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* Ditferent forms and causes of fairness in machine learning
e Case studies of recent solutions for fairer ML

» Post processing predictions for equal opportunity

o [air representation learning

* Fixing feedback loops



Case Study 1: Equal Opportunity

http://research.google.com/bigpicture/attacking-discrimination-in-ml/

Equality of Opportunity in Supervised Learning
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October 11, 2016

Abstract

We propose a criterion for discrimination against a specified sensitive attribute in su-
pervised learning, where the goal is to predict some target based on available features.
Assuming data about the predictor, target, and membership in the protected group are avail-
able, we show how to optimally adjust any learned predictor so as to remove discrimination
according to our definition. Our framework also improves incentives by shifting the cost of
poor classification from disadvantaged groups to the decision maker, who can respond by
improving the classification accuracy.

In line with other studies, our notion is oblivious: it depends only on the joint statistics of
the predictor, the target and the protected attribute, but not on interpretation of individual
features. We study the inherent limits of defining and identifying biases based on such
oblivious measures, outlining what can and cannot be inferred from different oblivious tests.

We illustrate our notion using a case study of FICO credit scores.
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Case Study 2: Fair Representations

http://proceedings.mir.press/v28/zemel13.pdf

Learning Fair Representations

Richard Zemel
Yu (Ledell) Wu
Kevin Swersky
Toniann Pitassi

ZEMELQCS. TORONTO.EDU
WUYUQCS. TORONTO.EDU
KSWERSKYQCS. TORONTO.EDU
TONIQCS.TORONTO.EDU

University of Toronto, 10 King’s College Rd., Toronto, ON M6H 2T1 CANADA

Cynthia Dwork

DWORKQMICROSOFT.COM

Microsoft Research, 1065 La Avenida Mountain View, CA. 94043 USA

Abstract

We propose a learning algorithm for fair clas-
sification that achieves both group fairness

(the proportion of members in a protected
oTO11N recelvinoe nogitive claccification i€ i den-

ics have voiced concerns with bias and discrimination
in decision systems that rely on statistical inference
and learning.

Systems trained to make decisions based on historical
data will naturallv inherit the nast biases The<e mav


http://proceedings.mlr.press/v28/zemel13.pdf

p. 2 definitions

X denotes the entire data set of individuals. Each
x € X is a vector of length D where each compo-
nent of the vector describes some attribute of the
person.

S is a binary random variable representing
whether or not a given individual is a member
of the protected set; we assume the system has
access to this attribute.

X denotes the training set of individuals.

X+t Cc X, X C Xy denotes the subset of indi-

viduals (from the whole set and the training set
respectively) that are members of the protected
set (i.e., S = 1), and X~ and X denotes the
subsets that are not members of the protected set,
ie., S=0.

Z 18 a multinomial random variable, where each
of the K values represents one of the intermediate
set of "prototypes”. Associated with each proto-
type is a vector vi in the same space as the indi-
viduals x.

Y is the binary random variable representing the
classification decision for an individual, and f :
X — Y is the desired classification function.

d is a distance measure on X, e.g., simple Eu-
clidean distance: d(x,,vg) = ||xX, — Vg||o.

Statistical parity:

P(Z=klxte X" =PZ=klx  €¢ X ),Vk& (1)

Representation as mixture of prototypes:

P(Z = k|x) = eXp(—d(Xaw))/ZeXp(—d(X,Vj)) (2)

Learning goals:

1. the mapping from X to Z satisfies statistical par-
1ty;

2. the mapping to Z-space retains information in X
(except for membership in the protected set); and

3. the induced mapping from X to Y (by first map-
ping each x probabilistically to Z-space, and then
mapping Z to Y) is close to f.



Objective function: L =ASSEs + Ay Ly + Ay (4)

Minimize {Vk }kzl y W *they also modify the distance function (12)
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Figure 1. Results on test sets for the three datasets (Ger-
man, Adult, and Health), for two different model selec-
tion criteria: minimizing discrimination and maximizing
the difference between accuracy and discrimination.
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Figure 2. Individual fairness: The plot shows the consis-
tency of each model’s classification decisions, based on the
yN N measure. Legend as in Figure 1.
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Figure 3. The plot shows the accuracy of predicting the
sensitive variable (sAcc) for the different datasets. Raw in-
volves predictions directly from all input dimensions except
for S, while Proto involves predictions from the learned fair
representations.
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| R: logistic regression
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RLR: regularized LR

' FR: their method



Case Study 3: Fixing Feedback Loops

https://arxiv.org/abs/1806.08010

Fairness Without Demographics in Repeated Loss Minimization
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Abstract Jurgens et al., 2017), dependency parsing (Blodgett et al.,
2016), part-of-speech tagging (Hovy & Sgaard, 2015), aca-
demic recommender systems (Sapiezynski et al., 2017), and
automatic video captioning (Tatman, 2017).

Machine learning models (e.g., speech recog-
nizers) are usually trained to minimize average
loss, which results in representation disparity—

minority groups (e.g., non-native speakers) con- Moreover, a minority user suffering from a higher error rate
tribute less to the training objective and thus tend will become discouraged and more likely to stop using the
to suffer higher loss. Worse, as model accuracy system, thus no longer providing data to the system. As
affects user retention, a minority group can shrink a result, the minority group will shrink and might suffer
over time. In this paper, we first show that the sta- even higher error rates from a retrained model in a future
tus quo of empirical risk minimization (ERM) am- time step. Machine learning driven feedback loops have
plifies representation disparity over time, which been observed in predictive policing (Fuster et al., 2017)

can even make initially fair models unfair. To mit- and credit markets (Fuster et al., 2017), and this problem


https://arxiv.org/abs/1806.08010

Feedback Model for lterated ML

Observations from mixture of latent groups 4 ~ P := ZkE[K] g Py

Goal: control worst risk among groups  Rmax(0) = max Ry (0), Ry(0) := Ep, [£(0; 2)

ke|K]

Definition 1 (Dynamics). Given a sequence 1), for each
t = 1...7T, the expected number of users A and samples

ZZ-(t) starting at )\,(f) = by, is governed by:

nttl) . — = Pois( Z )\(tH)

AR ZT(Zt(;ll))l pt+1) . Z a(t“)Pk.
ke[K]

retention function

Figure 1. An example online classification problem which begins
fair, but becomes unfair over time.



Solution: Distributionally Robust Optimization

Raro(0;7) :=  sup Egll(0; 2)]. (4) orimal objective
QeB(P,r)

B(P,r) == {Q < P : D,» (QHP) <r}

(\V)

minimize Bp [€(6; Z) —nl, . (6) proven upper bound

Search for best 71



User: anonymous Remaining: 10

Please type this: my life has really changed i have become a true boss i

Difference: my life has really changed i have become a true boss i

User study: ask crowdsource workers to

VAL
retype tweets my life haha
my life hahaha
. : : my life has
Tweets are categorized by linguists as my life have
using African-American English and my life here

Standard-American English dialects. Assign
one dialect to each user.

Learn autocomplete language models.
Survey users after rounds on whether they
would continue using system.
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Figure 4. Inferred dynamics from a Mechanical Turk based evaluation of autocomplete systems. DRO increases minority (a) user
satisfaction and (b) retention, leading to a corresponding increase in (¢) user count. Error bars indicates bootstrap quartiles.



Case Studies

o Equal opportunity (NeurlPS 2016)
* [earning fair representation (ICML 2013)

e Feedback loops in repeated loss minimization (ICML 2018, best
paper runner up)



Closing Thoughts

Provide technology to prevent technology from doing wrong
Transparency, explainability, interpretability
Current trajectory is bad. Corrective research is too slow.

ML is not automatically fair because it's based on math.



