Recap

- 90% of ML:
 - Dataset D
 - e.g., $D = \{(x_1, y_1), ..., (x_m, y_m)\}$
 - Hypothesis class: $H = \{h_1, ..., h_n\}$
 - Learning algorithm A_H
 - $A_H(D) = \operatorname{arg\,min}_{h \in H} f(D, h)$

Supervised Classification

- Classifier: h(x) -> y
- Training data: $D = \{(x_1, y_1), ..., (x_m, y_m)\}$
 - Examples come from "real world."
- Learning algorithm: A(D) -> h
 - h should do well on real world. Training data is just a proxy

Nearest Neighbor Classification

- $D = \{(x_1, y_1), ..., (x_m, y_m)\}$
- $h(x) = y_k$, where $k = argmin_i d(x, x_i)$
- How much does this cost?
 - How to make it cheaper?
- How to improve this to avoid mistakes?

Today's Plan

- First (second) machine learning algorithm: decision tree learning
 - Another example of supervised classification

Outline

- Learning decision trees
- Extensions: random forests

Decision Tree Learning

- Greedily choose best decision rule
- Recursively train decision tree for each resulting subset

```
function fitTree(D, depth)
  if D is all one class or depth >= maxDepth
    node.prediction = most common class in D
    return node
  rule = BestDecisionRule(D)
  dataLeft = {(x, y) from D where rule(D) is true}
  dataRight = {(x, y) from D where rule(D) is false)}
  node.left = fitTree(dataLeft, depth+1)
  node.right = fitTree(dataRight, depth+1)
  return node
```

```
function fitTree(D, depth)
 if D is all one class or depth >= maxDepth
    node.prediction = most common class in D
   return node
 rule = BestDecisionRule(D)
 dataLeft = {(x, y) from D where rule(D) is true}
 dataRight = {(x, y) from D where rule(D) is false)}
 node.left = fitTree(dataLeft, depth+1)
 node.right = fitTree(dataRight, depth+1)
  return node
```

Choosing Decision Rules

- Define a cost function cost(D)
 - Misclassification rate (training error)
 - Entropy or information gain
 - Gini index (smoothed training error)

Misclassification Rate

$$\hat{\pi}_c := \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \mathbb{I}(y_i = c)$$
 class proportion (estimated probability)

$$\hat{y} := \underset{c}{\operatorname{argmax}} \hat{\pi}_{c}$$

best prediction

$$\operatorname{cost}(\mathcal{D}) := \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \mathbb{I}(y_i \neq \hat{y}) = 1 - \hat{\pi}_{\hat{y}}$$
 error rate

$$cost(\mathcal{D}) - \left(\frac{|\mathcal{D}_L|}{|\mathcal{D}|}cost(\mathcal{D}_L) + \frac{|\mathcal{D}_R|}{|\mathcal{D}|}cost(\mathcal{D}_R)\right)$$
 cost reduction

Entropy and Information Gain

$$\hat{\pi}_c := \frac{1}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} \mathbb{I}(y_i = c)$$

$$H(\hat{\pi}) := -\sum_{c=1}^{C} \hat{\pi}_c \log \hat{\pi}_c$$

$$cost(\mathcal{D}) - \left(\frac{|\mathcal{D}_L|}{|\mathcal{D}|}cost(\mathcal{D}_L) + \frac{|\mathcal{D}_R|}{|\mathcal{D}|}cost(\mathcal{D}_R)\right)$$

$$\inf \mathsf{oGain}(j) = H(Y) - H(Y|X_j)$$

$$= -\sum_{y} \mathsf{Pr}(Y = y) \log \mathsf{Pr}(Y = y) +$$

$$\sum_{x_i} \mathsf{Pr}(X_j = x_j) \sum_{y} \mathsf{Pr}(Y = y|X_j = x_j) \log \mathsf{Pr}(Y = y|X_j = x_j).$$

Information Gain

$$\inf \mathsf{oGain}(j) = H(Y) - H(Y|X_j)$$

$$= -\sum_{y} \mathsf{Pr}(Y = y) \log \mathsf{Pr}(Y = y) +$$

$$\sum_{x_i} \mathsf{Pr}(X_j = x_j) \sum_{y} \mathsf{Pr}(Y = y|X_j = x_j) \log \mathsf{Pr}(Y = y|X_j = x_j).$$

$$X_j = Y$$

$$X_j \perp Y$$

Gini Index

$$\sum_{c=1}^{C} \hat{\pi}_c (1 - \hat{\pi}_c) = \sum_{c} \hat{\pi}_c - \sum_{c} \hat{\pi}_c^2 = 1 - \sum_{c} \hat{\pi}_c^2$$

like misclassification rate, but accounts for uncertainty

Comparing the Metrics


```
% Fig 9.3 from Hastie book
p=0:0.01:1;
gini = 2*p.*(1-p);
entropy = -p.*log(p) - (1-p).*log(1-p);
err = 1-max(p,1-p);
% scale to pass through (0.5, 0.5)
entropy = entropy./max(entropy) * 0.5;
figure;
plot(p, err, 'g-', p, gini, 'b:', p, ...
       entropy, 'r--', 'linewidth', 3);
legend('Error rate', 'Gini', 'Entropy')
```

Overfitting

- A decision tree can achieve 100% training accuracy when each example is unique
- Limit depth of tree
- Strategy: train very deep tree
 - Adaptively prune

Validation

Take training data and split into training set and validation set

•
$$D = \{(x_1, y_1), ..., (x_n, y_n)\}$$

$$D_t = \{(x_1, y_1), \ldots, (x_m, y_m)\}$$

$$D_V = \{(x_{m+1}, y_{m+1}), ..., (x_n, y_n)\}$$

Only allow learning algorithm to look at Dt

Pruning with Validation Set

Pruning with Validation Set

Validation accuracy: 0.4

new validation accuracy: 0.41

Random Forests

- Use bootstrap aggregation to train many decision trees
 - Randomly subsample **n** examples
 - Train decision tree on subsample
 - Use average or majority vote among learned trees as prediction
- Also randomly subsample features

Summary

- Training decision trees
- Cost functions
 - Misclassification
 - Entropy and information gain
 - Gini index (expected error)
- Pruning
- Random forests (bagging)