in Figure 2.
For each dataset our model obtained better individual
fairness; this is likely due to the optimization criteria
rewarding Z’s preservation of information about X.
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instances. The target variable indicates whether or not
income is larger than 50K dollars, and the sensitive fea-
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The final, considerably larger dataset we experimented
with is derived from the Heritage Health Prize mile-
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contained 147,473 patients, described using the same
139 features as the winning team, Market Makers. The
goal is to predict the number of days a person will
spend in the hospital in a given year. To convert
this into a binary classification task, we simply pre-
dict whether they will spend any days in the hospital
that year. We split the patients into two groups based
on Age (> 65). For details on the datasets see the
Supplementary Material.

All methods were trained in the same way for all
datasets. For each variant of FNB, and each setting
of the hyper-parameters in the other two methods, we
evaluated the performance metrics on the validation

set. For our method, LFR, we applied L-BFGS to min-
imize Eqn. 4. We performed a simple grid search to
find a good set of hyper-parameters in Eqn. 4: Ax was
0.01, and we chose Ay, Az to be the values from the
set S = {0.1, 0.5, 1, 5, 10}. We also included Az = 0.
For RLR, we optimized the regularization parameter
⌘ 2 {0, 0.5, 1.0, 1.5, 3.0}.

4.2. Results and analysis

A key issue is what measure should be used for model
selection; that is, which criteria will be used to evalu-
ate a model’s performance on the validation set with
a particular setting of hyper-parameters. Here we
focus on two measures. In the first the selection
was based on minimizing the discrimination criteria
yDisc, reflecting the primary aim of ensuring fair-
ness. The second selection was based on maximizing
the di↵erence between accuracy and discrimination:
Delta = yAcc � yDisc. In each case we compare the
performance of the respective models on a test dataset,
examining both the accuracy and discrimination in Y .
The results are summarized in Figure 1; LR = Logis-
tic Regression (a baseline method); FNB = Fair Naive
Bayes; RLR = Regularized Logistic Regression; and
LFR = Learned Fair Representations, our new model.

In these results it is clear that our model is capable of
pushing the discrimination to very low values, while
maintaining fairly high accuracy. The results are con-
sistent in all three datasets, and across the validation
criteria.

In particular, the Fair Naive Bayes method has dif-
ficulty in maintaining low values of discrimination at
test time. It performs quite well on the Adult dataset,
but its performance su↵ers considerably when the size
of the problem increases, as in the Health dataset. The
Regularized Logistic Regression has more consistent
success in limiting discrimination while preserving ac-
curacy, but still does not match our method’s perfor-
mance overall. This is quite surprising, since our LFR
model is not directly minimizing discrimination but
instead optimizing a proxy evaluated on the interme-
diate representations. In addition our model is also
trying to preserve information about the data.

We can also compare the models with respect to indi-
vidual fairness. We use the yNN measure (Eqn. 15) to
evaluate the consistency of each model’s classification
decisions. The results for the models that were se-
lected based on discrimination are shown in Figure 2.
For each dataset our model obtained better individual
fairness; this is likely due to the optimization criteria
rewarding Z’s preservation of information about X.

LR: logistic regression 
FNB: fair naive Bayes 
RLR: regularized LR 
LFR: their method
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Abstract
Machine learning models (e.g., speech recog-
nizers) are usually trained to minimize average
loss, which results in representation disparity—
minority groups (e.g., non-native speakers) con-
tribute less to the training objective and thus tend
to suffer higher loss. Worse, as model accuracy
affects user retention, a minority group can shrink
over time. In this paper, we first show that the sta-
tus quo of empirical risk minimization (ERM) am-
plifies representation disparity over time, which
can even make initially fair models unfair. To mit-
igate this, we develop an approach based on dis-
tributionally robust optimization (DRO), which
minimizes the worst case risk over all distribu-
tions close to the empirical distribution. We prove
that this approach controls the risk of the minority
group at each time step, in the spirit of Rawlsian
distributive justice, while remaining oblivious to
the identity of the groups. We demonstrate that
DRO prevents disparity amplification on exam-
ples where ERM fails, and show improvements
in minority group user satisfaction in a real-world
text autocomplete task.

1. Introduction
Consider a speech recognizer that is deployed to millions
of users. State-of-the art speech recognizers achieve high
overall accuracy, yet it is well known that such systems have
systematically high errors on minority accents (Amodei
et al., 2016). We refer to this phenomenon of high overall
accuracy but low minority accuracy as a representation dis-
parity, which is the result of optimizing for average loss.
This representation disparity forms our definition of unfair-
ness, and has been observed in face recognition (Grother
et al., 2011), language identification (Blodgett et al., 2016;
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Proceedings of the 35 th International Conference on Machine
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Jurgens et al., 2017), dependency parsing (Blodgett et al.,
2016), part-of-speech tagging (Hovy & Sgaard, 2015), aca-
demic recommender systems (Sapiezynski et al., 2017), and
automatic video captioning (Tatman, 2017).

Moreover, a minority user suffering from a higher error rate
will become discouraged and more likely to stop using the
system, thus no longer providing data to the system. As
a result, the minority group will shrink and might suffer
even higher error rates from a retrained model in a future
time step. Machine learning driven feedback loops have
been observed in predictive policing (Fuster et al., 2017)
and credit markets (Fuster et al., 2017), and this problem
of disparity amplification is a possibility in any deployed
machine learning system that is retrained on user data.

In this paper, we aim to mitigate the representation disparity
problem and its amplification through time. We focus on the
following setting: at each time step, each user interacts with
the current model and incurs some loss, based on which
she decides to keep or quit using the service. A model is
trained on the resulting user data which is used at the next
time step. We assume that each user comes from one of K
groups, and our goal is to minimize the worst case risk of
any group across time. However, the group membership and
number of groups K are both unknown, as full demographic
information is likely missing in real online services.

We first show that empirical risk minimization (ERM) does
not control the worst-case risk over the disparate K groups
and show examples where ERM turns initially fair models
unfair (Section 3). To remedy this issue, we propose the use
of distributionally robust optimization (DRO) (Section 4).
Given a lower bound on the smallest group proportion, we
show that optimizing the worst-case risk over an appropriate
chi-square divergence ball bounds the worst-case risk over
groups. Our approach is computationally efficient, and can
be applied as a small modification to a wide class machine
learning models trained by stochastic gradient descent meth-
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Fairness Without Demographics in Repeated Loss Minimization

1.1. Fairness in Machine Learning

Recently, there has been a surge of interest in fairness in
machine learning (Barocas & Selbst, 2016). Our work can
be seen as a direct instantiation of John Rawls’ theory on
distributive justice and stability, where we view predictive
accuracy as a resource to be allocated. Rawls argues that
the difference principle, defined as maximizing the welfare
of the worst-off group, is fair and stable over time since it
ensures that minorities consent to and attempt to maintain
the status quo (Rawls, 2001, p155).

In this work, we assume the task is general loss minimiza-
tion, and demographic data is unavailable. This differs
from the substantial body of existing research into fair-
ness for classification problems involving protected labels
such as the use of race in recidivism protection (Choulde-
chova, 2017). There has been extensive work (Barocas &
Selbst, 2016) on guaranteeing fairness for classification over
a protected label through constraints such as equalized odds
(Woodworth et al., 2017; Hardt et al., 2016), disparate im-
pact (Feldman et al., 2015) and calibration (Kleinberg et al.,
2017). However, these approaches require the use of de-
mographic labels, and are designed for classification tasks.
This makes it difficult to apply such approaches to mitigate
representation disparity in tasks such as speech recogni-
tion or natural language generation where full demographic
information is often unavailable.

A number of authors have also studied individual notions of
fairness, either through a fixed similarity function (Dwork
et al., 2012) or subgroups of a set of protected labels (Kearns
et al., 2018; Hébert-Johnson et al., 2017). Dwork et al.
(2012) provides fairness guarantees without explicit groups,
but requires a fixed distance function which is difficult to
define for real-world tasks. Kearns et al. (2018); Hébert-
Johnson et al. (2017) consider subgroups of a set of pro-
tected features, but defining non-trivial protected features
which cover the latent demographics in our setting is dif-
ficult. Although these works generalize the demographic
group structure, similarity and subgroup structure are both
ill-defined for many real-world tasks.

In the online setting, works on fairness in bandit learn-
ing (Joseph et al., 2016; Jabbari et al., 2017) propose al-
gorithms compatible with Rawls’ principle on equality of
opportunity—an action is preferred over another only if the
true quality of the action is better. Our work differs in con-
sidering Rawlsian fairness for distributive justice (Rawls,
2009). Simultaneous with our work, Liu et al. (2018) ana-
lyzed fairness over time in the context of constraint based
fairness criteria, and show that enforcing static fairness con-
straints do not ensure fairness over time. In this paper, we
consider latent demographic groups and study a loss-based
approach to fairness and stability.

2. Problem setup
We begin by outlining the two parts of our motivation: rep-
resentation disparity and disparity amplification.

Representation disparity: Consider the standard loss-
minimization setting where a user makes a query Z ⇠ P ,
a model ✓ 2 ⇥ makes a prediction, and the user in-
curs loss `(✓;Z). We denote the expected loss as the
risk R(✓) = EZ⇠P [`(✓;Z)]. The observations Z are as-
sumed to arise from one of K latent groups such that
Z ⇠ P :=

P
k2[K] ↵kPk. We assume that neither the

population proportions {↵k} nor the group distributions
{Pk} are known. The goal is to control the worst-case risk
over all K groups:

Rmax(✓) = max
k2[K]

Rk(✓), Rk(✓) := EPk [`(✓;Z)]. (1)

Representation disparity refers to the phenomenon of low
R(✓) and high Rmax(✓) due to a group with small ↵k.

Disparity amplification: To understand the amplification
of representation disparity over time, we will make several
assumptions on the behavior of users in response to ob-
served losses. These assumptions are primarily for clarity of
exposition—we will indicate whenever the assumptions can
be relaxed leave generalizations to the supplement. Roughly
speaking, minimizing the worst-case risk Rmax(✓) should
mitigate disparity amplification as long as lower losses lead
to higher user retention. We now give assumptions that
make this intuition precise.

In the sequential setting, loss minimization proceeds over
t = 1, 2, . . . T rounds, where the group proportion ↵

(t)
k

depends on t and varies according to past losses. At each
round �

(t+1)
k is the expected number of users from group

k, which is determined by ⌫(Rk(✓)), the fraction of users
retained, and bk, the number of new users (see Definition
1). Here, ⌫ is a differentiable, strictly decreasing retention
function which maps a risk level R to the fraction of users
who continue to use the system. Modeling user retention
as a decreasing function of the risk implies that each user
makes an independent decision of whether to interact with
the system at time t+1 based on their expected loss at time
t. For example, selecting ⌫(x) = 1� x and Rk equal to the
expected zero-one loss implies that users leave proportional
to the misclassification rates of their queries.

At each round we learn parameters ✓(t+1) based on n(t+1) ⇠
Pois(

P
k �

(t+1)
k ) users (data points). While we define the

sample size as a Poisson process for concreteness, our main
results hold for any distribution fulfilling the strong law of
large numbers, as we perform all stability analyses in the
population limit.
Definition 1 (Dynamics). Given a sequence ✓

(t), for each
t = 1 . . . T , the expected number of users � and samples

Goal: control worst risk among groups
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Z
(t)
i starting at �(0)

k = bk is governed by:

�
(t+1)
k := �

(t)
k ⌫(Rk(✓

(t))) + bk

↵
(t+1)
k :=

�
(t+1)
kP

k02[K] �
(t+1)
k0

n
(t+1) := Pois(

X

k

�
(t+1)
k )

Z
(t+1)
1 . . . Z

(t+1)
n(t+1)

i.i.d.⇠ P
(t+1) :=

X

k2[K]

↵
(t+1)
k Pk.

If we use ERM at each time step the parameter sequence is
defined as ✓(t) = argmin✓2⇥

P
i `(✓;Z

(t)
i ).

Our goal is to control over all groups k = 1, . . . ,K and
time periods t = 1, . . . , T the group-wise risk Rk(✓(t)),

RT
max(✓

(0)
, · · · , ✓(T )) = max

k,t

n
Rk(✓

(t))
o
. (2)

Without knowledge of group membership labels, population
proportions ↵

(t)
k , new user rate bk, and retention rate ⌫,

minimizing RT
max gives rise to two major challenges. First,

without group membership labels there is no way to directly
measure the worst-case risk RT

max, let alone minimize it.
Second, we must ensure that the group proportions ↵(t)

k are
stable, since if ↵(t)

k ! 0 as t ! 1 for some group k 2 [K],
then no algorithm can control RT

max when a group has near
zero probability of appearing in our samples.

We begin by illustrating how models that are initially fair
with low representation disparity may become unfair over
time if we use ERM (Section 3). We then propose a solution
based on distributionally robust optimization (Section 4),
and study examples where this approach mitigates represen-
tation disparity in our experimental section (Section 5).

3. Disparity amplification
The standard approach to fitting a sequence of models ✓(t)
is to minimize an empirical approximation to the population
risk at each time period. In this section, we show that even
minimizing the population risk fails to control minority
risk over time, since expected loss (average case) leads to
disparity amplification. The decrease in user retention for
the minority group is exacerbated over time since once a
group shrinks sufficiently, it receives higher losses relative
to others, leading to even fewer samples from the group.

3.1. Motivating example

Consider the two-class classification problem in Figure 1
where the two groups are drawn from Gaussians and the

Figure 1. An example online classification problem which begins
fair, but becomes unfair over time.

optimal classification boundary is given along x2 = 0. As-
sume that the sampling distribution evolves according to
definition 1 with ⌫(x) = 1.0�x, ` equal to the zero one loss,
and b0 = b1 = n

(0)
0 = n

(0)
1 = 1000. Initially, ERM has

similar and high accuracy on both groups with the bound-
ary x2 > 0, but over time random fluctuations in accuracy
result in slightly fewer samples from the cluster on the right.
This leads to disparity amplification since ERM will further
improve the loss on the left cluster at the expense of the
right cluster. After 500 rounds, there are nearly no samples
from the right cluster, and as a result, the right cluster ends
up suffering high loss.

3.2. Conditions for disparity amplification

The example above demonstrated that disparity amplifica-
tion can occur easily even in a situation where the two
groups have identical population size and initial risk. In
general if we view the expected user counts �

(t) as a dy-
namical system, the long-term fairness properties for any
fairness criteria are controlled by two factors - whether �
has a fair fixed point (defined as a population fraction where
risk minimization maintains the same population fraction
over time) and whether this fixed point is stable.

Fixed points of risk minimization are determined by a com-
bination of user retention function ⌫ and the models ✓

(t),
and without knowledge of ⌫ it is hard to ensure that a model
has a fair fixed point. Even if a fixed point is fair, such
as when the population fraction and risk received by each
group is equal, and we start at this fair fixed point, minimiz-
ing the empirical loss may deviate from this fair fixed point
over time due to finite sample fluctuations or noise in the
model estimation procedure.

To show this result, we study the dynamical system �, which
is defined by dynamics in Definition 1 with ✓ derived from
minimizing the population, rather than empirical risk.
Definition 2. Let � be the update for the expected popula-
tion size

�
(t+1)
k := �(�(t)

k ) = �
(t)
k ⌫(Rk(✓(�

(t)
k ))) + bk,

✓(�(t)
k ) = argmin

✓
EP

k ↵(t)
k Pk

[`(✓;Z)].

The arrival intensity �
⇤ is called a fixed point if �⇤ = �(�⇤).

Fairness Without Demographics in Repeated Loss Minimization

Z
(t)
i starting at �(0)

k = bk is governed by:

�
(t+1)
k := �

(t)
k ⌫(Rk(✓

(t))) + bk

↵
(t+1)
k :=

�
(t+1)
kP

k02[K] �
(t+1)
k0

n
(t+1) := Pois(

X

k

�
(t+1)
k )

Z
(t+1)
1 . . . Z

(t+1)
n(t+1)

i.i.d.⇠ P
(t+1) :=

X

k2[K]

↵
(t+1)
k Pk.

If we use ERM at each time step the parameter sequence is
defined as ✓(t) = argmin✓2⇥

P
i `(✓;Z

(t)
i ).

Our goal is to control over all groups k = 1, . . . ,K and
time periods t = 1, . . . , T the group-wise risk Rk(✓(t)),

RT
max(✓

(0)
, · · · , ✓(T )) = max

k,t

n
Rk(✓

(t))
o
. (2)

Without knowledge of group membership labels, population
proportions ↵

(t)
k , new user rate bk, and retention rate ⌫,

minimizing RT
max gives rise to two major challenges. First,

without group membership labels there is no way to directly
measure the worst-case risk RT

max, let alone minimize it.
Second, we must ensure that the group proportions ↵(t)

k are
stable, since if ↵(t)

k ! 0 as t ! 1 for some group k 2 [K],
then no algorithm can control RT

max when a group has near
zero probability of appearing in our samples.

We begin by illustrating how models that are initially fair
with low representation disparity may become unfair over
time if we use ERM (Section 3). We then propose a solution
based on distributionally robust optimization (Section 4),
and study examples where this approach mitigates represen-
tation disparity in our experimental section (Section 5).

3. Disparity amplification
The standard approach to fitting a sequence of models ✓(t)
is to minimize an empirical approximation to the population
risk at each time period. In this section, we show that even
minimizing the population risk fails to control minority
risk over time, since expected loss (average case) leads to
disparity amplification. The decrease in user retention for
the minority group is exacerbated over time since once a
group shrinks sufficiently, it receives higher losses relative
to others, leading to even fewer samples from the group.

3.1. Motivating example

Consider the two-class classification problem in Figure 1
where the two groups are drawn from Gaussians and the

Figure 1. An example online classification problem which begins
fair, but becomes unfair over time.

optimal classification boundary is given along x2 = 0. As-
sume that the sampling distribution evolves according to
definition 1 with ⌫(x) = 1.0�x, ` equal to the zero one loss,
and b0 = b1 = n

(0)
0 = n

(0)
1 = 1000. Initially, ERM has

similar and high accuracy on both groups with the bound-
ary x2 > 0, but over time random fluctuations in accuracy
result in slightly fewer samples from the cluster on the right.
This leads to disparity amplification since ERM will further
improve the loss on the left cluster at the expense of the
right cluster. After 500 rounds, there are nearly no samples
from the right cluster, and as a result, the right cluster ends
up suffering high loss.

3.2. Conditions for disparity amplification

The example above demonstrated that disparity amplifica-
tion can occur easily even in a situation where the two
groups have identical population size and initial risk. In
general if we view the expected user counts �

(t) as a dy-
namical system, the long-term fairness properties for any
fairness criteria are controlled by two factors - whether �
has a fair fixed point (defined as a population fraction where
risk minimization maintains the same population fraction
over time) and whether this fixed point is stable.

Fixed points of risk minimization are determined by a com-
bination of user retention function ⌫ and the models ✓

(t),
and without knowledge of ⌫ it is hard to ensure that a model
has a fair fixed point. Even if a fixed point is fair, such
as when the population fraction and risk received by each
group is equal, and we start at this fair fixed point, minimiz-
ing the empirical loss may deviate from this fair fixed point
over time due to finite sample fluctuations or noise in the
model estimation procedure.

To show this result, we study the dynamical system �, which
is defined by dynamics in Definition 1 with ✓ derived from
minimizing the population, rather than empirical risk.
Definition 2. Let � be the update for the expected popula-
tion size

�
(t+1)
k := �(�(t)

k ) = �
(t)
k ⌫(Rk(✓(�

(t)
k ))) + bk,

✓(�(t)
k ) = argmin

✓
EP

k ↵(t)
k Pk

[`(✓;Z)].

The arrival intensity �
⇤ is called a fixed point if �⇤ = �(�⇤).

retention function

Feedback Model for Iterated ML



Solution: Distributionally Robust Optimization

Fairness Without Demographics in Repeated Loss Minimization

To formally describe our approach, let D�2 (P ||Q) be the
�
2-divergence between probability distributions P and

Q given by D�2 (P ||Q) :=
R ⇣

dP
dQ � 1

⌘2
dQ. If P is

not absolutely continuous with respect to Q, we define
D�2 (P ||Q) := 1.

Let B(P, r) be the chi-squared ball around a probability
distribution P of radius r so that B(P, r) := {Q ⌧ P :
D�2 (Q||P )  r}. We consider the worst-case loss over all
r-perturbations around P ,

Rdro(✓; r) := sup
Q2B(P,r)

EQ[`(✓;Z)]. (4)

Intuitively, the distributionally robust risk Rdro(✓; r) up-
weights examples Z with high loss `(✓;Z). If there is a
group suffering high loss, the corresponding mixture compo-
nent will be over-represented (relative to the original mixture
weights) in the distributionally robust risk Rdro(✓; r). We
show in the following proposition that Rdro(✓; r) bounds
the risk of each group Rk(✓), and hence the group-wise
worst-case risk (1), for an appropriate choice of the robust-
ness radius r.
Proposition 2. For P :=

P
k2[K] ↵kPk, we have Rk(✓) 

Rdro(✓; rk) for all ✓ 2 ⇥ where rk := (1/↵k � 1)2 is the
robustness radius.

We prove the result in Section A.4. Roughly speaking, the
above bound becomes tighter if the variation in the loss
`(✓;Z) is substantially higher between groups than within
each group. In particular, this would be the case if the
loss distribution for each group have distinct support with
relatively well-concentrated components within each group.

As a consequence of Proposition 2, if we have a lower
bound on the group proportions ↵min  mink2[K] ↵k,
then we can control the worst-case group risk Rmax(✓) by
minimizing the upper bound ✓ 7! Rdro(✓; rmax) where
rmax := (1/↵min � 1)2.

Similar formulations for robustness around the empirical
distribution with radius shrinking as r/n had been consid-
ered in (Ben-Tal et al., 2013; Lam & Zhou, 2015; Duchi &
Namkoong, 2016). While there are many possible robust-
ness balls B which could provide upper bounds on group
risk, we opt to use the chi-squared ball since it is straightfor-
ward to optimize (Ben-Tal et al., 2013; Namkoong & Duchi,
2016; 2017) and we found it empirically outperformed other
f -divergence balls.

4.2. Interpreting the dual

The dual of the maximization problem (4) provides addi-
tional intuition on the behavior of the robust risk.
Proposition 3 ((Duchi & Namkoong, 2018)). If `(✓; ·) is
upper semi-continuous for any ✓, then for rmax � 0 and

any ✓, Rdro(✓; rmax) is equal to the following expression
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where C =
�
2(1/↵min � 1)2 + 1

�1/2.

Denoting by ⌘
? the optimal dual variable (5), we see from

the proposition that all examples suffering less than ⌘
?-

levels of loss are completely ignored, and large losses above
⌘
? are upweighted due to the squared term.

However, unlike standard parameter regularization tech-
niques, which encourage ✓ to be close to some point, our
objective biases the model to have fewer high loss exam-
ples which matches our goal of mitigating representation
disparity.

Figure 2. Chi-square distributionally robust optimization (DRO)
regularizes the losses (top panel) such that the minimum loss
estimate is fair to both groups (bottom panel).

Median Estimation: Recall the median estimation problem
over two groups mentioned in Section 3.2 where the loss
is `(✓;Z) = k✓ � Zk1. Figure 2 shows the behavior of
both ERM and DRO on this median estimation task with
unbalanced (↵min = 0.1) groups. The parameter estimate
which minimizes Rmax for this problem is ✓fair = 0 since
this is equidistant from both groups. ERM on the other hand
focuses entirely on the majority and returns ✓ERM ⇡ �1.0.

DRO returns ✓⇤DRO which is close to ✓fair. Analyzing the risk,
we find that the single-step worst-case group risk Rmax(✓)
in (1) is an upper bound on ERM, and DRO forms a tight up-
per bound this quantity (Figure 2b). We can also understand
the behavior of DRO through the worst-case distribution Q

in Equation 4. Figure 2a shows the worst-case distribution
Q at the minimizer ✓⇤DRO which completely removes points
within distance ⌘

⇤. Additionally, points far from ✓
⇤
DRO are

upweighted, resulting in a large contribution to the loss from
the minority group.

We expect the bound to be tight when all individuals within
a group receive the same loss. In this case, thresholding
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by ⌘
⇤ corresponds to selecting the single highest risk group

which is equivalent to directly minimizing Rmax(✓) (1).

On the other hand, the worst case for our approach is if
↵min is small, and a group with low expected loss has a high
loss tail with population size ↵min. In this case DRO is a
loose upper bound and optimizes the losses of the group
with already low expected loss.

This is closely related to recent observations that the DRO
bound can be loose for classification losses such as the zero-
one loss due to the worst-case distribution consisting purely
of misclassified examples (Hu et al., 2018). Even in this
case, the estimated loss is still a valid upper bound on the
worst case group risk, and as Figure 2 shows, there are
examples where the DRO estimate is nearly tight.

4.3. Optimization

We now show how to minimize ✓ 7! Rdro(✓; rmax) effi-
ciently for a large class of problems. For models such as
deep neural networks that rely on stochastic gradient de-
scent, the dual objective F (✓; ⌘) in (5) can be used directly
since it only involves an expectation over the data generating
distribution P .

Formally, the following procedure optimizes (4): for a given
value of ⌘, compute the approximate minimizer b✓⌘

minimize
✓2⇥

EP [`(✓;Z)� ⌘]2+ . (6)

From Propositions 2 and 3, we have

Rmax(b✓⌘)  Rdro(b✓⌘; rmax)  F (b✓⌘, ⌘)

which implies that we can treat ⌘ as a hyperparameter. For
convex losses ✓ 7! `(✓;Z), the function ⌘ 7! F (b✓⌘, ⌘) is
convex, and thus we can perform a binary search over ⌘ to
find the global optimum efficiently.

Alternatively, for models where we can compute ✓
⇤(Q) 2

argmin✓2⇥ EQ[`(✓;Z)] efficiently, we can use existing pri-
mal solvers that compute the worst-case probability distri-
bution Q

⇤(✓) 2 argmaxQ2B(P,r) EQ[`(✓;Z)] for a given
✓ based on projected gradient ascent on Q (Namkoong &
Duchi, 2016). By alternating between optimization on ✓

and Q, we can efficiently find the saddle point (✓⇤, Q⇤) that
satisfies ✓⇤ = ✓

⇤(Q⇤) and Q
⇤ = Q

⇤(✓⇤).

4.4. Stability of minority loss minimization

We have thus far demonstrated that for a single time
step, the worst-case risk over all groups Rmax(✓) =
maxk Rk(✓) can be controlled by the distributionally ro-
bust risk Rdro(✓; rmax) where rmax := (1/↵min � 1)2 and
↵min is the minority group proportion. Now, we study how
the individual group risk Rk(✓) affects user retention and

hence future risk. By virtue of providing an upper bound
to Rmax(✓), optimizing Rdro(✓; rmax) at each time step can
thus control the future group risk Rmax(✓).

We show that if the initial group proportions satisfy ↵
(0)
k �

↵min and the worst-case risk Rmax(✓(t)) is sufficiently small
at each time t, then we can ensure ↵

(t+1)
k > ↵min. Thus, to

control RT
max, the worst-case group risk over all time steps,

it suffices to control Rdro(✓(t); rmax) using the procedure
in Section 4.3.
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We conclude that as long as we can guarantee
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, (7)

we can control RT
max(✓

(0)
, . . . , ✓

(T )), the unknown worst-
case group risk over all time steps by optimizing
Rdro(✓(t); rmax) at each step t. While the condition (7)
is hard to verify in practice, we observe empirically in
Section 5 that optimizing the distributionally robust risk
Rdro(✓(t); rmax) at time step t indeed significantly reduces
disparity amplification in comparison to using ERM.

Proposition 4 gives stronger fairness guarantees than the
stability conditions for ERM in Proposition 1. In ERM the
best one can do is to add strong convexity to the model
to stabilize to a possibly unfair fixed point. In contrast,
Proposition 4 gives conditions for controlling Rmax over
time without assuming that there exists a fair fixed point.

Stability of median estimation: Returning to our running
example of geometric median estimation, we can show that
under the same dynamics, ERM is highly unstable while
DRO is stable. Consider a three Gaussian mixture on the
corners of the simplex, with L2 loss, retention function
⌫(r) = exp(�r), and b1 = b2 = 50, n(t) = 1000. By
construction, (1/3, 1/3, 1/3) is the fair parameter estimate.

Figure 3 shows that ERM is highly unstable, with the only
stable fixed points being the corners, where a single group
dominates all others. The fair parameter estimate is an un-
stable fixed point for ERM, and any perturbation eventually
results in a completely unfair parameter estimate. On the
other hand, DRO has the reverse behavior, with the fair
parameter estimate being the unique stable fixed point.

primal objective

proven upper bound

Search for best 
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example of geometric median estimation, we can show that
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corners of the simplex, with L2 loss, retention function
⌫(r) = exp(�r), and b1 = b2 = 50, n(t) = 1000. By
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Figure 3 shows that ERM is highly unstable, with the only
stable fixed points being the corners, where a single group
dominates all others. The fair parameter estimate is an un-
stable fixed point for ERM, and any perturbation eventually
results in a completely unfair parameter estimate. On the
other hand, DRO has the reverse behavior, with the fair
parameter estimate being the unique stable fixed point.
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To formally describe our approach, let D�2 (P ||Q) be the
�
2-divergence between probability distributions P and

Q given by D�2 (P ||Q) :=
R ⇣

dP
dQ � 1

⌘2
dQ. If P is

not absolutely continuous with respect to Q, we define
D�2 (P ||Q) := 1.

Let B(P, r) be the chi-squared ball around a probability
distribution P of radius r so that B(P, r) := {Q ⌧ P :
D�2 (Q||P )  r}. We consider the worst-case loss over all
r-perturbations around P ,

Rdro(✓; r) := sup
Q2B(P,r)

EQ[`(✓;Z)]. (4)

Intuitively, the distributionally robust risk Rdro(✓; r) up-
weights examples Z with high loss `(✓;Z). If there is a
group suffering high loss, the corresponding mixture compo-
nent will be over-represented (relative to the original mixture
weights) in the distributionally robust risk Rdro(✓; r). We
show in the following proposition that Rdro(✓; r) bounds
the risk of each group Rk(✓), and hence the group-wise
worst-case risk (1), for an appropriate choice of the robust-
ness radius r.
Proposition 2. For P :=

P
k2[K] ↵kPk, we have Rk(✓) 

Rdro(✓; rk) for all ✓ 2 ⇥ where rk := (1/↵k � 1)2 is the
robustness radius.

We prove the result in Section A.4. Roughly speaking, the
above bound becomes tighter if the variation in the loss
`(✓;Z) is substantially higher between groups than within
each group. In particular, this would be the case if the
loss distribution for each group have distinct support with
relatively well-concentrated components within each group.

As a consequence of Proposition 2, if we have a lower
bound on the group proportions ↵min  mink2[K] ↵k,
then we can control the worst-case group risk Rmax(✓) by
minimizing the upper bound ✓ 7! Rdro(✓; rmax) where
rmax := (1/↵min � 1)2.

Similar formulations for robustness around the empirical
distribution with radius shrinking as r/n had been consid-
ered in (Ben-Tal et al., 2013; Lam & Zhou, 2015; Duchi &
Namkoong, 2016). While there are many possible robust-
ness balls B which could provide upper bounds on group
risk, we opt to use the chi-squared ball since it is straightfor-
ward to optimize (Ben-Tal et al., 2013; Namkoong & Duchi,
2016; 2017) and we found it empirically outperformed other
f -divergence balls.

4.2. Interpreting the dual

The dual of the maximization problem (4) provides addi-
tional intuition on the behavior of the robust risk.
Proposition 3 ((Duchi & Namkoong, 2018)). If `(✓; ·) is
upper semi-continuous for any ✓, then for rmax � 0 and

any ✓, Rdro(✓; rmax) is equal to the following expression

inf
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⇢
F (✓; ⌘) := C

⇣
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h
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i⌘ 1
2
+ ⌘
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(5)

where C =
�
2(1/↵min � 1)2 + 1

�1/2.

Denoting by ⌘
? the optimal dual variable (5), we see from

the proposition that all examples suffering less than ⌘
?-

levels of loss are completely ignored, and large losses above
⌘
? are upweighted due to the squared term.

However, unlike standard parameter regularization tech-
niques, which encourage ✓ to be close to some point, our
objective biases the model to have fewer high loss exam-
ples which matches our goal of mitigating representation
disparity.

Figure 2. Chi-square distributionally robust optimization (DRO)
regularizes the losses (top panel) such that the minimum loss
estimate is fair to both groups (bottom panel).

Median Estimation: Recall the median estimation problem
over two groups mentioned in Section 3.2 where the loss
is `(✓;Z) = k✓ � Zk1. Figure 2 shows the behavior of
both ERM and DRO on this median estimation task with
unbalanced (↵min = 0.1) groups. The parameter estimate
which minimizes Rmax for this problem is ✓fair = 0 since
this is equidistant from both groups. ERM on the other hand
focuses entirely on the majority and returns ✓ERM ⇡ �1.0.

DRO returns ✓⇤DRO which is close to ✓fair. Analyzing the risk,
we find that the single-step worst-case group risk Rmax(✓)
in (1) is an upper bound on ERM, and DRO forms a tight up-
per bound this quantity (Figure 2b). We can also understand
the behavior of DRO through the worst-case distribution Q

in Equation 4. Figure 2a shows the worst-case distribution
Q at the minimizer ✓⇤DRO which completely removes points
within distance ⌘

⇤. Additionally, points far from ✓
⇤
DRO are

upweighted, resulting in a large contribution to the loss from
the minority group.

We expect the bound to be tight when all individuals within
a group receive the same loss. In this case, thresholding
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Figure 8. Autocomplete task interface on Amazon mechanical turk.
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(a) User satisfaction (b) User retention (c) User count

Figure 4. Inferred dynamics from a Mechanical Turk based evaluation of autocomplete systems. DRO increases minority (a) user
satisfaction and (b) retention, leading to a corresponding increase in (c) user count. Error bars indicates bootstrap quartiles.

Figure 5. Disparity amplification in Figure 1 is corrected by DRO.
Error bars indicate quartiles over 10 replicates.

Figure 6. Classifier accuracy as a function of group imbalance.
Dotted lines show accuracy on majority group.

satisfaction and retention. Implied user counts follow the
same trend with larger differences between groups due to
compounding.

Counterintuitively, the minority group has higher satisfac-
tion and retention under DRO. Analysis of long-form com-
ments from Turkers suggest this is likely due to users valuing
the model’s ability to complete slang more highly than com-
pletion of common words and indicates a slight mismatch
between our training loss and human satisfaction with an
autocomplete system.

6. Discussion
In this work we argued for a view of loss minimization
as a distributive justice problem and showed that ERM of-
ten results in disparity amplification and unfairness. We
demonstrate that DRO provides a upper bound on the risk
incurred by minority groups and performs well in practice.

Our proposed algorithm is straightforward to implement,
and induces distributional robustness, which can be viewed
as a benefit in and of itself.

Our arguments against ERM and in favor of minority risk
minimization mirror Rawls’ arguments against utilitarian-
ism, and thus inherit the critiques of Rawlsian distributive
justice. Examples of such critiques are the focus on an ab-
stract worst-off group rather than demographic groups or
individuals (Altham, 1973), extreme risk-aversion (Mueller
et al., 1974), and utilitarianism with diminishing returns as
an alternative (Harsanyi, 1975). In this work, we do not
address the debate on the correctness of Rawlsian justice
(Rawls, 2001), and leave finding a suitable philosophical
framework for loss minimization to future work.

There are two large open questions from our work. First, as
fairness is fundamentally a causal question, observational
approaches such as DRO can only hope to control limited
aspects of fairness. The generality with which our algorithm
can be applied also limits its ability to enforce fairness
as a constraint, and thus our approach here is unsuitable
for high-stakes fairness applications such as classifiers for
loans, criminality, or admissions. In such problems the
implied minorities from DRO may differ from well-specified
demographic groups who are known to suffer from historical
and societal biases. This gap arises due to looseness in the
DRO bound (Hu et al., 2018), and could be mitigated using
smoothness assumptions (Dwork et al., 2012).

Second, distributional robustness proposed here runs
counter to classical robust estimation for rejecting outlier
samples, as high loss groups created by an adversary can
easily resemble a minority group. Adversarial or high-noise
settings loosen the DRO upper bound substantially, and it is
an open question whether it is possible to design algorithms
which are both fair to unknown latent groups and robust.

Reproducibility: Code to generate results available on the
CodaLab platform at https://bit.ly/2sFkDpE.
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Case Studies

• Equal opportunity (NeurIPS 2016) 

• Learning fair representation (ICML 2013) 

• Feedback loops in repeated loss minimization (ICML 2018, best 
paper runner up)



Closing Thoughts

• Provide technology to prevent technology from doing wrong 

• Transparency, explainability, interpretability 

• Current trajectory is bad. Corrective research is too slow. 

• ML is not automatically fair because it’s based on math.


